
Document Numbers: X3J16/95-0043
WG21/N0643

Date: January 31, 1995
Reply To: Bill Gibbons

bgibbons@taligent.com

Overload Resolution for "using" Member Functions

The Problem

Given this example given by Mike Ball in c++std-ext-2674:

struct B {
int f(int);

};

struct D : B {
using B::f;
long f(long);
void g();

};

void D::g() {
f(1); // ambigous ?

}

Is the call to “f” ambiguous? According to the overload
resolution rules, the “this” parameter is
resolved as if it were an explicit parameter, so overload resolution
should be the same as in the
following example:

struct B { };
struct D : B { };

void f(B*, int);
void f(D*, long);

void g(D *d) {
f(d, 1); // ambigous

}

The second example is certainly ambiguous. Yet we believe that it was
the committee’s intent that the
first example not be ambiguous.

The problem is that when overload resolution is applied to the implicit
“this” parameter, D::f is
preferred to B::f because of the conversion from “D*” to “B*”. This is an accidental interaction
between “using” and overload resolution.

The Solution

There was general agreement on the extensions working group reflector
that the first example should
not be ambiguous. This can be done by amending the overload resolution
rules so that the “D*” to
“B*” conversion has no effect on overload resolution. This can be
phrased either in terms of how

X3J16/95-0043 WG21/N0643 Page 1

overload resolution works, or how a “using” declaration is treated
during overload resolution. There
seemed to be some preference for the second approach.

So we propose adding the following paragraph after 7.3.3/12, subject as
always to editorial
improvement:

For purposes of overload resolution, using-declarations which name
members of base
classes shall be treated as members of the class containing the
using-declaration. In
particular, the implicit “this” parameter shall be treated as if
it were a pointer to the
derived class, not the base class.

Effect on Existing Programs

This should have no effect at all on existing programs, since without
“using” declarations all members
of an overloaded set must be members of the same class (or not members
of any class).

Pointers to Members

Since a “using” declaration does not affect the type of the
referenced declaration, in the following
example:

struct T {
int f(int);
void g();

};

struct U : T {
using T::f;

};

int (T::*fp1)(int) = &U::f; // OK, in this proposal
void (T::*fp2)() = &U::g; // OK, as specified in working paper

the type of &U::f is “int (T::*)(int)”, because &U::f is an alias for &T::f, not a new member
function of U. Just as the type of is &U::g is “void (T::*)()”, because it’s inherited (as specified
in the current working paper). So both initializations are valid, even
though they appear to be ill-
formed. But what about:

struct B {
int f(int);

};

struct D : B {
using B::f;
long f(long);

};

int (B::*fp2)(int) = &D::f; // OK
long (B::*fp1)(long) = &D::f; // error

Because there are two instances of &D::f (a member declaration and a using declaration), this example
requires selecting a function from an overloaded set (13.3). But the
overloaded set has some
functions which, if selected, cannot be used because the corresponding
pointer to member cannot be
converted to the type of the variable to be initialized.

Page 2 X3J16/95-0043 WG21/N0643

Is this a problem? No. Each individual function in the set is
considered independently. The first
initialization is OK because the selected function is B::f(int). The second is ill-formed either
because:

• The selected function is D::f(long), so the initializer has type
“long (D::*)(long)” which cannot be implicitly converted to the initializer type
(because it would require a pointer to member upcast).

or
• There is no matching function.

The choice of reasons depends on how the committee rules on the
“exact match” criteria for selecting
functions from an overloaded set; but either way, there is no problem
with the example.

Overloaded Function Selection

The above discussion brings up a related point which may or may not be
editorial. It’s included here
to give everyone time to see it before the Austin meeting.

As written, 13.3 has a surprising ramification:

struct B {
void f(int);
void f(long);

};

struct D : B { };

void (D::*pf)(long) = &B::f;

is ill-formed. The wording in 13.3 is:

A use of a function’s name without arguments selects, among all the
functions of that
name that are in scope, the (only) function that exactly matches the
target.

The problem is that B::f(long) does not match pf because the class is wrong.

Similarly, this is a potential problem:

void f(int);
void (*p1)(const int) = &f;
void (*p2)(int) = (void (*)(const int)) &f;

It should be clear that top-level const has no effect in either place.

I suggest rewording 13.3 as:

A use of a function’s name without arguments selects, among all the
functions of that
name that are in scope, the (only) function that has exactly the same
number of
parameters and parameter types, ignoring top-level qualifiers.

Any errors due to mismatching classes (for pointers to members) or
return types would be caught by
the usual initialization rules.

X3J16/95-0043 WG21/N0643 Page 3

