Doc No: X3J16/91-0139
WG21/N0072
Date: 20 November 1991
Reply to: Dag Briick

Operator Overloading on Enumerations

Dag M. Briick

Department of Automatic Control
Lund Institute of Technology
Box 118, 5-221 00 Lund, Sweden

The working draft, Section 13.4, says:

¢ An operator function must either be a member function or take at least one
argument of a class or a reference to a class.

The Annotated C++ Reference Manual offers some explanation on page 330:

* This implies that the meaning of operators applied to nonclass types cannot be
redefined. The intent is to make C++ extensible, not mutable.

I propose a slight change in the restriction of argument types:

* An operator function must either be a member function or take at least one

argument of a class, a reference to a class, an enumeration, or a reference to an
enumeration.

Originally, enumerations were just integers in disguise; in particular, implicit con-
version from int to enumerations was allowed. Overloading operators based on
enumerations could then potentially redefine operations on built-in types.

The current language definition no longer allows implicit conversion from int
to enumeration, and enumerations are not even integral types anymore. Conse-
quently, there is no longer any risk that a overloading of, for example,

enum Status { bad, worse, terrible };
Status operator & (Status, Status);

redefines operations on built-in types. This proposal does not allow user-defined
assignment of enumerations because the assignment operator must be a member
function.

Allowing operator overloading on enumerations is a useful, natural, and as far
as I can tell, safe generalization of C++. It does not break any existing code.

