Document Title: Static Initialization Summary
Document Numbers: X3J16/91-0137, WG2UN0070
Author: Steven Kearns, Software Truth

Introduction

This paper discusses the initialization of objects with file scope
(section 3.2 of the working draft), static class members (section
9.4), and objects with local scope declared static (section 7.1.1).
It then makes a number of proposals relating to this issue.

Current Status

What the working draft as of 11/9/91 has to say about initialization
is summarized here. Each statement is labeled for future reference.

(Statement S1) Objects with file scope must be initialized before the
first use of any function or object defined in that translation unit
(section 3.4), and may take place before main is entered, though this
is not required.

(Statement S2) Objects with storage class static that are not
initialized and do not have a constructor are guaranteed to start off
as 0 converted to the appropriate type. If the object is a class or
struct, its data members start off as 0 converted to the appropriate
type (section 8.4).

(Statement S3) Aggregates are initialized as described in (section
8.4.1); besides an array, an aggregate can be an object of a class
with no constructors, no private or protected members, no base
classes, no reference members, and no virtual functions. The order
of initializations of individual array elements or members is
undefined.

(Statement S4) Static members of a global class are initialized
exactly like global objects and only in file scope (section 9.4).

(Statement S5) Objects with local scope declared static are
initialized the first time control passes through its declaration
(only). Where a static variable is initialized with an expresion
that is not a constant-expression, default initialization to 0 of the
appropriate type happens before its block is first entered (section
6.7).

(Statement S6) Constructors for nonlocal static objects are called in
the order they occur in a file; destructors are called in reverse
order (section 12.6.1).

Static Initiali. mmary Page 2

Current practice i lize translation units one a+ 1 time, in
a random order.

Initialization in C i. " simp! -~ because objects wizh file snope
can only be initialize ‘haec 't expression, and be- no
objects are of class t: d tt functions or construc il

be called curing init: ion

The Problems

This section describes a number of prob! vith the current : of
the C++ rules governing initialization.

(Problem P1) Statement S1 can be impossibie to fulfill, as in the
following example:

(Example E1)

file f.cpp:
extern int y;
int x = y;
int foo() { return 18; }
extern int b;
int a = b+1;

file g.cpp:
int foo();
int y = foo();
extern int a;
int b = a+1;

The problem is that g.cpp must be initialized before f.cpp, since
f.cpp's initialization uses object y in g. However, f.cpp must be
initialized before g.cpp because g.cpp’s initialization uses function
fin f.cpp. It is impossible to satisfy both requirements.

(Problem P2) Even if Statement S1 was ammended to handle cases of
Problem P1, implementing Statement S1 appears to be a problem.

Using DYNAMIC ANALYSIS means having the program detect the first use
of a function or variable in a translation unit by checking every use

as the program executes. Unfortunately, this method introduces

runtime overhead. The overhead must be paid even after

initialization. The DYNAMIC ANALYSIS section below discusses this
approach. ‘

Another idea is to have the environment do GLOBAL STATIC ANALYSIS to
correctly order the initialization of the translation units. This

would require the environment to simultaneously examine all of the
translation units that make up the program, and trace through the
initializations in order to deduce a correct ordering.

Unfortunately, requiring this method may place too great a burden on

C++ vendors. Doing a less sophisticated global analysis makes it

Static Initialization Summary Page 3

easier for vendors, but less useful for users; the less sophisticated
analysis will fail to find an ordering in cases where the more
sophisticated analysis would succeed. The GLOBAL STATIC ANALYSIS
section below discusses this idea in depth.

Allowing EXPLICIT PROGRAMMER CONTROL is another option. The idea is
to allow the programmer to say "this translation unit must be

initialized after these translation units”. Then the environment

orders the initializations of translation units to satisfy these

requests, or reports an error if an impossible ordering is requested.

This approach is the most powerful. However, it might invite errors

since it requires the programmer to do the global analysis of

initialization. The NAME/AFTER section describes this solution in

detail, below.

(Problem P3) The C++ standard insists that ‘every object be-
initialized, even if it is not obviosly used in the program (section
77777?77). The reason for this is that the object's constructor or
initializer may have side effects which affect other parts of the
program. Much existing code depends on this assumption, as well as
the additional assumption that this initialization occurs before
main(). Unfortunately, this contradicts statement S1, which says
that a translation unit does not have to be initialized until an

object or function in it is used. It also poses problems for

programs that use dynamically loaded libraries. We would not want to
require that every translation unit of a dll is initialized before
main(), especially if most of these translation units will never be
used. This latter topic will be discussed in depth in a paper by

John Wilkinson.

(Problem P4) Statment S2 talks about an object of class type that
doesn't have a constructor. However, the compiler will always

generate a constructor for a class without a programmer-defined
constructor (section ???7??). :

(Problem P5) The following initializations make sense only if f.cpp
is initialized before g.cpp, but not the opposite. However, C++
offers no way to ensure that one translation unit is initialized
before another.

(Example E2)

file f.cpp:
int £();
int x = £();

file g.cpp:
extern int x;
int y = x + 1;
int £() { return 18; }

(Problem P6) There is an implicit assumption by C++ programmers that
non-class variables without initializers or with a constant

initializer, are initialized at the time a program is loaded. This

implies that they are initialized "before initialization”, which

Static Initialization Summary Page 4

itself is a little strange. However, the standard does not explicitly
say this. The problem is illustrated in the following example:

(Example E3)

file f.cpp:
extern int x;
int y = x++ + 2;
int x = 12;

If all non-class variables start out at 0 and initialization goes

from top to bottom, then y will have 2 and x will have 12, but the
initialization to x is really a re-initialization or perhaps an
assignment. If all non-class variables without initializers or with
contant initializers are inited first and only once, then y will have

14 and x will have 13, but then the order of initialization does not

go from top to bottom. If all non-class variables without. .
initializers or with contant initializers are inited first and then
reassigned when their definition is passed, then y will have 14 and x
will have 12. If all non-class variables without initializers or

with contant initializers are initially random and initialization
proceeds from top to bottom, then y will be random and x will have 12.

It appears that many programs assume that all non-class variables
without initializers or with contant initializers are initialized
first and only once.

(Problem P7) In the initialization "int i = 5/0;", does the compiler
report a compile time error or will an error occur at runtime?

(Problem P8) If a temporary is created during static initialization,
when is the temporary destroyed?

(Example E4)
file f.cpp:

class String { ...};
char * sl = String("hello ") + String("world!");

When are the temporary Strings generated for "hello” and "world"
destroyed?

(Problem P9) Current practice is to initialize translation units in a
random order. This can lead to serious difficulties. For example,
consider an implementation of a list class with value semantics:

(Example ES5)
file list.h:
class listel;

struct 1list {
listel * thelistel;

list(); // points thelistel to listel::nillistel
~list();

Static Initialization Summary Page 5

}:

struct listel {
int refc; // reference count
void * data;
list next;

static int list_els_allocated:
static listel nillistel;

listel(): .
listel(int); // used only to init nillistel
~listel():;

bs
file list.cpp:
int listel::list_els_allocated = 0;

// initing nillistel is very tricky because the list and
// listel constructors assume nillistel is already constructed.

// Therefore we use a special constructor especially designed
for

// initing nillistel.
listel listel::nillistel(l):

list::list() { thelistel = glistel::nillistel; thelistel-
>refc++; |}

list::~list() { if (--thelistel->refc == 0) delete thelistel; }
listel::listel() { data = 0; refc = 0; list_els_allocated++; }

// The following is only used to init nillistel.
// Setting the refc to 2 ensures that nillistel will never be
deleted,)

// even when nillistel is destructed at the end of the program.
listel::listel(int) [refc = 2; }

listel::~listel ()
{

// note that .next is destructed, which may cause other
listels

// to be destructed. Since nillistel.next points to
nillistel,

// care must be taken that destructing nillistel does not
// cause a repeat destruction of nillistel.
}

..o

file string.h:
class string {...}:

file string.cpp:
#include "list.h"
list mylist;

This list implemention uses two static class members:
listel::list_els_allocated keeps track of the number of allocated
listels, and listel::nillistel provides a listel that represents the

Static Initialization Summary Page 6

nil list. The advantage of using nillistel instead of a 0 ptr to
represent the nil list is that the list constructors and destructors
don't have to check for a zero ptr.

It is crucial for the correct operation of the list class that

nillistel be constructed before any other list is constructed, and

that list_els_allocated is set to 0 before any listel is constructed.
However, notice that string.cpp allocates a global list named mylist.
With current implementations, it is unpredictable which translation
unit will be initialized first; as a result, it is quite possible

that this program will operate incorrectly. A similar problem was
present in the iostream class: if you used printed to cout in a
constructor for a global object before cout was initialized, BOOM!

The simplest solution is to avoid allocating nillistel statically.
Instead, it is allocated dynamically the first time required:

(f mple E5.5)

£. list.h:

”struct listel {

static listel * nillistel_c-.; //!!!''' c= 1 yed
.ist
list.. + .istel: :nillistel ptr R =nzaed
rrrrn .40 ‘
stel » g4 illistel(
if (o ~::nillis ‘tr) listel::niliis<
iste Y ‘
return :l::nilli ke,
/Pt o ged
list::1isc() { theliste. = get nillisuel
e followir 1is only u 0 init niii:-: -
. 2tting the ‘cto 2 e s that nilliste
deleted
:ven when rn. stel is icted at the e:
-tel::listel) { refc }
The sblem with this solution is that it adds the time and
spr ead of a function call to ever: Vet ~~- --ryction. There
e gramming trick that can he’ his problem. The
)le shows how to rewrite list Jp to alleviate
m:
mple E6) Iifying !)

- list.h:

= new

->refc+-+:

ever be

prograr

1

Static Initialization Summary Page 7
class listel;

struct list {
listel * thelistel;

list(); // points thelistel to *listel::nillistel ptr
~list();

}:

Struct listel ({
int refec: // reference count

void * data;
list next;

static int list_els_allocated;

// t111it changed: from a listel to a listel *
static listel * nillistel ptr;
// '111!t added: call it to initialize the list package
static int initialize();
listel():
listel(int); // used only to init nillistel
~listel();
}: N
// 111ty added: force a call from
// every translation unit that includes list.h

static int listhelper = listel::initialize();
file list.cpp:
int listel::list_els_allocated = 0;

// tHITII it changed:
listel = listel::nillistel ptr;

// initing nillistel is very tricky because the list and
// listel constructors assume nillistel is already constructed.
// Therefore we use a special constructor especially designed

for
// initing nillistel.
// TPrrtrrent added:
static int already inited = FALSE;
int listel::initialize ()
{
if (already inited) return 1;
nillistel ptr = new listel(l);
already_inited = TRUE;
return 1;
}
#define nillistel (*nillistel ptr)
list::1list() { thelistel = listel::nillistel ptr; thelistel-
>refc++; |}
list::~list() { if (--thelistel->refc == 0) delete thelistel;)

listel::listel() { data = 0; refc = 0; list_els_allocated++; }

// The following is only used to init nillistel.
// Setting the refc to 2 ensures that nillistel will never be
deleted,

Static Initialization Summary Page 8

// even when nillistel is destructed at the end of the program.
listel::listel(int) { refc = 2; }

listel::~listel()
{

// note that .next is destructed, which may cause other
listels

// to be destructed. Since nillistel.next points to
nillistel,

// care must be taken that destructing nillistel does not

// cause a repeat destruction of nillistel.
}

file string.h:
class string {...}:;

file string.cpp:
#include "list.h"
#include "string.h"
list mylist;

Now, since any translation unit that uses "list" must include list.h,
the "static int listhelper = listel::initialize();" will be included

as well, which forces a call to the list initialization function

before any list variable is constructed in that translation unit.

Note, however, that we had to define nillistel as a pointer instead

of statically allocating it. Also note that even this solution

depends on the assumption that C++ initializes all global pointers
and integers to 0 or to a constant expression in every translation
unit before pursuing other initialization (Statement S2). Otherwise,
already_inited might be initialized to FALSE after being set to TRUE,
and nillist_ptr might be reset to 0 after being initialized.

Continuing with our example, note that string.h does not mention
“list", but string.cpp uses a list to implement the string class.
Look what happens if another file allocates a global string: '

(Example E7) (Assuming Example E6)

file myfile.cpp:
tinclude "string.h"
string Myname = "steve";

During initialization of myfile.cpp, the definition of Myname causes
the string(char*) constructor to be called in the string.cpp
translation unit. However, it is quite possible that the string.cpp
translation unit has not been initialized yet, which means that
mylist has yet to be initialized, and possibly the list package has
yet to be initialized. This is very bad. One might try using the
same trick that we used for list, on string:

(Example E8) (modifying Example E6)

file string.h:
class string {

Static Initialization Summary Page 9

// '!''!'! added:
static int initialize():;

static int stringIniter = string::initialize();
file string.cpp:

#include "list.h"
#include "string.h"

// 'ttt changed: from list to list*
list *mylist ptr;
// 1ttt added:

Static int already inited = FALSE;
int string::initiaTize()

{
if (already_inited) return 1;
mylist_ptr = new list ();
already_inited = TRUE;
return 1;

}
#define mylist (*mylist_ptr)

Unfortunately, even this does not work! It ensures that
string::initialize() is called before any global string is allocated,
but it doesn't ensure that list::initialize() is called before
calling "new list()". 1In fact, string.cpp may not even be aware of
the need to initialize the list package. One solution is for
string::initialize() to call list::initialize(). Another solution is
to modify string.h to include list.h:

(Example E9)

file string.h:
// P11ttt added
#include "list.h"

class string {

}s

This works because every translation unit that includes string.h will
also include list.h, which means that list::initialize() will always

be called before string::initialize(). What is very strange about

the solution is that string.h includes list.h, even though "list" is
never mentioned in declaring the string class. "list" is only used

in implementing the string class.

In summary, it IS possible to make a class Y for which it is safe to
define a variable of type Y at file scope. However, to do so, the
implementor of Y must add overhead to every Y constructor, or use
the initialization trick; cannot use global variables of class type;
must avoid initializers, or restrict initializers to constant
expressions; and must ensure that any other classes used in
implementing Y are initialized before Y is. Yech.

(Problem P10) Neither Section 12.1 nor Section 12.8 describes the
semantics of the compiler-generated default constructor.

Static Initialization Summary Page 10

The Unit of Initialization

Should initializations take place one translation unit at a time, or
one variable at a time?

In a C program, all initializers are constant expressions, and ¢2 nnot
refer to each other. As a result, a C program behaves the same no

. matter how the environment orders initializations of variables.
However, in C++ this is not true. In Example E10, y must be inited
before x.

(Example E10)

file f.cpp:
extern int y;
int ¢ 3;
int x y:
extern int b;
int a = b+l;

file g.cpp:
int foo():;
int y = ¢;
extern int a;
int b = a+l1;

If all of f.cpp is initialized before all of g.cpp, then x will get a
bad initialization because it uses y before yis inited. On the
other hand, if all of g.cpp is inited before f.cpp, then y will get a
bad initialization because c is uninited. So, if the unit of
initialization is the translation unit, there is no good way to
initialize f.cpp and g.cpp.

However, if you allow the unit of initialization to be a single
definition then you can initialize variables in any order as long as
a variable is initialized before it is used. So in Example E10, ¢
would be initialized first, then y, then x, but b and a could not be
initialized because each assumes the other is initialized first. Tt.
is similar to how a spreadsheet works, or a dataflow program.

The advantages of the smaller unit of initialization include
* can (theoretically) correctly initialize programs that
a larger unit of initialization would not.

Disadvantages of the smaller unit of initialization include:
* May not be able to be implemented without runtime cost, a
runtime cost you pay even after initialization.

* Adds non-determinism to the execution of initializations, which
can be very confusing if initializations have side effects.
This is illustrated below in Example E11.

* Unintuitive for people who expect initializations to proceed from
top to bottom, one translation unit at a time.

* More information to keep track of to execute destructors in reverse
order.

Static Initialization Summary Page 11

The advantages of a larger unit of initialization include:
* Probably simpler to implement.

* More predictable initializations when initializations have side
effects.

The disadvantages of a larger unit of initialization include:
* unable to initialize some cases that the smaller unit succeeds on.
* less intuitive for people who expect initializations to proceed
in a dataflow manner, like a spreadsheet.

Here is an example showing the introduction of non-determinism when
initializations have side effects.

(Example E11)

file f.cpp:
int x = 0;
int y = ((x += 2), x);
int 2 = ((x *= 3), x);

file g.cpp:
extern int y;
extern int z;
int g = y;
int h =z;

One legal ordering (where "legal” == "variables inited before used")
would be init x, init y, init z, init g, init h. This would result

in x being 6. Another possibility is init x, init z, init y, init g,

init h; then x ends up with 2. Although Example E11 looks forced, it
is just a simplified version of Example ES8, in which
string::initialize() has side effects of setting up certain variables

to crucial values.

In addition, most people feel that it is natural to interpret the
initialization as proceeding from the top of a file to the bottom
(except that constant initializations take place before any other).
If this discipline were followed then one could at least calculate
what the end result would be in the case of side effects. Note that
Examples E6 thru E8 assume this initialization discipline.

Interleaved Initialization

It seems natural to believe that one translation unit will be
completely initialized before another. However, there have been
proposals for implementing initialize-by-need (i.e. Dynamic Analysis)
that violate this idea. Consider Example E12:

(Example E12)

file f.cpp:

Static Initialization Summary Page 12
extern int d;

int a = 1;
int b = d-1;
file g.cpp:
extern int c:;
int ¢ = e;
int 4 = ¢c;
file h.cpp:
int £ = 3;
int e = 4;

One proposal would init a, then start to init b but notice that b
depends on d which is in a different translation unit. So g.cpp
would be initialized, first initing c; however, ¢ depends on e so
h.cpp would be inited. After h.cpp was inited, g.cpp's
initialization would finish, then f.cpp's initialization would.
finish. We call this "interleaved initialization” because even
though initialization proceeds from top to bottom in a translation
unit, initializations from different translation units are
interleaved.

In any case, interleaved initialization appears to be a bad idea
because it can cause unpredictable interactions due to side effects
of initializations.

AFTER/NAME

The AFTER/NAME idea is a way to allow the programmer to specify the
order of initialization of translation units.

First, each translation unit can be "named" by adding a declaration of
the form "name <identifier>;" at file scope.

Then, each translation unit can include any number of declarations of
the form "after <identifier>;". Such a declaration says that the
module named <identifier> must be initialized before the translation
unit containing the "after” declaration. It is the environment's job

to order the translation units so that each "after” declaration is
satisfied, or report an error if this is impossible.

Declarations of the form "! after <identifier>;" can also be
included. This declaration cancels out any "after” declaration in
the same translation unit with the same identifier. Its usefulness
will be illustrated below.

Here is an example showing how to use "name” and "after":
(Example E13)

file string.cpp:

Static Initialization Summary Page 13

#include "string.h"
name string;

file string.h:
after string;

file foo.cpp:
#include "string.h"
String sl = "hi";

file goo.cpp:
#include "string.h"

In this example, both foo.cpp and goo.cpp will be initialized after
string.cpp, because string.h includes an "after string;" declaration
and both foo.cpp and goo.cpp includes string.h. However, the
environment could initialize foo.cpp before goo.cpp, or vice versa.

The general rule that programmers can follow is:

(*) if foo.h file declares some functions or objects, then the
foo.h file should include "after" declarations naming each
translation unit containing the functions or objects.

This rule works because in order for a file goo.cpp to access objects
or functions from another translation unit such as foo.cpp, it will
normally include a header file such as foo.h; as a result, the proper
"after” declaration will be included automatically.

Unfortunately, this rule of thumb breaks down in the case where two

translation units call each other, and thus include each other's .h
files:

(Example E14)

file string.cpp:
name string;

file string.h:
after string:;

file foo.cpp:
#include "string.h"
#include "foo.h"
#include "goo.h"
name £oo;
int £() { cout << string("hi there"); }
int £2() { return g2(); }

file foo.h:
after foo:;
int £();
int £2();

file goo.cpp:
#include "foo.h"

Static Initialization Summary Page 14
#include "goo.h"

name goo;
int a = £();
int g2() { return 18; }

file goo.h:
after goo;
extern int a;
int g2();

file hoo.cpp:
#include "goo.h"
int h = g2():

The problem is that the environment will report that goo must be
initialized after foo which must be after goo which is impossible.
In fact, for the initialization to proceed correctly, goo must be
initialized after foo because the initialization of "a" in goo calls

a function f) in foo, whereas no initialization in foo uses anything
from goo. So the "after goo” declaration included in foo must be
disabled. However, you cannot just delete the "after goo” from
goo.h, because that in effect deletes it from hoo.cpp as well. The
only recourse is to use the "lafter goo" declaration within foo to
cancel out the "after goo" declaration.

(Example E15) (modifying Example E14)

file foo.cpp: :

#include "string.h"

#include "foo.h"

#include "goo.h"

name foo;

! after goo:
// equivalent to stating that no initialization in foo, and
// no function in foo that might be called during
// initialization of any object in any translation unit,
// uses any objects or functions from goo.

int £() { cout << string("hi there™); }

int £2() { return g2(); }

Summarizing the advantages of the AFTER/NAME proposal:

* it enables the programmer to easily specify the relative ordering
of translation units.

* it can only fail to work if the programmer forgets to include an
“after” declaration, or if the programmer incorrectly breaks
a cylce with a "! after” declaration, or if the programmer
uses a function or object from a translation unit without
including the corresponding .h file.

Summarizing the disadvantages of the AFTER/NAME proposal:

Static Initialization Summary Page 15

* Extends the language with 2 new keywords and 3 new declarations,
burdening the novice with more to learn and worry about.

* Could be error prone, especially compared to a method like global
static analysis which can be done automatically by the environment.

GLOBAL STATIC ANALYSIS AT LINK TIME

Global Static Analysis is a technique that can be used by compiler
vendors to automatically and correctly order the translation units
for initialization. The basic idea is to analyze the program at link
time or at the start of runtime, to figure out a correct order of- -
initialization of translation units.

To do global static analysis of initialization at link time, a

program must read in all of the translation units that make up a
program. For illustration purposes call these units TA, TB, TC, and

TD. Then, for each initialization in a translation unit the global
analyzer must figure out which functions and objects from other
translation units might be called. If an initialization in TA might

use something from TB and TD, then both TB and TD must be initialized
before TA. Here is an example:

(Example E16)

file TA:
extern int f();
int a = £();

file TB:
extern int g{();
class bl {};
class cl : public bl {};
cl myc;
int ¢c =g
int d = 3
bl::bl{()

):

(
{1}
file TC:
Class ¢l : public bl {...}
cl::cl() { return; }
int afunc() {(}

file TD:
extern int afunc{();
extern int d;
int £() { return 3; }
int g() { return afunc() + d; }

The global analyzer would calculate that the init of "a" in TA calls
f{) in TD, so it would note:

TA must be inited after TD

Static Initialization Summary Page 16

The init of "myc" in TB calls a constructor in TC which implicitly
calls a constructor in TB. Therefore,

TB must be inited after TC
TC must be inited after TB

which illustrates an error (TB after TB) that the user must fix. The
init of "c” in TB calls g() in TD, which calls afunc() in TC and uses d
in TB; however, d is a non-class type inited with a constant
.expression so it is already initialized. Therefore,

TB must be inited after TD
TD must be inited after TC

Files TD and TC contain no initializations, so no further constraints
are found. From the list of generated constraints the global .
analyzer would attempt to construct an ordering that satisfied the
constraints. Since the constraints form a directed graph, this just
reduces to a topological sorting of the directed graph, which always
succeeds unless the graph contains a cyole, which is an error that
should be reported.

There are a number of subtleties involved in this global analysis.
One was illustrated in Example 16: analyzing a constructor involves
. understanding all the implicit functions that get called, just as
analyzing a function call involves understanding all the implicit
conversion functions that might be called, and just as analyzing an
expression involves resolving overloaded operators.

Another subtlety involves calls to virtual functions. Consider:
(Example E17)

file TA:
Class Base { virtual int doit():; }
int Base::doit() {return 1;}

file TB:
Cclass Base { virtual int doit(); }

class Derived : public Base { virtual int doit(); }
int Derived::doit () {return 1;}

file TC:
Class Base {...};
Base * getBase();
Base * obj = getBase():;
int ¢ = obj->doit ();

The problem is that getBase() might return a ptr to any type derived
from Base, so the call to obj->doit() might invoke one of several
functions. Therefore the global analyzer must assume that it could
call either Derived::doit() in TB or Base::doit() in TA, and add
appropriate constraints.

Another potential difficulty is analyzing function pointers and other
pointers. Consider:

Static Initialization Summary Page 17

(Example E18)

file 7TA:
extern long 1;
long * £() {return &l;}

file TB:
extern long * f();
extern int * ((*funcs) ());:
long boO;
long b = *£();
long ¢ = *((*funecs) ());

file TC:
long 1 = 3;

file TD:
long * f£();
int * ((*funcs) ()) = £;

In Example E18, the initialization of b involves the dereference of a
pointer that might point to any global variable in the program. The
initialization of ¢ calls an unknown function, in an unknown
translation unit. Actually, this may not be a problem at all: the
initialization of b uses the result of f{) in TA, and the global
analyzer can tell that f{) uses 1 in TC, so the initialization of b
generates "TB after TA" and "TA after TC". Similarly, the
initialization of ¢ generates "TB after TD" and "TD after TA". I
believe that such global analysis handles function pointers and
variable pointers correctly, but more work is needed to prove it.
(What about member function pointers?)

Another potential problem is libraries, for which one does not
usually have the source code. For example, an initialization within
the library might call a function libinit() that it expects you to
write. It is not clear how to handle libraries.

Summarizing the advantages of Global Static Analysis at link time:
* gives the responsibility for correct initialization to the

environment, which can presumably do it with much fewer errors
and effort than a programmer.

Summarizing the disadvantages of Global Static Analysis at link time:
* May be difficult for compiler vendors to implement.

* Not clear how to handle libraries.
* May increase link time dramatically

GLOBAL STATIC ANALYSIS AT RUN TIME

Another possibility, suggested by Jerry Schwarz and others, is to do

Static Initialization Summary Page 18
a less sophisticated form of globa! analysis at runtime, before the

program starts. Instead of ana™ which functions and variables
are accessed during initializat just assume that ANY global
function or variable may be c: ring initialization. The
advantage is that it is easy to uent with current compiler

technology. The disadvantage 1s chat the global analysis may be too
unsophisticated to be generally useful. Here is Jerry's description
of the implementation, with sor diting from me:

For each global variable or func. - we invent an "initorder" function
that can be called when that symbol is used in an initializer of a
static.

E.g if we have
// file foo.c
class S { S() : } ;
extern int y
extern void f(int) :
void g(int i) { £(i) ; }
int x = g(y+1) ;
S s ;

The initorder functions are something like

initorder_g() {
sti_foo():
}

initorder_x() {
sti_foo() ; // initialize foc - static variables
}

initorder_s() {
sti_foo();
}

The initializing function for foo has to do something like

void sti_foo() {
static int initialization_state = C ;
if (initialization_state != 0) return ;
initialization_state = 1 ;

// call all initorde ncti

initorder_f£f() :

initorder_y() ;
initorder_S_constructor().

// do the initializations for this t:ianslation unit
x=g(y+1l) -
S_constructor(&s)
initialization_sta: -2 ;
}

I assume that the initorder function for f only calls initorder
functions for functions and variables that are explicitly named in
it's bodies. This can miss a variety of dependencies due to
indirection, virtual functions, function variables. (Actually, this
may not be the case for indirection or function variables: before a

Static Initialization Summary Page 19

function or variable can be accessed through a pointer, it has to be
accessed explicitly. This may ensure that the initialization takes
place in the correct order. However, this requires more thought to
say for sure.)

If there is a circularity in the dependency I propose to say the
order is undefined, rather than saying the program is illegal. It
does seem important to notify the programmer if there is a circular
dependency, however. The point of distinguishing
initialization_state's 1 and 2 is to allow some diagnosis of
cireularity if we choose. (A slightly more elaborate version of the
initorder functions might be required)

It is likely that many initorder functions will be identical to each
other. Provision must be made to de-initialize the translation units
in the reverse order of initialization: There is- scope for compiler---
optimization. John Wilkinson suggests you can read off the call
graph of the init_ and sti_ functions, do a topological sort, patch

in the sti_ calls in the right order, and eliminate the init_ calls.

Advantages:

* Can be implemented by the compiler easily, by looking at
only 1 translation unit at a time.
* Doesn't need more environmental support than current
schemes

Disadvantages:

* More code must be generated
* Increased startup time, as much as (ngb*ntu*tfc), where
ngb = (number of global variables and functions),
ntu = (number of translation units),
tfc = (time for a function call and integer check).
This time is paid even if a program contains no global
initialization.
* May or may not deal with virtuals, indirect function references,
etc.
* It isn't clear how to explain in the RM exactly what is
guaranteed. However, see Proposal 6D below.

A possible problem with this approach is that it is conservative;

Le. it will produce a random initialization in many cases where a

correctly ordered initialization exists. The reason is that before

initializing a module, this method initializes all functions and

variables obviously accessed by the module, EVEN FUNCTIONS AND

VARIABLES THAT MAY NOT BE CALLED DURING INITIALIZATION. This has to
be done because when compiling a module there is no way to know which

functions or variables in the module will be called as a result of an

initialization outside the module.

Is this approach too conservative? Notice that if two translation
units call each other, then this method will see a cycle, and it must
initialize the translation units in a random order. This happens,

Static Initialization Summary Page 20

for instance, if you implement a class using two translation units.

DYNAMIC ANALYSIS

Dynamic Analysis is a technique that detects for the first use of
function or variable in a translation unit, at runtime, and
initializes the translation unit before this first use.

This sounds great on paper, but in practice there seems to be a
significant runtime cost to implement this idea.

Consider the problem of detecting the first call to a functionina -
translation unit FOO. This requires adding a function call to every
global function in FOO, including inline functions:

£
{

/** compiler added the following statements **/
FOO_initcheck () ; ‘

/** compiler added the previous statements *=*/

. real £()
}

FOO_initcheck ()
{
static int already_inited = FALSE;
if (already_inited) return;
. init variables in FOO
}

Thus, every function expands in size, even inline functions. Also,
every function call has time overhead, even after

initialization, of calling another function, checking an integer, and
returning.

Consider the problem of detecting the first use of a variable in

translation unit FOO. This requires that every module different from :
FOO must check every use of an extern variable to see if the T e
corresponding unit has been initialized. So if function g() in unit

GOO uses an "extern int v":

g0
{

/** compiler added the following statements **/
if (! v_inited) v_INIT();
/** compiler added the previous statements **/

int x = v;
}

This expands the size of all functions that use extern variables by
an "if" and a function call, it adds one integer flag for every

Static Initialization Summary Page 21

global variable in the program, and it slows all functions by the
number of extern variables it has times the time to check an integer
flag and branch, even after initialization. :

Summarizing the advantages of Dynamic Analysis:

* Cedes the responsibility for correct initialization to the
environment, which can presumably do it with much fewer errors
and effort than a programmer.

* It is the most powerful method of determining a correct

initialization
order, i.e. succeeds in all cases that other methods succeed,
and fails in fewer cases.

Summarizing the disadvantages of Dynamic Analysis:
* Appears to be a runtime cost which is paid even after
initialization is over.
* Libraries may be a problem.
* Leads to interleaved initialization of different translation units.

Proposals

(Proposal 1) Amend Statement S2 to say "objects of class type that
don't have a constructor get initialized with the compiler generated
default constructor”. Or, do as Shopiro suggests: "address problem P4
by editorial changes. Classes which are 'brace initializable' are
simple. There are default constructors that make a class not simple
(e.g., the class has no constructor, but has a data member that has a
constructor).”

This solves Problem P4.

(Proposal 2) Get the Core language working group to describe the
semantics of the compiler-generated default constructor. We suggest
that non-class members get initialized to 0 of the appropriatée type,
and that class members get intialized with the default constructor.

This solves Problem P10.

(Proposal 3) Add to section 3.4 something like the following:

"Define a 'simple object’ as an object of non-class type defined
without an initializer, or an object of non-class type with a
constant initializer, or an object that can be brace initialized.
Then all simple objects at file scope in all translation units get
initialized before any non-simple object at file scope in any
translation unit. "

This solves Problem P6.

Static Initialization Summary Page 22
(Proposal 4) Do nothing about Problem P7.

This ‘vesPr-"" ™" “yleavingituptot iler writer what -
2ir s cas

rotr . 5) . :llowing to section 1 rarv Ohiect<-

Ters,.orarie: ., ._.ced at file scope durir . GR
if all the defimtions at file scope in a transiatiu i 083 2
compound statement, with tt - ~~der of definitions . . -, - .~i<ras
intr. file. In particular, all srariesa. lestrojyea Le.ure
initia.ization of the translatic iwiscomp ed."

This solves Problem PS.
(Proposal 6) One of the Proposals 6A through 6E should be adopted.

(Proposal 6A) Change Statement S1 in Section 3.4 to the following:

"Define a 'simple object' as an object of non-class type defined
without an initializer, or an object of non-class type with a
constant initializer, or an object that can be brace initialized.

Then all simple objects at file scope in all translation units get
initialized before any non-simple object at file scop+ in any
translation unit.

Translation units are initialized one-at-a-time 1
implementation defined (possibly random) order. ain a translation
unit, non-simple objects at file scope are initializec .: the order
of their appearance in the translation unit.”

Possible Ammendment, suggested by Shopiro: static objects in a
translation unit are initialized before the first use of any object
or function in that translation unit "on a thread from main." This
allows the possibility of delaying the initialization of a module until
after main() begins to execute.

This solves Problem P1 by removing Statement S1; solves Problem P2 by
specifying a requirement which is in current practice; IGNORES
Problem P5; solves Problem P6; and IGNORES Problem P9.

(Proposal 6B) Change Statement S1 in Section 3.4 to the following:

“Define a 'simple object' as an object of non-class type defined
without an initializer, or an object of non-class type with a
constant initializer, or an object that can be brace initialized.

Then all simple objects at file scope in all translation units get
initialized before any non-simple object at file scope in any
translation unit.

Translation units are initialized one-at-a-time, in an order
defined by the programmer. Implementations must provide a way to
order the initialization of translation units, but the specific way
this is specified is implementation defined. If the programmer does
not specify an order, than the environment chooses an arbitrary
ordering. Within a translation unit, non-simple objects at file
scope are initialized in the order of their appearance in the
translation unit."

This solves Problem P1 by removing Statement S1; solves Problem P2 by

Static Initialization Summary Page 23

specifying a requirement which is the minimum requirement on vendors
if ordering is allowed; solves Problem P5; solves Problem P6; and

solves Problem P9. Actually, although Problems P5 and P9 are solved
by Proposal 6b, two new problems appear for the programmer: (1)
correctly deducing the right order of initialization, and (2) having

to recode the order of initialization whenever the program is ported

to a new compiler.

(Proposal 6C) Add a new language feature:

"At most one declaration of the form 'module <identifier>; may
appear at file scope within a translation unit. The <identifier>
names the translation unit for later reference by a matching 'after
<identifier>; declaration. <identifier> isin a separate namespace
used to name modules. "

"Any number of declarations of the form 'after <identifier>;' may
appear at file scope within a translation-unit.-The-declaration -—
ensures that the current translation unit is initialized after the
translation unit named with a matching ‘module <identifiers;
declaration. "

“Any number of declarations of the form ! after <identifier>;
may appear at file scope within a translation unit. The declaration
cancels out any and all 'after <identifier>' with matching
<identifier>.”

Change Statement S1 in Section 3.4 to the following:

"Define a 'simple object' as an object of non-class type defined
without an initializer, or an object of non-class type with a
constant initializer, or an object that can be brace initialized.
Then all simple objects at file scope in all translation units get
initialized before any non-simple object at file scope in any
translation unit,.

Translation units are initialized one-at-a-time, in any order
that respects the "after <identifier>:" declarations within the
translation units. The environment must generate an error if no
correct ordering is possible, or if two translation units are named
with the same identifier. Within a translation unit, non-simple
objects at file scope are initialized in the order of their
appearance in the translation unit.”

This solves Problem P1 by removing Statement S1; solves Problem P2 by
requiring the user to specify constraints between individual

translation units and by requiring the environment to produce a
compatible ordering; solves Problem P5; solves Problem P6; and solves
Problem P9.

(Proposal 6D) Change Statement S1 in Section 3.4 to the following:
"Define a 'simple object' as an object of non-class type defined
without an initializer, or an object of non-class type with a
constant initializer, or an object that can be brace initialized.
Then all simple objects at file scope in all translation units get
initialized before any non-simple object at file scope in any
translation unit.
Translation units are initialized one-at-a-time, in any order
that ensures that no object or function is used before its containing

Static Initialization Summary Page 24

translation unit is initialized, as far as this can be deduced with
reasonable effort before run-time. If a correct ordering among two

. modules cannot be deduced, the environment must generate a warning
and will initialize the modules in a random order. Within a
translation unit, non-simple objects at file scope are initialized in

the order of their appearance in the translation unit."

This solves Problem P1 by removing Statement S1; limits Problem P2 by
requiring the environment to use global static analysis at link time

or run time to order the translation units; IGNORES Problem P5; .
solves Problem P6; and solves Problem P9.

(Proposal 6E) Change Statement S1 in Section 3.4 to the following:

"Define a 'simple object’ as an object of non-class type defined
without an initializer, or an object of non-class type with a
constant initializer, or an object that can be brace-initialized.-- -
Then all simple objects at file scope in all translation units get
initialized before any non-simple object at file scope in any
translation unit.

Initialization of non-simple objects at file scope may proceed in
any order such that each translation unit is completely initialized
before any object or function defined within is used, and such that
each object is initialized after all others that appear before it in
the same translation unit. The environment must generate an error at
runtime if it cannot produce a correct ordering.

This is the dynamic analysis solution. This solves Problem P1 by .
removing Statement S1; IGNORES Problem P2; IGNORES Problem P5; solves
Problem P6; and solves Problem P9.

Recommendations

The Working Group recommends that Proposals 1 through 5 be accepted.
The Working Group seems to be evenly split between proposals 6A (do
nothing) and 6D (relaxed global static analysis). Note that relaxed
global static analysis can be considered one way that an

implementation can define initialization to take place; thus, you can
argue that 6A subsumes 6D. On the other hand, the worst case of
relaxed global static analysis is just a random initialization of
translation units; thus, you can argue that 6D subsumes 6A.

My own personal belief is that 6D is the best solution. We have

given a straightforward but simple implementation, and using John
Wilkinson's optimization the overhead of this technique can be
reduced to 0. The C philosophy is to avoid any unnecessary overhead,
so we should not force the runtime overhead on any program that
doesn’t want it. However, I would always choose to use 6D for my

programs, and Wilkinson's optimization suggests that all overhead can
be eliminated.

