

Doc No: X3J16/95-0055 WG21/N0655 Accredited Standards Committee X3
Date: March 3, 1995 Page 1 of 12 Information Processing Systems
Project: Programming Language C++ Operating under the procedures of

 American National Standards Institute Ref Doc:
Reply to: Josee Lajoie

(josee@vnet.ibm.com)

+--+

|| Object Lifetimes:
| Memory Tricks and Objects with Disrupted Lifetimes |
+--+

1. Pointer manipulations

 1.1. Conversion from T* to void*

 It is not guaranteed that a T* will point to the beginning of the
 storage allocated for an object of type T.

 class B {

virtual void f();
virtual ~B();

 };
 class D1 : public B { void f(); };
 D1* pd = new D1; // pd may not point to the beginning of the storage

// allocated for an object of type D1

 Proposal

 When converting a T* to a void*, the pointer might change value
 and the void* that results is guaranteed to point at the start of
 the storage holding the object of type T.

 Example

 class B {

virtual void f();
virtual ~B();

 };
 class D1 : public B { void f(); };
 void* p = malloc(sizeof(D1+D1)); // gets enough space.
 D1* pd = new (p) D1;

 p will point at the start of the storage allocated to hold the
 object of type D1. It is not guaranteed that pd will point at the
 start of the storage location containing the object D1, that is:

// may yield false p == pd
 p == (void *) pd // always true

 1.2. placement operator new

 The WP description of operator new with placement says:

-------- X3J16/95-0055 - WG21/N0655 --- Lajoie:Object Lifetimes --- Page 2

 18.4.1.5.1 [_lib.placement.op.new_]
 void* operator new(size_t size, void* ptr);
 Returns ptr."

 This implies (I believe):

 T t;
 T* tp = new(&t)T;
 if (tp==&t) // yields true since the same type is newed

 The 2nd operand to placement new ’&t’ is converted from T* to void*.
 The new expression creates an object of type T at the memory
 location ((void*)&t), which, for any type T, is the start of the
 memory location where the object t resided. The new expression
 returns a pointer to T, i.e. ((T*)((void*)&t)). tp == &t.

 1.3 What can be done with a pointer to an object that has been
 destroyed?

 T* pt = new T;
 pt->~T();

 Proposal:

 The following text should be added to sub-clause 12.4 [class.dtor]:
 8 A pointer to an object of type T that has been destroyed (p->~T())
 can only be used in limited ways. Using the pointer as an T* is
 no longer valid. However, the pointer still points at valid memory
 and using the pointer as a pointer to the memory where the object
 was located ’(void *)p’ is well-defined. In particular, such a
 pointer cannot be used to refer to any non-static (data or (virtual
 or non-virtual) function) members of the destroyed object (doing so
 results in undefined behavior). However, such a pointer can be
 used to access other objects. For example, the pointer can be used
 to access static data members or call static member functions
 of the class type T.
 9.5 [class.static]
 2 It [the static member] can also be referred to using . and ->
 member access operators even after the object referred to by the
 object expression has been destroyed.

 Example:

 class B {

virtual void f();
virtual ~B();
static g();

 };
 class D : public B { void f(); };

-------- X3J16/95-0055 - WG21/N0655 --- Lajoie:Object Lifetimes --- Page 3

 void* p = malloc(2*sizeof(D)); // gets enough space.
 B* pb = new (p) D;

// calls virtual destructor. pb->~B();
// Ok, pb is a pointer to valid memory void *q = pb;
// undefined: f is a non-static member function pb->f();
// undefined: equivalent to *pb (undefined), B::g() pb->g();

 Another example:

 class C {

void f();
void destroy();
static g();

 };
 void C::destroy ()
 {

this->~C();
// undefined: f is a non-static member functionf();
// well-formed: equivalent to C::g()g();

 }

 1.4 Base class subobjects

 1.4.1. Conversion from pointer to derived to pointer to base

 class B {

virtual void f();
virtual ~B();

 } ;
 class D1 : public B { void f(); };
 void* p = malloc(2*sizeof(D1)); // gets enough space.
 D1* pd = new (p) D1;
 B* pb1 = pd;

 The WP, subclause 4.10 [conv.ptr] already indicates that
 pb1 == pd // may yield false
 For the same reason:
 pb1 == p // may yield false

 That is, the language does not guarantee that any pointer to an
 object’s base class will point to the start of the storage location
 where the object resides.

 1.4.2. complete object of type T vs base class subobject of type T

 Proposal:

 An object of type T that is a base subobject is not guaranteed to
 have the same size and the same layout as a complete object of type
 T. An object of type T that is a base subobject of another class
 is not guaranteed to have the same polymorphic behavior as a
 complete object of type T.

-------- X3J16/95-0055 - WG21/N0655 --- Lajoie:Object Lifetimes --- Page 4

 class A { };
 class B : public virtual A { };
 class C : public virtual A { };
 class D : public B, public C { };

 C c;
 D d;
 C* pc = &d;

 The size and layout for the d’s base subobject C might be
 different from the size and layout of c.

 Proposal:

void* p = (void *)pc

 When converting a T* to a void*, the pointer might change value
 and the value of the void* pointer points at the start of the
 storage holding a complete object of type T.

 That is, if T* happens to point at a base class subobject, then it is
 not guaranteed that the conversion T* --> void* will cause p to
 point at the beginning of the storage location where the subobject
 of type T resides. The address calculation from T* to void* is
 performed as if the T* pointer pointed at a complete object of type
 T and the resulting void* pointer is set to point at what would be
 the beginning of the storage location for the complete object of
 type T.

 1.5 Summary

 class B {

virtual void f();
virtual ~B();

 } ;
 class D1 : public B { void f(); };
 class D2 : public B { void f(); };

 void* p = malloc(sizeof(D1)+sizeof(D2)); // gets enough space.
 D1* pd = new (p) D1;
 B* pb1 = pd;

// calls virtual destructor. pb1->~B();
 B* pb2 = new (p) D2; // reuses space that has been destroyed.

// calls D2::f(). pb2->f();

 As mentioned in 1.1,
 p == pd
 might yield false. However,
 p == (void*) pd
 is always true. ’p’ points at the start of the storage holding the
 object of type D1. The following expressions are therefore
 equivalent:

-------- X3J16/95-0055 - WG21/N0655 --- Lajoie:Object Lifetimes --- Page 5

 new (p) D2;
 new ((void *)pd) D2;
 new (pd) D2; // since placement operator new takes a parameter of

// type void*, the argument is implicitly converted
// from the D1* to void*

 As mentioned in 1.4,
 (void*)pb1
 results in a pointer to what would be the beginning of the storage
 location for a complete object of type B. Therefore,

 (void*)pb1 == pd // might yield false
 (void*)pb1 == p // might yield false

 And the expression:
 new (p) D2;
 is therefore not equivalent to
 new ((void*)pb1) D2;
 or
 new (pb1) D2;

2. The effects of placement new on existing objects

 2.1 New object allocated of unrelated type to the existing object

 Example:
 class B {

virtual void f();
virtual ~B();

 };
 class D1 : public B { void f(); };
 class D2 : public B { void f(); };

 void mutate(B** pb2, void *p) {

(*pb2)->~B();
new (p) D2; //1: well-defined ??

 }

 void* p = malloc(sizeof(D1) + sizeof(D2));
 B* pb1 = new (p) D1;
 mutate(&pb1, p);

//2: well-defined ?? pb1->f();

 The code on line //1 has well-defined behavior if p points at a
 storage area that is large enough to hold an object of type D2.
 The code on line //2 has undefined behavior.

 The function mutate has changed the type of the complete object at
 which pb1 points (from D1 to D2). The location of the base subobject
 B in D1 might be different from the location of the base subobject B
 in D2. The virtual function table of a base subobject B in D1 might
 be different from the virtual function table of a base subobject B in
 D2. Therefore

-------- X3J16/95-0055 - WG21/N0655 --- Lajoie:Object Lifetimes --- Page 6

// has undefined behavior pb1->f();

 Does the calling function know that the value of pb1 may have changed
 in mutate? Yes, this is a strait C aliasing question. pb1 has its
 address taken, its value may be changed by function calls. However,
 since the type (dynamic) of the object referred to by pb1 has changed,
 the result of the expression has undefined behavior.

 Proposal:

 If the pointer in a new-placement expression has type T1* and the
 new expression creates an object of type T2, referring to the
 original object has the same effect has referring to an object that
 has been destroyed.

 In particular, the pointer of type T1* can only be used in limited
 ways. Using the pointer as a T1* is no longer valid. However, the
 pointer still points at valid memory and using the pointer as a
 pointer to the memory where the object was located ’(void *)p’ is
 well-defined. That is, such a pointer cannot be used to refer to any
 non-static (data or (virtual or non-virtual) function) members of
 the object of type T1 (i.e. doing so results in undefined behavior).
 However, such a pointer can be used to access other objects. For
 example, the pointer can be used to access static data members or
 call static member functions for the type T1.

 2.2 new(this) in a member function (to a different type)

 Similarly:

 class B {

virtual void f();
void mutate();
virtual ~B();

 };
 class D1 : public B { void f(); };
 class D2 : public B { void f(); };

 void B::mutate() {

this->~B();
new (this) D2;

 }

 void* p = malloc(sizeof(D1) + sizeof(D2));
 B* pb = new (p) D1;
 pb->mutate();

// has undefined behavior pb->f();

 Is it legal to use placement new in a member function to allocate an
 object at the memory location where the current object resides if the
 new object allocated does not have the same type as the ’this’
 pointer?

-------- X3J16/95-0055 - WG21/N0655 --- Lajoie:Object Lifetimes --- Page 7

 Proposal:

 Same resolution as 2.1

 There are obvious optimizations that must be given up if a member
 function is allowed to allocate an object of a different type at the
 ’this’ address location. Implementation could no longer assume that
 the object size and layout, (i.e. pointers to virtual base classes)
 and polymorphic behavior (virtual function table) are unchangeable
 within a member function. The cost of loosing these optimizations is
 too great.

 2.3 ’new(this) T’ if T is a base class type

 Example:
 class A { };
 class B : public virtual A { };
 class C : public virtual A { };
 class D : public B, public C { };

 void foo() {

D d;
C* cp = &d;
new(cp) C; //1: well-defined ??

 }

 As explained in 1.4, during the conversion C* --> void*, the value of
 cp might change. It is adjusted so that, after the conversion, cp
 points at the start of the memory location where the object of type C
 resides as if cp pointed at a complete object of type C. That is, the
 new object created by the new expression might be allocated at a
 memory location different from the start of the subobject of type C.

 As explained in 1.4, an object of type C that is a base subobject is
 not guaranteed to have the same size and the same layout as a complete
 object of type C. The new expression creates an object of type C and
 this new object has the size and layout of a complete object of type
 C.

 That is, the new expression on line //1 may have clobbered d’s
 subobject C and other subobjects of d as well.

 However, line //1 itself has well-defined behavior if cp points at
 enough storage to hold a complete object of type C. It is the action
 of referring to d or any of its subobjects after line //1 that results
 in undefined behavior.

 Proposal:

 If the pointer in a new-placement expression has type T1* and the
 new expression creates an object of type T2, (even if T1 is a
 base class type of T2), referring to the original object or any of
 its subobjects after the object of type T2 has been created has the
 same effect has referring to an object that has been destroyed.

-------- X3J16/95-0055 - WG21/N0655 --- Lajoie:Object Lifetimes --- Page 8

 That is:
 new(cp) C; // has undefined behavior

 2.4 ’new(this) T’ if T is the complete object type

 Example:

 struct C {

int i;
void f();
const C& operator=(const C&);

 };

 const C& C::operator=(const C& other)
 {

if (this != &other)
{

this->~C();
new (this) C(other); //1: well-defined ??

}
return *this;

 }

 C c1;
 C c2;
 c1 = c2; //2: well-defined ??
 c1.f(); //3: well-defined ??

 The code on line //1 has well-defined behavior since ’(void*)this’
 points at a storage area that is large enough to hold an object of
 type C.

 The code on line //2 has well-defined behavior.
 According to 1.2, the code works since:
 o the complete object referred to by ’this’ is of type C and the

conversion ’this’ --> void* yields a pointer that points to the
start of the storage location where the complete object resides.

 o The object created by placement new is of the same type (dynamic
type) as the complete object pointed at by ’this’.

 Proposal:

 If the pointer in a new-placement expression has type T* and the
 pointer points to a complete object of type T (dynamic type) and the
 new expression creates an object of type T, referring to the object
 T (or any of its members or base classes) after the new expression
 has completed is well-formed.

 That is:
 c1.f(); //3: well-defined

 Another similar example:
 struct T { T* p; };
 T::T() : p(new(this)T) { } // well-defined behavior

-------- X3J16/95-0055 - WG21/N0655 --- Lajoie:Object Lifetimes --- Page 9

 2.5 placement new on class members and array elements

 Example:

 struct X {

Y y;
Z z;

 };

 X x;
 (&x.y)->~y();
 new (&x.y) Y;
 // is referring to x or x.y well-defined ??

 Proposal:

 For the purpose of the rule described in 2.4, class members and
 array elements are considered "complete objects".

 That is:
 new (&x.y) Y;
 // referring to x or x.y is well-defined

 Another example:

 T t[5];
 T* p = &t[3];
 t[3].~T(); // t[3] and p become pointers to memory
 p = new(p) T; // p and t[3] refer to T objects
 // referring to t[3] is well-defined

3. Destruction for objects allocated with placement new

 3.1 When does destruction yield undefined behavior?

 Example 1:

 {

T t;
new (&t) T ;
// according to 2.4, using t as a T is OK.

 } //1

 Rule 2.4 indicates that referring to t as a T after the new
 expression ’new (&t) T’ has completed is well-formed. In particular,
 calling T’s member functions (including T’s destructor at block exit
 as in this example), is well-formed.

-------- X3J16/95-0055 - WG21/N0655 --- Lajoie:Object Lifetimes --- Page 10

 Example 2:

 {

T t;
new (&t) X ; // ok if t has enough storage to hold an X

// ok: the memory holding t is still valid&t;

// referring to a member of a T: undefined behaviort.f();
// See rule 2.1

 } // t is not a T anymore: undefined behavior

 Rule 2.1 indicates that if a new expression creates an object of
 type T2 at the storage location where an object of type T1 resides,
 referring to the original object has the same effect as referring to
 an object that has been destroyed. In particular, if the original
 object is used to call T1’s member functions (including T1’s
 destructor at block exit as in this example), the program results in
 undefined behavior.

 Example 3:

 However, if placement new throws an exception then T (or parts of
 T) will be destroyed twice when the block //1 exists.

 12.4 p13 already says that destroying an object more than once
 results in undefined behavior. This rule implies that example 1 has
 undefined behavior.

 Example 4:

 {

T t;
new (&t) X ; //1: OK if t has enough storage to hold an X
new (&t) T ;

 } // OK

 Same as example 2.

 3.2 When can destruction be skipped?

 void h() {

T* pt = new T;
/* ... */
new(pt) X;

 }

 What kind of type must T be for this program to have well-defined
 behavior?

-------- X3J16/95-0055 - WG21/N0655 --- Lajoie:Object Lifetimes --- Page 11

 Proposal:

 If type T has a non-trivial destructor, an object of type T must
 be destroyed before the memory in which the object resides can be
 reused or released.

 This ensures that if a type has a destructor with side-effects (i.e.
 a destructor that updates global objects, that releases certain
 program resources, etc) and if the call to the destructor is omitted,
 the program results in undefined behavior.

4. const objects

 The const qualifier can influence the properties of the memory in
 which an object resides. Implementations are allowed to "color" memory
 in which const objects reside and "uncolor" the memory when it is
 deallocated. The implementation can put some const objects with
 constructors and destructors in read-only memory if it can figure out
 that the constructor and destructor do not modify the objects.

 The model I propose for this behavior is to say that making the memory
 write protected is the implementation’s responsibility and not that of
 the constructor. Similarly releasing the write protection on the
 memory is the implementation’s responsibility and not that of the
 destructor.

 The model I have in mind is the following:
 a. once the constructor has completed, the memory in which a const

object resides becomes write protected.
 b. before a destructor starts, the write protection on the memory in

which a const object resides is released.
 I assume that action a. only takes place after the construction of
 the complete object (i.e. one that is not a member and not a base) has
 completed and that action b. only takes place before the destruction
 of the complete object (one that is not a member and not a base) has
 started.

 The WP does not currently support this model:
 5.3.4 p20 says:
 "Whether the allocation function is called before evaluating the
 constructor arguments, after evaluating the constructor argument but
 before entering the constructor or by the constructor itself is
 unspecified."

 Proposal

 If the model above is correct, the allocation function cannot be
 called by the constructor itself. 5.3.4 p20 needs to be rewritten as
 follows:

 "Whether the allocation function is called before evaluating the

constructor arguments or after evaluating the constructor argument
but before entering the constructor is unspecified."

-------- X3J16/95-0055 - WG21/N0655 --- Lajoie:Object Lifetimes --- Page 12

 Since the memory in which const objects reside may be write protected,
 users should not be allowed to create new objects using placement new
 at the memory location where a const object resides.

 {
 const T t;
 (&t)->~T(); // OK, memory still write protected
 new (&t) T ; // undefined behavior
 }

 Proposal

 placement new cannot be used to create an object at a memory
 location where a const object resides.

5. Malloc and free

 5.1 What kind of objects can be malloced?

 void h() {

T* pt = (T*)malloc(sizeof(T));
/* ... */

 }

 What kind of type must T be for the expression calling malloc to be
 well-formed?

 Proposal:

 If type T has a non-trivial constructor, T’s constructor must be
 called to create an object of type T; otherwise, the behavior is
 undefined. Objects of type T with dynamic storage duration can
 only be created by calling operator new.

 5.2 using free instead of delete

 If T is a type with a non-trivial destructor, does the following
 have well-defined behavior?

 void h() {

T* pt;
pt->~T(); // calls T’s destructor
free(pt); // Free the memory

 }

 Proposal:

 Given an object with dynamic storage duration of a type with a
 non-trivial destructor, when destroying the object, the destructor
 must be called for the object before the memory in which the
 object resides is freed (that is, the program must behave as if
 a delete expression was used to destroy the object).

