Doc Number X3J16/91-0144
WG21/N0077

Fixing an Encapsulation Loophole in C++

e s’ / /
Alan Snyder T med <

S -
11 July 1990 (DRAFT) AP MJ«&/M
9-Jul/10-Jul/11-Jul o W‘*W /a//a,h»—,wb /K/ A M
@AZ:/%JMVM 714/0./*

A\ Lot Mo
Abstract Aj’/ A

C++ contains a sophisticated facility for controlling access to class members. This note
describes a “loophole” in C++ access control, and suggests a language extension to cor-
rect the loophole. The loophole involves the ability of a derived class to override an in-
herited virtual member function with a definition whose execution is crudal to the
integrity of objects of the derived class. The proposed extension supports controlled ac-
cess to class members via qualified names.

Introduction

A common practice in object-oriented programming is for a child class to
extend the definition of a parent class method. The parent class method
is extended by redefining the method in the child class; typically, the
child class method definition invokes the parent class method and per-
forms some additional computation. We consider the case where the
child class is a subtype of the parent class.

For example, one can define a counting-stack class that inherits from
a stack class. Counting-stack is a subtype of stack. A counting-
stackis like a stack, except it has an additional operation to return the
current number of elements. Counting-stack redefines the push op-
eration to invoke the push operation on stack and increment a locally-
defined counter. (The pop operation is redefined in an analogous way.)
It is essential for the correct operation of counting-stacks that a cli-
ent be prevented from invoking the stack definition of push on a
counting-stack object: to do so would violate the integrity constraint
that the value of the local counter be equal to the number of elements on
the stack.

In current C++, if one defines counting-stack as described above, a
client cannot be prevented from invoking the stack definition of push
on a counting-stack object. Specifically, a derived class that over-
rides a public virtual member function defined in a public base class can-
not prevent a client from invoking the base class member function on a
derived class object (using a qualified name, e.g. stack: :push).

The problem arises only when the base class is a public base class and
the virtual member function is public in the base class. Note that mak-

Fixing an Encapsulation Loophole in C++ Page 1



ing the virtual member function protected or private in the derived class
(not possible in C++) would not help: the client could still access the base
class member function via a qualified name in a base class context,
where the member is public.

If the virtual member function is private or protected in the base class,
then it is inaccessible to clients of the base class or the derived class, so
no problem arises. If the virtual member function is public in the base
class, but the base class is a private base class of the derived class, then
C++ will prevent the client from viewing a derived class object from a
base class context, so no problem arises.

The example illustrates the value of preventing client access even in the
case of public members of public base classes.

The problem arises only for virtual member functions, not for data mem-
bers or non-virtual member functions. Subject to access control, a non-
virtual base class member can always be accessed on a derived class ob-
ject simply by viewing the object from the base class context. Only vir-
tual member functions can be overridden such that the derived class
definition is seen even in the base class context.

Example

The following example illustrates the problem:
m
class B {
public:
virtual void £ (int);
}:
¢lass D : public B {
public:
void £ (int); // D::f overrides B::f
}:

void B::£f (int) {(;}
void D::f (int i) (B::f (i+l1);)

void testl (B& b, D& d) {

b.B::f (1); // call 1l
d.B::f (2); // call 2
d.D::f (3); // call 3
b.£f (4); // call 4
d.f (S); // call s

}
%

This program is legal in current C++. We would like to define B and D
such that call 2 in the above example is illegal. To be effective, we must

Fixing an Encapsulation Loophole in C++ Page 2



also make call 1 illegal, as the variable b could denote the same object as
variable d.

The proposed solution is to allow the base class to declare different ac-
cesses for the member function definition (8: : £) and the virtual member
function (£). We want the virtual member function (£) to be public, but
the member function definition (B: : £) to be protected. We draw a dis-
tinction, not currently emphasized in C++, between the qualified name
(B: : £) and the unqualified name (£). The qualified name refers to the
actual function definition, the unqualified name refers to the virtual
member that indirectly denotes the function definition (or an overriding
function definition).

The Proposal

Our specific proposal is as follows. We propose that C++ be extended to
permit an access declaration to name a (previously declared) member of
the class containing the access declarations (as opposed to a base class
member, as currently permitted). Such an access declaration defines the
permitted access to the member using a qualified name. Access to the
member using an unqualified name is unchanged by the presence of the
access declaration. It does not make sense for a client to have greater
access via a qualified name than via an unqualified name, so it is illegal
to use the access declaration to increase access.

The example using this proposed solution is shown in the following fig-
ure. Note that we have chosen to protect D: : £ as well, for the benefit of
classes derived from D.

No additional security results from using this extension to restrict ac-
cess to non-virtual members via qualified names: if the member would
have been accessible via the qualified name without use of this exten-
sion, it could still be accessed even using this extension via the unquali-
fied name from the base class context. Nevertheless, the extension can
be used on non-virtual class members to enforce the style guideline men-
tioned on page 210 of the Annotated C++ Reference Manual: “As a rule
of thumb, explicit qualification should be used only to access base class
members from a member of a derived class.” As in the above example,
this effect is achieved by declaring the qualified name to be protected.

Default Access via Qualified Names

The remaining issue is what the default access should be to class mem-
bers via qualified names. If compatibility with current C++ is para-
mount, then the default should be that access to a member via the
qualified name is the same as access via the unqualified name. Howey-
er, good software engineering practice suggests that qualified member
names be protected. Therefore, it makes sense to make qualified mem-

Fixing an Encapsulation Loophole in C++ Page 3



*

class B {
public:

virtual void £ (int);

protected:

B::f; // limit access via qualified name

}:
class D : public B {
public:

void £ (int); // D::f overrides B::f

protected:

D::£; // limit access via qualified name

}:

void B::f (int) (;}

void D::f (int i) (B::

£ (i+l1);)}

void testl (B& b, D& d) (

(1); // call
(2); // call
(3); // call
(4); // call
(5); // call

evanb
Do

}

1l (illegal by definition of B)
2 (illegal by definition of B)
3 (illegal by definition of D)
4
5

m
ber names protected by default. Although such a default would be in-
compatible with current C++, I propose that it be given serious
consideration. After all, if C++ is successful, then only a small fraction
of all C++ programs have yet been written!

Fixing an Encapsulation Loophoie In C++

Page 4





