
ANSI X3J16/95-0048, ISO WG21/N0648

An Alternative counted_ptr Template

Gregory Colvin
Information Management Research

gregor@netcom.com

Nathan Myers and Richard Minner objected to the counted_ptr template I proposed in 94-
0202/N0589 on the grounds that in allowing reference counting of any class of object it
imposed constraints on the implementation that would be unnecessary for classes that
provide their own reference counting. However, one person's design error is another
person's design goal, and John Skaller and myself have argued that the counted_ptr
template should not impose any requirements on the class to be counted. Thus it appears
that there are at least two divergent approaches to reference counting. In this proposal I
present an expanded set of counted_ptr templates that covers both approaches, and provides
for a higher degree of user extensibility than the single counted_ptr template in my original
proposal.

The template counted_ptr

The counted_ptr template provides a semantics of joint ownership. Each counted_ptr has an
interest in the object it holds a pointer to, which it gives up when it itself is destroyed. An
object may be safely pointed to by more than one counted_ptr, so long as the object is not
deleted while any owner retains an interest.

Interface

template<class X> class counter {
public: // exposition only

static void add_ref(X* p) { p->add_ref(); }
 static bool rem_ref(X* p) { return p->rem_ref();}
}

class countable {
int i; // exposition only

 countable() : i(0) {}
public:

void add_ref(X* p) { ++i; }
 bool rem_ref(X* p) { return --i; }
}

template<class X,class Alloc=counter<X>,class Counter=counter<X>>
class counted_ptr {
 X* px; // exposition only
public:
 explicit counted_ptr(X* p=0);
 template<class U> counted_ptr(const counted_ptr<U>& r) ;
 ~counted_ptr();
 template<class U> counted_ptr& operator=(const counted_ptr<U>& r);
 X& operator*() const;
 X* operator->() const;
 X* get() const;
 template<class D> counted_ptr<D> dyn_cast() const;
};

ANSI X3J16/95-0048, ISO WG21/N0648

template<class X> class counted_ptr<X,counted_allocator<X>,void> {
 X* px; // exposition only
public:
 explicit counted_ptr(X* p=0);
 template<class U> counted_ptr(const counted_ptr<U>& r) ;
 ~counted_ptr();
 template<class U> counted_ptr& operator=(const counted_ptr<U>& r);
 X& operator*() const;
 X* operator->() const;
 X* get() const;
 template<class D> counted_ptr<D> dyn_cast() const;
 bool unique() const;
};

Semantics

The counter class template provides a default Counter that simply passes calls through to a
countable object. The countable class provides a possible base class for countable objects.

Expression Value Effect
counter<X>::add_ref(p) p->add_ref()
counter<X>::rem_ref(p) p->rem_ref() p->rem_ref()
p->rem_ref() false if and only if p->add_ref() has

been called the same number of
times as p->rem_ref()

A counted_ptr<X,Alloc,Counter> object holds a pointer to an object of class X, presented here
as X* px. In the following table: p and px are pointers to an object of class X or a class
derived from X for which delete(X*) is defined and accessible; d is a
counted_ptr<D,Alloc,Counter> where D is X or a class derived from X; c is a
counted_ptr<X,Alloc,Counter>; m is a member of X; and u is a
counted_ptr<U,Alloc,Counter>.

Expression Value Effect
counted_ptr<X,Alloc,Counter>
c(p)

undefined if p not obained
via Alloc::allocate(),
otherwise c.px = (X*)p

counted_ptr<X> c(d) Counter::add_ref(d.px);
Counter::rem_ref(c.px);
c.px = (X*)d.px

c.~counted_ptr<X>() if (!Counter::rem_ref(c.px))
 Alloc::destroy(c.px),
 Alloc::deallocate(c.px);

c = d reference to c Counter::add_ref(d.px);
Counter::rem_ref(c.px);
c.px = (X*)d.px;

*c *c.px
c->m c.px->m
c.get() c.px
u.dyn_cast<U>() counted_ptr<U>

(dynamic_cast<X>(u.px))

A counted_ptr<X,counted_allocatorX>> object holds a pointer to an object of class X,
presented here as X* px. In the following table: p and px are pointers to an object of class X
or a class derived from X for which delete(X*) is defined and accessible; d is a
counted_ptr<D,counted_allocator<D>> where D is X or a class derived from X; c is a
counted_ptr<X,counted_allocator<X>>; m is a member of X; and u is an

ANSI X3J16/95-0048, ISO WG21/N0648

counted_ptr<U,counted_allocator<U>>. The semantics differ from the default counted_ptr as
follows:

Expression Value Effect
counted_ptr<X,counted_allocator<X>>
c(p)

undefined if p not obained
via
counted_allocator::allocat
e(),
otherwise c.px = (X*)p

c.~counted_ptr<X>() if (c.unique()) delete c.px;
c.unique() true if and only if

there exists no
other u which is a
copy of c such that
c.px ==
u.dyn_cast<X>().px

Discussion

The above templates provide a more generally useful reference counting mechanism than
my previous proposals, while retaining the semantics of my previous proposals as a
specialization of the default case.

In the default case it is required that the class of an object to be counted provide appropriate
add_ref() and rem_ref() methods. A countable base class is provided as an appropriate model
implementation.

The Counter argument allows existing reference counted classes (e.g. OLE) to be provided
with an adaptor that translates the existing interface. Such classes may handle their own
destruction, in which case their Counter's rem_ref() function should return true always, or
else it can return false when they want the counted_ptr to destroy the counted object
(presumably because there are no more references to that object) . For example:

template<class X> class OLE_Counter {
public:

static void add_ref(X* p) { p->AddRef(); }
 static bool rem_ref(X* p) { p->Release(); return true; }
}

The Alloc argument allows for customized memory management. In particular, the counted_ptr template
is specialized for the counted_allocator argument to allow objects of any class to be reference counted.
The special counted_allocator might also provide a more efficient implementation than was possible for
my previous proposal..

