

Removing Globals construct() and destroy() (Revision 1)

08-Mar-95--
X3J16/95-0039R1by Nathan Myers <myersn@roguewave.com>
WG21/N0639R1 Rogue Wave Software

In Clause 20, a number of apparently unnecessary global functions are
declared, including:

 template <class T>
 inline T* allocate(ptrdiff_t, T*);

 template <class T>
 inline void deallocate(T* buffer);

 template <class T, class T2>
 inline void construct(T* p, const T2& value);

 template <class T>
 inline void destroy(T* pointer);

 template <class T>
 pair<T*, ptrdiff_t> get_temporary_buffer(ptrdiff_t, T*);

While these functions may once have been useful in implementing STL
without allocator, they are not necessary for the purposes of the
Standard Library, in that they do not aid communication between
modules, implement semantics that cannnot reproduced by users, or
provide substantial functionality. Furthermore, they are subsumed by
STL allocator members, which are what STL-conforming collections are
expected to use instead.

(Amendment 1)

Some have suggested that, because the purpose of these functions was
in support of writers of STL-like collections, removing them outright
is not so obviously correct. Furthermore, implementors of object
databases and garbage collecting stores have remarked that providing
these functions as allocator operations would allow them to be
(partially) specialized them to take greater control of construction
and destruction semantics.

Therefore, I have accepted as a friendly amendment, rather than
removing all the above functions, to integrate them with allocator.
They are described in 95-0019R1/N0619R1.

(I have not generalized destroy<FwdIter>(FwdIter first, FwdIter last)
for use with allocator because this operation seems incompatible with
allocator models of memory management, and because the template
deductions required are not supported by the language.)

