Accredited Standards Committee X3 Doc No: X3J16/95- 0055 W21/ NO655
I nformati on Processing Systens Dat e: March 3, 1995 Page 1 of 12
Operating under the procedures of Project: Programm ng Language C++
Ameri can National Standards Institute Ref Doc:
Reply to: Josee Lajoie
(j osee@net.ibmcom

1. Pointer manipul ations
1.1. Conversion fromT* to void*

It is not guaranteed that a T* will point to the beginning of the
storage allocated for an object of type T.

class B {
virtual void f();
virtual ~B();
b
class DL : public B { void f(); };
Di* pd = new D1; // pd may not point to the beginning of the storage
/1 allocated for an object of type D1

Pr oposa
When converting a T* to a void*, the pointer m ght change val ue
and the void* that results is guaranteed to point at the start of
the storage hol ding the object of type T.

Exampl e

class B {

virtual void f();
virtual ~B();

b
class DL : public B { void f(); };

void* p = mall oc(sizeof (D1+D1)); // gets enough space.
D1* pd = new (p) Di;

p wll point at the start of the storage allocated to hold the
object of type DL. It is not guaranteed that pd will point at the
start of the storage location containing the object D1, that is:

p == pd /1 may yield fal se
p == (void *) pd // always true

1.2. placenent operator new

The WP description of operator new with placenent says:

———————— X3J16/95- 0055 - WE21/NO655 --- Lajoie:oject Lifetimes --- Page

18.4.1.5.1 [_lib.placenment. op. new]
voi d* operator new(size_ t size, void* ptr);
Returns ptr."

This inplies (I believe):

Tt;
T tp = newm(&) T;
if (tp==&) [/ yields true since the same type is newed

The 2nd operand to placenent new '& ' is converted fromT* to void*.
The new expression creates an object of type T at the nenory

| ocation ((void*)&), which, for any type T, is the start of the
menory | ocation where the object t resided. The new expression
returns a pointer to T, i.e. ((T*)((void*)&)). tp == &t.

.3 What can be done with a pointer to an object that has been
destroyed?

T pt = new T,
pt->~T();

Pr oposal

The foll owi ng text shoul d be added to sub-clause 12.4 [class.dtor]:

8 A pointer to an object of type T that has been destroyed (p->~T())
can only be used in limted ways. Using the pointer as an T* is

no | onger valid. However, the pointer still points at valid nenory
and using the pointer as a pointer to the nmenory where the object
was | ocated '(void *)p’ is well-defined. |In particular, such a

poi nter cannot be used to refer to any non-static (data or (virtua
or non-virtual) function) menbers of the destroyed object (doing so
results in undefined behavior). However, such a pointer can be
used to access other objects. For exanple, the pointer can be used
to access static data menbers or call static nenber functions
of the class type T.

9.5 [class.static]

21t [the static menber] can also be referred to using . and ->
menber access operators even after the object referred to by the
obj ect expression has been destroyed.

Exanpl e:

class B {
virtual void f();
virtual ~B();
static g();
b
class D: public B { void f(); };

———————— X3J16/95- 0055 - WE21/NO655 --- Lajoie:oject Lifetimes --- Page 3

void* p = mall oc(2*sizeof (D)); // gets enough space.
B* pb = new (p) D

pb->~B() ; /1 calls virtual destructor

void *q = pb; /1 Gk, pbis a pointer to valid nenory

pb->f (); /1 undefined: f is a non-static nenber function
pb->g(); /1 undefined: equivalent to *pb (undefined), B::g()

Anot her exanpl e:

class C {
void f();
voi d destroy();
static g();
void C :destroy ()
{
this->~C();
f(O); /1 undefined: f is a non-static nenber function
a(); /1 well-formed: equivalent to C :g()
}

1.4 Base cl ass subobjects

1.4.1. Conversion frompointer to derived to pointer to base

class B {
virtual void f();
virtual ~B();

P

class DL : public B { void f(); };

void* p = nalloc(2*sizeof (Dl)); // gets enough space.
D1* pd = new (p) Di;

B* pbl = pd;

The WP, subcl ause 4.10 [conv.ptr] already indicates that
pbl == pd // may yield fal se

For the sane reason:
pbl == /1 may yield fal se

That is, the | anguage does not guarantee that any pointer to an

object’s base class will point to the start of the storage |ocation
where the object resides.

1.4.2. conplete object of type T vs base class subobject of type T

Pr oposal

An object of type T that is a base subobject is not guaranteed to
have the same size and the same |ayout as a conplete object of type
T. An object of type T that is a base subobject of another class
is not guaranteed to have the same pol ynorphi c behavior as a

conpl ete object of type T.

———————— X3J16/95- 0055 - WE21/NO655 --- Lajoie:oject Lifetimes --- Page

class A { };

class B : public virtual A{ };
class C: public virtual A{ };
class D: public B, public C{ };
Cc;

D d;

C pc = &d;

The size and |layout for the d’ s base subobject C might be
different fromthe size and | ayout of c.

Pr oposal

void* p = (void *)pc

When converting a T* to a void*, the pointer m ght change val ue
and the val ue of the void* pointer points at the start of the
storage holding a conmpl ete object of type T.

That is, if T* happens to point at a base class subobject, then it is
not guaranteed that the conversion T* --> void* will cause p to

poi nt at the beginning of the storage |ocation where the subobject

of type T resides. The address calculation fromT* to void* is
performed as if the T* pointer pointed at a conplete object of type
T and the resulting void* pointer is set to point at what woul d be
the beginning of the storage |ocation for the conplete object of

type T.

1.5 Summary
class B {

virtual void f();
virtual ~B();

P

class DL : public B { void f(); };

class D2 : public B { void f(); };

voi d* p = nmall oc(sizeof (D1)+sizeof (D2)); // gets enough space.
D1* pd = new (p) Di;

B* pbl = pd;

pbl->~B(); /1 calls virtual destructor.

B* pb2 = new (p) D2; /1 reuses space that has been destroyed.
pb2->f (); /1l calls D2::f().

As mentioned in 1.1,

p == pd
m ght yield false. However,

p == (void*) pd
is always true. ’'p points at the start of the storage hol ding the
object of type D1. The follow ng expressions are therefore
equi val ent :

———————— X3J16/95- 0055 - WE21/NO655 --- Lajoie:oject Lifetimes --- Page

new (p) D2;

new ((void *)pd) D2;

new (pd) D2; // since placenent operator new takes a paraneter of
/1 type void*, the argurment is inplicitly converted
// fromthe D1* to void*

As nentioned in 1.4,

(voi d*) pbl
results in a pointer to what would be the begi nning of the storage
| ocation for a conplete object of type B. Therefore,

(void*)pbl == pd // might yield fal se
(void*)pbl == p // might yield fal se

And the expression:
new (p) D2;

is therefore not equivalent to
new ((voi d*)pbl) D2;

or
new (pbl) D2;

2. The effects of placement new on existing objects

2.1 New object allocated of unrelated type to the existing object

Exanpl e:

class B {
virtual void f();
virtual ~B();
b
class DL : public B { void f(); };
class D2 : public B { void f(); };

void nutate(B** pb2, void *p) {
(*pb2) - >~B();
new (p) D2; [11: well-defined ??

void* p = mall oc(sizeof (Dl) + sizeof(D2));
B* pbl = new (p) Di;

nut ate(&pbl, p);

pbl->f(); /12 well-defined ??

The code on line //1 has well-defined behavior if p points at a
storage area that is large enough to hold an object of type D2.
The code on line //2 has undefined behavi or.

The function nmutate has changed the type of the conpl ete object at

whi ch pbl points (fromDl1 to D2). The | ocation of the base subobject

Bin D1 mght be different fromthe |ocation of the base subobject B
in D2. The virtual function table of a base subobject B in D1 m ght

be different fromthe virtual function table of a base subobject B in
D2. Therefore

———————— X3J16/95- 0055 - WE21/NO655 --- Lajoie:oject Lifetimes --- Page
pbl->f(); /1 has undefined behavi or

Does the calling function know that the value of pbl may have changed
in mutate? Yes, this is a strait C aliasing question. pbl has its
address taken, its value nay be changed by function calls. However,
since the type (dynamic) of the object referred to by pbl has changed,
the result of the expression has undefined behavi or

Pr oposal
If the pointer in a new placenent expression has type T1* and the
new expressi on creates an object of type T2, referring to the
original object has the sane effect has referring to an object that
has been destroyed.

In particular, the pointer of type T1* can only be used in limted
ways. Using the pointer as a T1* is no |longer valid. However, the
pointer still points at valid nmenory and using the pointer as a
pointer to the nenory where the object was located '(void *)p’ is
wel | -defined. That is, such a pointer cannot be used to refer to any
non-static (data or (virtual or non-virtual) function) nenbers of
the object of type T1 (i.e. doing so results in undefined behavior).
However, such a pointer can be used to access other objects. For
exanpl e, the pointer can be used to access static data nmenbers or
call static menber functions for the type TI1.

2.2 new(this) in a nmenber function (to a different type)
Simlarly:

class B {
virtual void f();
void rmutate();
virtual ~B();
b
class DL : public B { void f(); };
class D2 : public B { void f(); };

void B::nutate() {
t his->~B();
new (this) D2;
}

voi d* p = mall oc(sizeof (Dl) + sizeof(D2));

B* pb = new (p) Di;

pb->mut ate();

pb->f (); /1 has undefined behavi or

Is it legal to use placenment new in a menber function to allocate an
object at the menory | ocation where the current object resides if the
new obj ect allocated does not have the sanme type as the '"this’

poi nter?

———————— X3J16/95- 0055 - WE21/NO655 --- Lajoie:oject Lifetimes --- Page

Pr oposal

Sane resolution as 2.1

There are obvious optinizations that nust be given up if a nmenber
function is allowed to allocate an object of a different type at the
"this' address location. |Inplenentation could no | onger assume that
the object size and layout, (i.e. pointers to virtual base cl asses)
and pol ynor phi ¢ behavi or (virtual function table) are unchangeabl e
within a nmenber function. The cost of |oosing these optim zations is
too great.

2.3 'new(this) T if T is a base class type

Exampl e:
class A{ };
class B: public virtual A{ };
class C: public virtual A { };
class D: public B, public C{ };
void foo() {
C ép = &d;

new(cp) C //1: well-defined ??

As explained in 1.4, during the conversion C* --> void*, the value of
cp might change. It is adjusted so that, after the conversion, cp
points at the start of the nenory |ocation where the object of type C
resides as if cp pointed at a conplete object of type C. That is, the
new obj ect created by the new expression might be allocated at a
menory | ocation different fromthe start of the subobject of type C

As explained in 1.4, an object of type Cthat is a base subobject is
not guaranteed to have the sane size and the sane | ayout as a conpl ete
object of type C. The new expression creates an object of type C and
this new object has the size and |l ayout of a conplete object of type
C.

That is, the new expression on line //1 may have cl obbered d's
subobj ect C and ot her subobjects of d as well.

However, line //1 itself has well-defined behavior if cp points at
enough storage to hold a conplete object of type C. It is the action
of referring to d or any of its subobjects after line //1 that results
i n undefined behavi or

Pr oposal
If the pointer in a new placenent expression has type T1* and the
new expressi on creates an object of type T2, (even if Tl is a
base class type of T2), referring to the original object or any of
its subobjects after the object of type T2 has been created has the
same effect has referring to an object that has been destroyed.

———————— X3J16/95- 0055 - WE21/NO655 --- Lajoie:oject Lifetimes --- Page

That is:
new(cp) C // has undefined behavi or

2.4 "new(this) T if T is the conplete object type

Exanpl e:
struct C {
int i;
void f();
const C& operator=(const C&);
H
const C& C::operator=(const C& other)
{
if (this = &ther)
this->~C();
new (this) C(other); //1. well-defined ??
return *this;
}
Ccl;
C c2;

cl =c¢2; //2: well-defined ??
cl.f(); //3: well-defined ??

The code on line //1 has well-defined behavior since '(void*)this’
points at a storage area that is |large enough to hold an object of
type C

The code on line //2 has well-defined behavior
According to 1.2, the code works since:

o the conplete object referred to by "this’ is of type C and the
conversion 'this’ --> void* yields a pointer that points to the
start of the storage location where the conplete object resides.

0 The object created by placenment new is of the same type (dynamc
type) as the conplete object pointed at by "this’.

Pr oposal
If the pointer in a new placenent expression has type T* and the
poi nter points to a conplete object of type T (dynamc type) and the
new expressi on creates an object of type T, referring to the object
T (or any of its nenbers or base classes) after the new expression
has conpleted is well-fornmed.

That is:
cl.f(); //3: well-defined

Anot her simlar exanple:
struct T{ T p; };
T::T() : p(new(this)T) { } // well-defined behavior

———————— X3J16/95- 0055 - WE21/NO655 --- Lajoie:oject Lifetimes --- Page
2.5 placenent new on cl ass nenbers and array el ements
Exampl e:

struct X {
Yy,
Z z;
b

X X;

(&x.y)->~y();
new (&x.y) Y;
/[l is referring to x or x.y well-defined ??

Pr oposal

For the purpose of the rule described in 2.4, class nenbers and
array el enents are considered "conpl ete objects".

That is:
new (&x.y) Y,
/1 referring to x or x.y is well-defined

Anot her exanpl e:

T t[5];
™ p = &[3];
t[3].~T(); /1 t[3] and p become pointers to nenory

p =newmp) T; // pand t[3] refer to T objects
/1 referring to t[3] is well-defined

3. Destruction for objects allocated with placement new
3.1 When does destruction yield undefined behavi or?

Exanmpl e 1:

{

Tt;

new (&) T ;

/1 according to 2.4, usingt as a Tis K
Y /1

Rule 2.4 indicates that referring tot as a T after the new
expression 'new (&) T has conpleted is well-formed. |In particular
calling T's nenber functions (including T's destructor at block exit
as in this exanple), is well-fornmed.

———————— X3J16/95- 0055 - WE21/NO655 --- Lajoie:oject Lifetimes --- Page

Exanpl e 2:
{
Tt,;
new (&) X ; // ok if t has enough storage to hold an X
&t ; /1 ok: the menory holding t is still valid
t.f(); /1l referring to a menber of a T:. undefined behavi or

/1 See rule 2.1
} // t is not a T anynore: undefined behavi or

Rule 2.1 indicates that if a new expression creates an object of
type T2 at the storage location where an object of type T1 resides,
referring to the original object has the sanme effect as referring to
an object that has been destroyed. In particular, if the origina
object is used to call T1's nenber functions (including T1l's
destructor at block exit as in this exanple), the programresults in
undefi ned behavi or

Exampl e 3:

However, if placement new throws an exception then T (or parts of
T) will be destroyed twi ce when the block //1 exists.

12. 4 pl13 already says that destroying an object nore than once
results in undefined behavior. This rule inplies that exanple 1 has
undefi ned behavi or

Exanpl e 4:

{
Tt;
new (&) X ; //1:. OKif t has enough storage to hold an X
new (&) T ;

Y /I K

Sane as exanple 2.
.2 When can destruction be skipped?
void h() {

T pt = new T;

[* ... %]
new(pt) X

What kind of type must T be for this programto have well-defined
behavi or ?

10

———————— X3J16/95- 0055 - WE21/NO655 --- Lajoie:oject Lifetimes --- Page

Pr oposal
If type T has a non-trivial destructor, an object of type T nust
be destroyed before the menory in which the object resides can be
reused or rel eased.

This ensures that if a type has a destructor with side-effects (i.e.
a destructor that updates gl obal objects, that rel eases certain
programresources, etc) and if the call to the destructor is omtted,
the programresults in undefined behavi or

4. const objects

The const qualifier can influence the properties of the nenory in

whi ch an object resides. Inplenentations are allowed to "color" nenory
i n which const objects reside and "uncolor" the nenory when it is
deal | ocated. The inplenentati on can put sone const objects with
constructors and destructors in read-only nmenory if it can figure out
that the constructor and destructor do not nodify the objects.

The nodel | propose for this behavior is to say that naking the nenory
wite protected is the inplementation’s responsibility and not that of
the constructor. Simlarly releasing the wite protection on the
nmenory is the inplementation’s responsibility and not that of the
destructor.

The nodel | have in mnd is the foll ow ng:
a. once the constructor has conpleted, the nenory in which a const
obj ect resides beconmes wite protected.
b. before a destructor starts, the wite protection on the nmenory in
whi ch a const object resides is rel eased.
| assune that action a. only takes place after the construction of
the conplete object (i.e. one that is not a nmenber and not a base) has
conpl eted and that action b. only takes place before the destruction
of the conplete object (one that is not a nenber and not a base) has
started.

The WP does not currently support this nodel
5.3.4 p20 says:

"Whet her the allocation function is called before eval uating the
constructor argunents, after evaluating the constructor argunment but
before entering the constructor or by the constructor itself is
unspeci fied."

Pr oposa
If the nodel above is correct, the allocation function cannot be
cal l ed by the constructor itself. 5.3.4 p20 needs to be rewitten as
fol | ows:

"Whet her the allocation function is called before evaluating the
constructor argunents or after evaluating the constructor argunent
but before entering the constructor is unspecified."

11

———————— X3J16/95- 0055 - WE21/NO655 --- Lajoie:oject Lifetimes --- Page

Since the nmenory in which const objects reside may be wite protected,
users should not be allowed to create new objects using placenment new
at the nenory |ocation where a const object resides.

{
const T t;
(&)->~T(); [/ OK nenory still wite protected
new (&) T ; // undefined behavior

}

Pr oposa

pl acenent new cannot be used to create an object at a nenory
| ocati on where a const object resides.

5. Malloc and free

5.1 What kind of objects can be mall oced?

void h()
T pt = (T*)mall oc(sizeof (T));
I* o0

}

What kind of type must T be for the expression calling malloc to be
wel | - formed?

Pr oposal
If type T has a non-trivial constructor, T s constructor nust be
called to create an object of type T, otherw se, the behavior is
undefined. Objects of type T with dynam c storage duration can
only be created by calling operator new.

5.2 using free instead of delete

If Tis atype with a non-trivial destructor, does the follow ng
have wel | - defi ned behavi or?

void h() {
™ pt;
pt->~T(); // calls T s destructor
free(pt); // Free the nenory

Pr oposal
G ven an object with dynam c storage duration of a type with a
non-trivial destructor, when destroying the object, the destructor
must be called for the object before the nenmory in which the
object resides is freed (that is, the program nust behave as if
a del ete expression was used to destroy the object).

12

