Doc Number X3J16/91-0133
WG21/N0066

pC++: Concurrency in the Object-Oriented Language C++

P. A. Buhr*, Glen Ditchfield*, R. A. Stroobosscher*, B. M. Younger*, C. R. Zarnke**

* Dept. of Computer Science, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1
(519) 888-4453, Fax: (519) 885-1208, E-mail: pabuhr@watmsg.uwaterloo.ca

** Hayes Canada Inc., 175 Columbia St. W., Waterloo, Ontario, Canada, N2L 5Z5

SUMMARY

A design, including its motivation, is presented for introducing concurrency into C++. The
design work is based on a set of premises and elementary execution properties that gen-
erate a corresponding set of programming language constructs needed to express concur-
rency. The new constructs continue to support object-oriented facilities like inheritance
and code reuse. Further, features that allow flexibility in accepting and subsequently
postponing servicing of requests are provided. Currently, a major portion of the design
is implemented, supporting concurrent programs on shared-memory uniprocessor and
multiprocessor computers.

KEY WORDS: Concurrency, C++, Class-based Objects, Postponing Requests

Accepted for publication in Software—Practice and Experience, 1991

INTRODUCTION

The goal of this work is to introduce concurrency into the object-oriented language C++ [1]. To achieve this
goal a set of important programming language abstractions were adapted to C++, producing a new dialect,
which we have called 4C++. These abstractions were derived from a set of design premises and combinations of
elementary execution properties, different combinations of which categorized existing programming language
abstractions and suggested new ones. The set of important abstractions contains those needed to express
concurrency, as well as some that are not directly related to concurrency. Therefore, while the focus of the
paper is on concurrency, all the abstractions produced from the elementary properties are discussed. While
we are implementing our ideas as an extension to C++, the premises and elementary properties are generally
applicable to other object-oriented languages such as Eiffel (2], Simula (3] and Trellis/Owl [4].

Combinations of the elementary execution properties produced five abstractions: coroutine, monitor,
coroutine-monitor, simple-task, and task. Each of these abstractions was introduced into C++ through new
type constructs that produced new kinds of objects. As well, other new constructs were introduced to
control interactions among the new objects. A detailed examination is made of how inheritance affects these
constructs. Several comparisons are made with concurrency-library schemes for C++ and other concurrent
programming languages.

In general, casting the new constructs into a concrete syntax for a new programming language should
have been straightforward. However, because we added the constructs to an existing language, C++, we did
not have complete freedom of design, but had to conform to C++’s existing design. Therefore, it was an
engineering exercise to blend each construct with the syntax, the semantics, and the philosophy of C++. The
selection of C++ was driven by pragmatic reasons—C++ already supports a general object creation facility,
l.e. a class, on which we could base other kinds of object creation facilities and C++ is becoming popular
with availability on a large number of computers.

uC++ executes on uniprocessor and multiprocessor shared-memory computers. On a uniprocessor com-
puter, concurrency is achieved by interleaving execution to give the appearance of parallel execution. On a
multiprocessor computer, concurrency is accomplished by a combination of interleaved execution and true
parallel execution. Further, uC++ uses a single-memory model. This single-memory is populated by
routine-activations, class-objects, coroutines, monitors, coroutine-monitors and concurrently executing tasks
all of which have the same addressing scheme for accessing the memory. This memory may be the address
space of a single UNIX process or a memory shared among a set of UNIX processes. Objects are light-
weight because they use the same memory so that there is a low execution cost for creating, maintaining
and communicating among them. This has its advantages as well as its disadvantages. Communicating
objects do not have to send large data structures back and forth, but can simply pass pointers to data
structures. However, this technique does not lend itself to a distributed environment with separate address-
spaces. Currently, we are looking at the approaches taken by distributed shared-memory systems to see if

they provide the necessary implementation mechanisms to make the non-shared memoty case similar to the
shared-memory case.

DESIGN PREMISES
The premises that directed this work are:

* All communication among the new kinds of objects must be statically type checkable {5]. We believe
that static type checking is essential for early detection of errors and efficient code generation. As well,
this requirement is consistent with the fact that C++ is a statically typed programming language.

e Interaction between the different kinds of objects should be possible, and, in particular, interaction
between tasks should be possible. This allows the programmer to choose the kind of object best suited
to the particular problem without having to cope with communication restrictions.

This is in contrast to schemes where some objects, such as tasks, can only interact indirectly through
another non-task object. For example, many programming languages that support monitors (6, 7, 8]
require that all communication among tasks be done indirectly through a monitor or in the Linda system
[9] all communication must take place through one or possibly a small number of tuple spaces. This

increases the number of objects in the system. More objects will consume more system resources which

slows the system; as well, communication among tasks is slowed because of additional synchronization
and data transfers.

¢ All communication between objects is performed using routine calls; data is transmitted by passing
arguments to parameters and results are returned as the value of the routine call. We believe it is
confusing to have additional forms of communication in a language, such as message passing, message
queues, or communication ports.

¢ Any of the new kinds of objects should have the same declaration scopes as existing objects in C++.
That is, any object can be declared at program startup, as an external, during block activation, within
braces {}, and on demand during execution, using the new operator.

¢ All mutual exclusion must be implicit iri the programming language constructs and all synchronization
should be limited in scope. It is our experience that requiring users to build mutual exclusion out of
synchronization mechanisms, e.g. locks, often leads to incorrect programs. Further, we have noted that
reducing the scope in which synchronization can be used, by encapsulating it as part of programming
language constructs, further reduces errors in concurrent programs.

¢ Both synchronous and asynchronous communication are needed. However, we believe that the best way
to support this is to provide synchronous communication as the fundamental mechanism; asynchronous
mechanisms, like buffering or futures, can then be built when that is appropriate. Building synchronous
communication out of asynchronous mechanisms requires a protocol for the caller to subsequently detect
completion. This is error prone because the caller may not obey the protocol, for example, never
retrieve a result. Further, asynchronous requests require the creation of implicit queues of outstanding
requests, each of which must contain a copy of the arguments of the request. This creates a storage
management problem because different requests require different amounts of storage in the queue and
pointer arguments must be de-referenced. We believe asynchronous communication is too complicated
a mechanism to be hidden in the system and does not fit with the philosophy of C++, such as passing
pointers to data items.

¢ There must be some control over which category of request will be accepted next by an object that is
accessed concurrently. There are two complementary approaches: control can be based on selection of
a task in a particular quene, such as the queue formed by calls to a particular entry point, or based on
a particular task from which the next request will be accepted. In the former case, it must be possible
to give priorities to the queunes of tasks. This is essential for high priority requests, such as a time out
or a termination request. (This is to be differentiated from giving priority to elements within a queue
or execution priority.) In the latter case, selection control is very precise as the next request must only

come from the specified task. Currently, we provide only the former case because we believe that the
need for the latter case is small.

¢ There must be flexibility in the order that requests are completed. This means that a task can accept a
request and subsequently postpone it for an unspecified time, while continuing to accept new tequests.
Without this ability, certain kinds of concurrency problems are quite difficult to implement, e.g. disk
scheduling, and the amount of concurrency is inhibited as tasks are needlessly blocked [10]

We have achieved all of these requirements in pC++.,

ELEMENTARY EXECUTION PROPERTIES

We have developed extensions to the object concept based on the following execution properties:

thread - is execution that occurs independently of other execution. Conceptually this is a virtual processor
whose function is to advance execution by changing execution state. Multiple threads provide con-
current execution. A programming language must provide constructs that permit the creation of new
threads and specify how threads are used to accomplish execution. Further, there must be program-
ming language constructs whose execution causes threads to block and subsequently be made ready

for execution. A thread is either blocked or running or ready. A thread is blocked when it is waiting
for some event to occur. A thread is running when it is executing on an actual processor. A thread is
ready when it is eligible for execution but not being executed.

execution-state — An execution-state is the state information needed to permit concurrent execution, even
if it is not necessarily used for concurrent execution. An execution-state is either active or inactive,
depending on whether or not it is currently being executed by a thread. In practice, an execution-
state consists of the data items created by an object, including its local data, local block and routine
activations, and a current execution location, which is initialized to a starting point. The local block
and routine activations are often maintained in a contiguous stack, which constitutes the bulk of an
execution-state and is dynamic in size, and is the area where the local variables and execution location
are preserved when an execution-state is inactive. Knowing what constitutes an execution-state is an
elementary property of the semantics of execution. An execution-state is related to the notion of a

process continuation [11]. When a thread transfers from one execution-state to another, it is called a
context switch.

mutual exclusion -isan action on a resource that takes place without interruption by other actions on the
resource. In a concurrent system, mutual exclusion is required to guarantee consistent generation of
results, and cannot be trivially or efficiently implemented without appropriate programming language
constructs.

The first two properties seem to be fundamental and not expressible in terms of simpler properties; they
represent the minimum needed to perform execution. The last, while expressible in terms of simpler concepts,
is only able to be accomplished by algorithms that are error-prone and inefficient, e.g. Dekker-like algorithms,
and therefore we believe that mutual exclusion must be provided as an elementary execution property.

A programming language designer could attempt to provide these 3 execution properties as basic ab-
stractions in a programming.language [12], allowing users to construct higher-level constructs from them.
However, some combinations might be inappropriate or potentially dangerous. Therefore, we will examine
all combinations, analyzing which combinations make sense and are appropriate as higher-level programming
language constructs. What is interesting is that enumerating all combination of these elementary execution
properties produces many existing high-level abstractions and suggests new ones that we believe require
further examination.

The three execution properties are properties of objects. Therefore, an object may or may not have a
thread, may or may not have an execution-state, and may or may not have mutual exclusion. Different
combinations of these three properties produce different kinds of objects. If an object has mutual exclusion,
this means that invocations of certain member routines are mutually exclusive of one another. Such a
member routine is called a mutex member. In the situation where an object does not have the minimum
properties required for execution, i.e. thread and execution-state, those of its user (caller) are used.

Table 1 shows the different abstractions possible when an object possesses different execution properties.
Case 1 is where the object has none of the execution properties, e.g. a routine or class object. In this case,
the caller’s thread and execution-state are used to perform the execution. Since this kind of object provides
no mutual exclusion it is normally accessed only by a single task. If such an object is accessed by several
tasks, extreme care must be exercised to assure correct execution. For example, if the called routine uses
only the execution-state, such as sin(x), the computation is mutually exclusive of other simultaneous callers
because only one thread can execute using an execution-state at a time. Case 2 is like Case 1 but deals with
the concurrent access problem by implicitly ensuring mutual exclusion for the duration of each computation
by a member routine. This abstraction is a monitor [13]. Case 3 is an object that has its own execution-state
but no thread. Such an object uses its caller’s thread to advance its own execution-state and usually, but
not always, returns the thread back to the caller. This abstraction is a coroutine [14]. Case 4 is like Case 3
but deals with the concurrent access problem by implicitly ensuring mutual exclusion; we have adopted the
name coroutine-monitor for it. Cases 5 and 6 are objects with a thread but no execution-state. Both cases
are rejected because the thread cannot be used to provide additional concurrency. First, the object’s thread
cannot execute on its own since it does not have an execution-state, so it cannot perform any independent
actions. Second, if the caller’s execution-state is used, assuming the caller’s thread can be blocked to ensure
mutual exclusion of the execution-state, the effect is to have two threads successively executing portions of a

single computation, which does not seem useful. Case 7 is an object that has its own thread and execution-
state. Because it has both a thread and execution-state it is capable of executing on its own. Case 8 is like
Case 7 but deals with the concurrent access problem by implicitly ensuring mutual exclusion.

object properties object’s member routine properties
no implicit implicit
thread | execution-state || mutual exclusion mutual exclusion
no no 1 class-object 2 monitor
no yes 3 coroutine 4 coroutine-monitor
yes no 5 (rejected) 6 (rejected)
yes yes 7 simple-task 8 task

Table 1: Fundamental Abstractions

The abstractions suggested by this categorization come from fundamental properties of execution and
not ad hoc decisions of a programming language designer. While it is possible to simplify the programming
language design by only supporting the task abstraction [15], which provides all the elementary execution
Properties, this would be unnecessarily complicated and inefficient. As will be shown, each of the non-rejected
abstractions produced by this categorization has a particular set of problems that it can solve, and therefore,
each has a place in the programming language. If one of these abstractions is not present, a programmer
may be forced to contrive a solution for some problems that violates abstraction or is inefficient.

EXTENDING C++

Operations in pC++ are expressed explicitly, i.e. the abstractions derived from the elementary properties
are used to structure an algorithm into a set of objects that interact, possibly concurrently, to complete
a computation. This is to be distinguished from implicit schemes such as those that attempt to discover
concurrency in an otherwise sequential program, for example, by parallelizing loops and access to data
structures. While both schemes are complementary, and hence, can appear together in a single programming
language, we believe that implicit schemes are limited in their capacity to discover concurrency, and therefore,
the explicit scheme is essential. Currently, uC++ only supports the explicit approach, but nothingin its design
precludes providing aspects of implicit approaches.

The abstractions in Figure 1 are expressed in pC++ using two new type constructors, uCoroutine and
uTask, which are extensions of the class construct, and hence, define new types; and two new type qualifiers,
uMutex and uNoMutex, to specify the presence or absence of mutual exclusion on the member routines of a
type (see Table 2). In this paper, the types defined by the class construct and the new constructs are called
class types, monitor types, coroutine types, coroutine-monitor types, simple-task types and task
types, respectively. The terms class-object, monitor, coroutine, coroutine-monitor, simple-task and
task refer to the objects created from such types. The term object is the generic term for any instance
created from any type. All objects can be declared externally, in a block, or using the new operator. The
default qualification values have been chosen based on the expected frequency of use of the new types. As
well, several new statements are added to the language: uSuspend, uResume, uAccept, uWait and uSignal.
Each is used to affect control in objects created by the new types. (The prefix “u” followed by a capital
letter for the new keywords avoids current and future conflicts with UNIX routine names, e.g. accept, wait,
signal, and C++ library names, e.g. task.)

COROUTINE

A coroutine is an object with its own execution-state so its execution can be suspended and resumed.
Execution of a coroutine is suspended as control leaves it, only to carry on from that point when control
returns at some later time. This means that a coroutine is not restarted at the beginning on each activation
and that its local variables are preserved. Hence, a coroutine solves the class of problems associated with
finite-state machines and push-down automata, which are logically characterized by the ability to retain

object properties object’s member routine properties
no implicit 1mplicit
thread | execution-state mutual exclusion mutual exclusion
no no uNoMutex|t class uMutex class
no yes uNoMutex| uCoroutine | uMutex uCoroutine
yes yes uNoMutex uTask {uMutex] uTask

1 [] implies default qualification if not specified

Table 2: New Type Constructs

state between invocations. In contrast, a subroutine or member routine always executes to completion
before returning so that its local variables only persist for a particular invocation. A coroutine executes
synchronously, and hence there is no concurrency implied by the coroutine construct. However, the ability
of a coroutine to suspend its execution-state and later have it resumed is the precursor to true tasks but
without concurrency problems; hence, a coroutine is also useful to have in a programming language for
teaching purposes because it allows incremental development of these properties.

A coroutine type has all the properties of a class. The general form of the coroutine type is the following:

[uNoMutex] uCoroutine coroutine-name {

private:
// these members are not visible externally
protected:
// these members are visible to descendants
void main(); // starting member
public:

// these members are visible externally

-

The coroutine type has one distinguished member, named main. Instead of allowing direct interaction with
main, we have chosen to make its visibility private or protected; therefore, a coroutine can only be activated
indirectly by one of the coroutine’s member routines. A user then interacts with a coroutine indirectly
through its member routines. This allows a coroutine type to have multiple public member routines to
service different kinds of requests that are statically type checked. No arguments can be passed to main, but
the same effect can be accomplished indirectly by passing arguments to the constructor for the coroutine
and storing these values in local variables which can be referenced by main.

A coroutine can suspend its execution at any point by activating another coroutine. This can be done in
two ways. First, a coroutine can explicitly invoke a member of another coroutine, which causes activation of
the coroutine that it is a member of. Second, a coroutine can restart the coroutine that previously activated
it. Hence, two different styles of coroutine are possible, based on the use of implicit activation. A semi-
coroutine always activates the member routine that activated it; a full-coroutine calls member routines
in other coroutines that cause execution of that coroutine to be activated.

Coroutines can be simulated without using a separate execution-state, e.g. using a class, but this is difficult
and error-prone for more than a small number of activation points. All data needed between activations must
be local to the class and the coroutine structure must be written as a series of cases, each ending by recording
the next case that will be executed on re-entry. Simulating a coroutine with a subroutine requires retaining
data in variables with global scope or automatic variables with static storage-class between invocations.
However, retaining state in these ways violates abstraction and does not generalize to multiple instances,
since there is only one copy of the storage in both cases. Simulating a coroutine with a task, which has an
execution-state, is inefficient because of the higher cost of switching both a thread and execution-state as
opposed to just an execution-state. In our implementation, the cost of communication with a coroutine is,

in general, less than half the cost of a task, unless the communication is dominated by transferring data (see
benchmark timings in Appendix C).

Coroutine Creation and Destruction

A coroutine is created in the same way as instances of a class and its main routine is started by invoking a
member routine that activates it, as in:

uCoroutine C {

void main() ...
public:
void r{ ...) ...
Y
C *cp; // pointer to a C coroutine
{ // start a new block
Ce, cal3]; // local declaration
cp = new C; // dynamic allocation
cr(...); // call 8 member routine that activates the coroutine
ca[ll.e(...); // call a member routine that activates the coroutine
cp~>r(..) // call 8 member routine that activates the coroutine

} /7c, caf0], ca[1] and ca[2] are terminated

delete cp; // cp’s instance is terminated

When a coroutine is created the following occurs. The appropriate coroutine constructor and any base-
class constructors are executed in the normal order. The stack component of the coroutine’s execution-state
is then created and the starting point (activation point) is initialized to the coroutine’s main routine; however,
the main routine does not start execution until the coroutine is activated by one of its member routines.
The location of a coroutine’s variables—in the coroutine’s local data area or in routine main—depends on
whether the variables must be accessed by member routines other than main. Once main is activated, it
executes until it activates another coroutine or terminates. The coroutine’s point of last activation may be
outside of the main routine because main may have called another routine; the routine called could be local
to the coroutine or in another coroutine.

When main terminates, it activates the coroutine or task that caused main to start execution. This choice
was made because the start sequence is a tree, i.e. there are no cycles. A thread can move in a cycle among
& group of coroutines but termination always proceeds back along the branches of the starting tree. This
choice for termination does impose certain requirements on the starting order of coroutines, but it is essential
to ensure that cycles can be broken at termination. An attempt to communicate with a terminated coroutine
is an error.

Like a routine or class, a coroutine can access all the external variables of 8 C++ program and the heap
area. Also, any static member variables declared within a coroutine are shared among all instances of that
coroutine type. If a coroutine makes global references or has static variables and is instantiated by different
tasks, there is the general problem of concurrent access to such shared variables.

Inherited Members

Each coroutine type, if not derived from some other coroutine type, is implicitly derived from the coroutine
type uCoroutineBase, as in:

uCoroutine coroutine-name : public uCoroutineBase {

L

where the interface for the base class uCoroutineBase is as follows:

uCoroutine uCoroutineBase {
protected:
void uSaveFloatRegs();
void uSetName(const char *name);
public:
char *uGetName();
void uVerify();
uCoroutineBase();
uCoroutineBase(long stackSize);

}

The protected member routine uSaveFloatRegs causes the additional saving of the floating point registers
during a context switch for a coroutine. In most systems, the entire state of the actual processor is saved
during a context switch because there is no way to determine if a particular object is using only a subset of
the actual processor state. All objects use the fixed-point registers, while only some use the floating-point
registers. Because there is a significant execution cost in saving and restoring the floating-point registers, we
have decided not to automatically save them. Hence, in uC++ the fixed-point registers are always saved during
a context switch, but it may or may not be necessary to save the floating-point registers. If a coroutine or
task performs floating-point operations, it must invoke uSaveFloatRegs immediately after starting execution.
From that point on, both the fixed-point and floating-point registers are saved during a context switch.

The protected member routine uSetName associates a character string name with a coroutine and should
be called in the coroutine’s constructor or main routine. The member routine uGetName returns a pointer
to the character string name associated with a coroutine. If the coroutine has not been assigned a name,
uGetName returns a pointer to a string that contains the address of the coroutine in hexadecimal. uC++ uses
the coroutine name when printing any error message, which is helpful when debugging.

The member routine uVerify checks whether the current coroutine has overflowed its stack. If it has, the

program terminates. It is suggested that a call to uVerify be included after each set of declarations, as in the
following example:

void main() {
// declarations
uVerify(); // check for stack overflow
// code

}

Thus, after a coroutine has allocated its local variables, a verification is made that the stack was large enough
to contain them. In the future, we plan to automatically insert calls to uVerify to ensure that any stack
violation will be caught.

The overloaded constructor routine uCoroutineBase has the following forms:

uCoroutineBase() — creates the coroutine on the current cluster with the stack size specified by the
current cluster’s default stack size, a machine dependent value no less than 4000 bytes. (A cluster is
a collection of tasks and virtual processors that execute those tasks and is created from the class-type
uCluster. The purpose of a cluster is to control the amount of parallelism that is possible among
concurrent tasks on multiprocessor computers and is described in detail in Reference {16].)

uCoroutineBase(long stackSize) - creates the coroutine on the current cluster with the specified stack
size (in bytes).

A coroutine type can be designed to allow declarations to specify the size of the stack by doing the following:

uCoroutine C {

public:
C() : uCoroutineBase(8192) {}; // default 8K stack

C(long i) : uCoroutineBase(i) {}; // user specified stack sige
&

Cx, y(16384); // x has an 8K stack, y has a 16K stack

The free routine:
uCoroutineBase &uThisCoroutine();

is used to determine the identity of the curfent coroutine. Because it returns a reference to the base coroutine
type, uCoroutineBase, of the current coroutine or the current task (see task base-type uTaskBase in the next
section), this reference can only be used to access the public routines of type uCoroutineBase. For example,
a free routine can check whether the allocation of its local variables has overfiowed the stack of a coroutine
that called it by performing the following:

int FreeRtn(...) {
// declarations
uThisCoroutine().uVerify(); // check for stack overflow
// code

}

Coroutine Control and Communication

Control flow among coroutines is specified by the uResume and uSuspend statements. The uResume statement
is used only in the member routines; it always activates the coroutine in which it is specified, and consequently,
causes the caller of the member routine to become inactive. The uSuspend statement is normally used
only within the coroutine body, not its member routines; it causes the coroutine to become inactive, and
consequently, to activate the caller that most recently activated the coroutine. In terms of the execution
properties, these statements redirect a thread to a different execution-state. The execution-state can be that
of a coroutine or the current task, i.c. a task’s thread can execute using its execution-state, then several
coroutine execution-states, and then back to the task’s execution-state. Therefore, these statements activate
and deactivate execution-states, and do not block and restart threads.

A semi-coroutine is characterized by the fact that it always activates its caller, as in the producer-
consumer example of Figure 1. Notice the explicit call from Prod’s main routine to delivery and then the
return back when delivery completes. delivery always activates its coroutine, which subsequently activates
delivery. Appendix B shows a complex binary insertion sort using a semi-coroutine.

A full-coroutine is characterized by the fact that it never activates its caller; instead, it activates another
coroutine by invoking one of its member routines. Thus, full coroutines activate one another often in a cyclic
fashion, as in the producer-consumer example of Figure 2. Notice the uResume statements in routines payment
and delivery. The uResume in routine payment activates the execution-state associated with Prod::main and
that execution-state continues in routine Cons::delivery. Similarly, the uResume in routine delivery activates
the execution-state associated with Cons::main and that execution-state continues in Cons::main initially and

subsequently in routine Prod::payment. This cyclic control flow and the termination control flow is illustrated
in Figure 3.

SIMPLE-TASK

A simple-task is an object with its own thread and execution-state but none of whose member routines provide
mutual exclusion. Since access to a simple-task’s data is not mutually exclusive, care must be exercised when
other tasks communicate with it. For example, a simple-task must use conventional techniques, such as a
semaphore, to provide synchronization or mutual exclusion, which is contrary to one of our design premises.

Producer Consumer
uCoroutine Prod { uCoroutine Cons {
Cons *c; int pl, p2, status;
int N, status;
void main() {
void main() { // 1st resume starts here
int p1, p2; while (p1 >=0) {
// 1st resume starts here // consume p1 and p2
for (inti=1i<=N;i+=1){ status = ...;
... // generate a p1 and p2 uSuspend; // restart Cons::delivery
status = c—>delivery(p1, p2); } // while
if (status == ...) ... }; // main
}// for - public:
c—>delivery(—1, 0); int delivery(int p1, int p2) {
}; // main Cons::pl = p1;
public: Cons::p2 = p2;
Prod(Cons *c) { Prod::c = ¢; }; uResume; // restart Cons::main
void start(int N) { return status;
Prod::N = N; }i // delivery
uResume; // restart Prod::main }; // Cons
}: // start
}: // Prod int main() {
Cons cons; /| create consumer
Prod prod(&cons); // create producer
prod.start(10), // start producer
} // main

Figure 1: Semi-Coroutine Producer-Consumer Solution

However, a simple-task’s execution cost is less than that of a task because of the lack of mutual exclusion.
Therefore, a simple-task is useful if it performs an independent calculation having no callers. If a simple-task
has member routines, they should performed simple read-only operations on the simple-task’s local data.

A simple-task type has all the properties of a class. The general form of the simple-task type is the
following:

uNoMutex uTask task-name {

private:
// these members are not visible externally
protected:
// these members are visible to descendants
void main(); // starting member
public:

// these members are visible externally

-

The simple-task type has one distinguished member, named n{ain, in which the new thread starts execution.
Instead of allowing direct interaction with main, we have chosen to make its visibility private or protected.
A user then interacts with a simple-task indirectly through its member routines. This allows a simple-task
type to have multiple public member routines to service different kinds of requests that are statically type
checked. No arguments can be passed to main, but the same effect can be accomplished indirectly by passing
arguments to the constructor for the task and storing these values in the task’s local variables which can be
referenced by main. If a C++ program is viewed as an instance of an object where a thread of control begins
in the free routine main, a simple-task is just a generalization of this notion. In fact, uC++ starts the free
routine main running as a simple-task so that it has a uC++ thread and execution-state.

10

Producer Consumer
uCoroutine Prod { uCoroutine Cons {
Cons %¢; : Prod *p;
int N, money, status, receipt; int pl, p2, status;
void main() { void main() {
int pl, p2; int money, receipt;
// 1st resume starts here // 1st suspend starts here
for(inti:l;i<=N;i+=1){ while (p1 >=10) {
. // generate a pl and p2 // consume p1 and p2
status = c—>del|very(P1, p2); status = ...
if (status == ...) . receipt = p—>>payment{ money)i
}// for } // while
c—>del|very(-1,0); }; // main
}; // main public:
public: Cons(Prod *p) { Cons::p = p; }
int payment(int money) { int delivery(int p1, int p2) {
Prod::money = money; Cons::pl = p1;
.. /| process money Cons::p2 = p2;
uResume; // restart prod in Cons::delivery uResume; // restart cons in Cons::main 1st time
return receipt; // and cons in Prod::payment afterwards
}; // payment return status;
void start(int N, Cons *c) { }; // delivery
Prod::N = N; }; // Cons
Prod::c = ¢;
uResume; int main() {
}; /] start Prod prod; // create producer
}; // Prod Cons cons(&prod); // create consumer
prod.start(10, &cons); // start producer
} // main

Figure 2: Full-Coroutine Producer-Consumer Solution

Simple-Task Creation and Destruction

A simple-task is created in the same ways as instances of a class and its main routine is started implicitly,
as in:

uNoMutex uTask T {

void main() ...
public:
void r(...) ...
T *tp; // pointer to a T
{ // start a new block
T t, taf3]; . // local declaration
tp = new T, // dynamic allocation
ta(...); // call a simple read—only member routine
ta{l).r(...); // call a simple read—only member routine
tp—>r(...); // call a simple read—only member routine

} // wait for t, ta[0], ta[1] and ta[2] to terminate

delete tp; // wait for tp's instance to terminate

11

Start /Terminate Sequence Thread Movement

free main free main

¢ \{

Prod::start
prod

¢ (context: switch)

e
—
.
cons Prod::main

Y
Cons::delivery

(contcxt: switch)

Cons::main
\
—> Prod::payment termination
(Contextz switch) sequence
Cons::delivery
Y
normal Prod::main
\
Cons::delivery

execution

(context: switch)

Prod::payment
A\
Cons::main

— 7
Figure 3: Cyclic Control Flow in Full Coroutine

L HHH

When a simple-task is created the following occurs. The appropriate simple-task constructor and any
base-class constructors are executed in the normal order by the creating thread. A new thread of control and
execution-state are created for the simple-task, which are used to begin execution of the main routine visible
by the inheritance scope rules from the simple-task type. From this point, the creating thread executes
concurrently with the new simple-task’s thread. main executes until it blocks its thread or terminates.

When main terminates, so does the simple-task’s thread of control and execution-state. A simple-task’s
destructor is invoked by the destroying thread when the block containing the simple-task declaration ter-
minates or by an explicit delete statement for a dynamically allocated simple-task. However, the destructor
cannot execute before the simple-task’s thread terminates because the storage for the simple-task is released
by the destructor. Therefore, a C++ block cannot terminate until all simple-tasks declared in the block termi-
nate. Deleting a simple-task on the heap must also wait until the simple-task being deleted has terminated.
An attempt to communicate with a terminated simple-task is an error.

While a simple-task that creates another simple-task is conceptually the parent and the created simple-
task its child, uC++ makes no implicit use of this relationship nor does it provide any facilities based on this
relationship. Once a simple-task is declared it has no special relationship with its declarer other than what
results from the normal scope rules.

Like a coroutine, a simple-task can access all the external variables of a C++ program and the heap area.
However, because simple-tasks execute concurrently, there is the general problem of concurrent access to such
shared variables. Further, this problem may also arise with static member variables within a simple-task

that is instantiated multiple times. Therefore, it is suggested that these kinds of references be used with
extreme caution.

12

Inherited Members

Each simple-task type, if not derived from some other simple-task type, is implicitly derived from the simple-
task type uTaskBase, as in:

uNoMutex uTask task-name : public uTaskBase {

N
where the interface for the base class uTaskBase is as follows:

uNoMutex uTask uTaskBase : uCoroutineBase { // inherit from coroutine base type
public:
uTaskBase();
uTaskBase(long stackSize);
uTaskBase(uCluster &cluster);
uTaskBase(uCluster &cluster, long stackSize);
uCluster &uMigrate(uCluster &cluster)

}

The protected member routines uSaveFloatRegs and uSetName, and the public member routine uGetName
and uVerify are inherited from uCoroutineBase and have the same functionality.
The overloaded constructor routine uTaskBase has the following forms:

uTaskBase() - creates the simple-task on the current cluster with the stack size specified by the current

cluster’s default stack size, a machine dependent value no less than 4000 bytes (same as uCorou-
tineBase()).

uTaskBase(long stackSize) — creates the simple-task on the current cluster with the specified stack size
(in bytes) (same as uCoroutineBase(long stackSize)

uTaskBase(uCluster &cluster) - creates the simple-task on the specified cluster with the stack size spec-
ified by that cluster’s default stack size, a machine dependent value no less than 4000 bytes.

uTaskéase(uCluster &cluster, long stackSize) — cxeates the simple-task on the specified cluster with the
specified stack size (in bytes).

A simple-task type can be designed to allow declarations to specify the cluster on which creation occurs and
the size of the stack by doing the following:

uNoMutex uTask T {

public:
T() : uTaskBase(8192) {}; // current cluster, 8K stack
T(long i) : uTaskBase(i) {}; // current cluster and user stack sige
T(uCluster &c) : uTaskBase(c) {}; // user cluster
T(uCluster &c, long i) : uTaskBase(c,i) {}; /[user cluster and stack size
5
uCluster ¢; /] create a new cluster
T x, y(16384); // x has an 8K stack, y has a 16K stack
Tz(c) // % created in cluster ¢ with default stack size
T w(¢, 16384); // w created in cluster c and has a 16K stack

Most tasks execute on only one cluster. However, when it is necessary to do so, the member routine
uMigrate is used to move a task from one cluster to another so that it can access resources that are dedicated
to that cluster’s virtual processor(s).

from-cluster-reference = task.uMigrate(to-cluster-reference)

13

The free routine:

uTaskBase &uThisTask();

is used to determine the identity of the current task. Because it returns a reference to the base task type,
uTaskBase, of the current task, this reference can only be used to access the public routines of type uTaskBase.

For example, a free routine can check if the allocation of its local variables has overflowed the stack of a task
that called it by performing the following:

int FreeRtn(...) {
// declarations
uThisTask().uVerify(); // check for stack overflow

// code
}

Simple-Task Control and Communication
It is possible to synchronize with a simple-task at its termination by waiting for its deallocation, as in:

uNoMutex uTask consin { // concurrent sin calculation
double *ans, x;

void main() {

*ans = sin(x);

public:
consin(double *ans, double x) {
consin::ans = ans;
consin::x = X;
b
|5

double ans[3); // answer locations

consin s3(&ans{0], 3.0), s4(&ans[1], 4.0), s5(&ans[2], 5.0);
} // wait for completion of sin calculations

To synchronize or provide mutual exclusion with other threads during a simple-task’s execution requires the
use of explicit locking facilities like a semaphore, which can be built from mutex types.

MUTEX TYPES

A mutex type is any type that has a mutex member. Objects instantiated from mutex types have special
capabilities for controlling concurrent access. When uMutex or uNoMutex qualifies a type construct, as in:

uMutex uTask T {
private:
char w(...);
protected:
void main();
public:
int x(...);
float y(...);
void z(...);
b

it defines the default form of mutual exclusion on all public member routines. Hence, public member routines
x, y, and z of T are mutex members executing mutually exclusively of one another and of main. Protected

14

and private member routines are always implicitly uNoMutex, éxcept main. In our implementation, a mutex
member cannot call another mutex member in the same object or the executing thread deadlocks with itself.
Mutex qualifiers may be needed for protected and private member routines in mutex types, as in:

uTask T {
private:
uMutex char w(...); // explicitly qualified member routine

-

because another thread may need access to these member routines. For example, when a friend task calls a
protected or private member routine, then these calls will, in general, need to provide mutual exclusion.

For convenience, we also allow a public member of a mutex type to be explicitly qualified with uNoMutex.
These routines are, in general, error-prone in concurrent situations because their lack of mutual exclusion
permits concurrent updating to object variables. However, there are two situations where such a non-mutex
public member is useful: first, for read-only member routines where execution speed is of critical importance,
and second, to establish a protocol by calling several mutex members in a particular sequence. This ensures
that a user cannot violate the protocol since it is part of the object’s definition.

THREAD CONTROL CONSTRUCTS

The following constructs support blocking and waiting for the arrival of a thread in mutex types.

Controlling External Access: the Accept Statement

A uAccept statement, similar to that in Ada [17), is provided to dynamically choose which mutex member
executes next. This indirectly controls which caller is accepted next, that is, the next caller to the accepted
mutex member. The simple form of the uAccept statement is as follows:

uWhen (conditional-expression) // optional guard for accept
uAccept (mutex-member-name);

with the restriction that the comstructor, destructor, new and delete members are excluded from being
accepted. The syntax for accepting a mutex operator member, such as operator =, is as follows:

uAccept(operator =);

Currently, there is no way to accept a particular overloaded member. However, we have adopted the following
rule when an overloaded member name appears in a uAccept statement: calls to any member with that name
are accepted. The rational is that members with the same name should perform essentially the same function,
and therefore, they all should be eligible to accept a call.

A guard is considered true if it is omitted or its conditional-expression evaluates to non-zero. The guard
must be true and an outstanding call to the corresponding member must exist before the uAccept statement
is executed. If the guard is true and there is no outstanding call to that member, the task is accept-blocked
until a call to the appropriate member is made. If the guard is false, it is an error; hence, the uWhen clause
can act as an assertion of correctness in the simple case.

Once a call is made to an accepted mutex member, either the acceptor’s or the caller’s thread continues in
the object because of the mutual exclusion property. We have chosen the caller’s thread while the acceptor’s
thread remains blocked [18]. The accepted member is then executed like a member routine of a conventional
class by the caller’s thread. If the caller is expecting a return value, this value is returned using the return
statement in the member routine. When the caller’s thread leaves the object (or waits, as will be discussed
shortly), the acceptor’s thread is unblocked and it has exclusive access to the object.

The extended form of the uAccept statement, similar to the Ada select statement, can be used to accept
one of a group of mutex members, as in:

15

uWhen (conditional-expression) // optional guard for accept
uAccept (mutex-member-name)

statement // optional statement
uOr uWhen (conditional-expression) // optional guard for accept
uAccept (mutex-member-name)
statement // optional statement
uEise /[optional default clause
statement

The guard must be true and an outstanding call to the corresponding member must exist before a uAccept
clause is executed. If there are several mutex members that can be accepted, the one nearest the beginning
of the statement is executed. Hence, the order of the uAccepts indicates their relative priority for selection if
there are several outstanding calls; execution is always deterministic. Once the accepted call has completed,
the statement after the accepting uAccept clause is executed. If there is a uElse clause and no uAccept can
be executed immediately, the uElse clause is executed instead. If there is no uElse clause and the guards are
all false, it is an error. If some guards are true and there are no outstanding calls to these members, the task
1s accept-blocked until a call to one of these members is made. Note, the syntax of the uAccept statement
precludes the caller’s argument values from being accessed in the conditional-expression of a uWhen.

In contrast to Ada, a uAccept statement in pC++ places the code to be executed in a public member routine
of the task type; thus, it is specified separately from the uAccept statement. An Ada-style accept specifies
the accept body as part of the accept statement, requiring the accept statement to provide parameters
and a routine body. Since we have found that having more than one accept statement per entry is rather
rare, our approach gives essentially the same capabilities as Ada. As well, accepting member routines also
allows virtual routine redefinition, which is not possible with accept bodies. Finally, an accept statement
with parameters and a routine body does not fit with the design of C++ because it is like a nested routine
definition, and since routines cannot be nested in C++, there is no precedent for such a facility. It is important
to note that anything that can be done in Ada-style accept statements can be done within member routines,
possibly with some additional code. If members need to communicate with the block containing the uAccept
statements, it can be done by leaving “memos” in the task’s local variables. In cases where there would be
several different Ada-style accept statements for the same entry, accept members would have to start with
switching logic to determine which case applies.

Condition Variables and the Wait and Signal Statements

Sometimes it is necessary for the actions performed by a member routine to be suspended until some later
time; this is used, for example, to postpone requests that cannot be serviced immediately. This can be
done using uCondition variables in conjunction with the uWait and uSignal statements. The type uCondition
creates a queue object on which tasks can be blocked and restarted in first-in first-out order, and is defined:

class uCondition {
public:
int uEmpty();

The member routine uEmpty() returns 0 if there are threads blocked on the queue and 1 otherwise. It is not
meaningful to read or to assign to a condition variable, or copy a condition variable (e.g. pass it as a value
parameter), or use a condition variable outside of the mutex object in which it is declared.

The uWait statement blocks the current thread on a condition queue. Because of the mutual exclusion
property, there can be pending threads from uAccept or uSignal (discussed next) statements that want to
continue execution; only one can be restarted. The only meaningful choice is to restart them in last-blocked
first-unblocked (stack) order. If there are no pending threads, the only choice is to do an accept of all
the mutex members so that some thread can subsequently enter the object and signal the waiting thread:
otherwise, deadlock will occur. The uSignal statement makes ready the thread on the front of the condition

16

queue; if there is no thread on the condition queue, the signaller continues execution. This is different from
the uAccept statement which blocks if there are no outstanding calls to a mutex member. Once a thread is
unblocked by uSignal, only one of the two threads can continue in the object because of the mutual exclusion
property. The only meaningful choice is the signalled thread while the signaller’s thread remains blocked.
If the signaller’s thread was chosen, then when the signaller leaves the object, there is a non-obvious choice
whether to start the signalled thread or the acceptor’s thread assuming the signaller was accepted. When
the signalled thread leaves the object or waits, the signaller’s thread is unblocked and it has exclusive access
to the object.

The uAccept, uWait and uSignal statements can be executed by any routine of a mutex type. Even though
these statements block the current task, they can be allowed in member routines because member routines
are executed by their caller, not the task of which they are members. This is to be contrasted to Ada where
the use of a statement like a uWait in an accept body would cause the task to deadlock.

Postponing Requests

Once accepted, a member has the option of blocking its execution and being restarted at a later time. This
allows the processing of a request to be postponed, possibly several times, before it is completed and is
accomplished using uCondition variables in conjunction with the uWait and uSignal statements. We consider
this capability to be important.

In simple cases, the uWhen construct can be used to selectively accept only requests that can be completed
without postponement. However, when the selection criteria become complex, e.g. when the parameters of
the request are needed to do the selection and/or information is needed from multiple queues, it is simpler
to unconditionally accept a request and subsequently postpone it if it does not meet the selection criteria.
This avoids complex selection expressions and possibly their repeated evaluation. In addition, this allows
all the programming language constructs and data structures to be used in making the decision to postpone
a request, instead of some fixed selection mechanism provided in the programming language, as in SR [19]
and Concurrent C++ [20].

Regardless of the power of a selection facility, none can deal with the need to postpone a request after
it has been accepted. In a complex concurrent system, a task may have to make requests to other tasks as
part of servicing a request. Any of these further requests can indicate that the current request cannot be
completed at this time and must be postponed. Thus, we believe that it is essential that a request be able
to be postponed even after it is accepted so that the acceptor can make this decision while the request is
being serviced. Therefore, condition variables seem essential to support this facility.

MONITOR

A monitor is an object with mutual exclusion and so it can be accessed simultaneously by multiple threads.
A monitor provides a mechanism for indirect communication among tasks and is particularly useful for

managing shared resources. A monitor type has all the properties of a class. The general form of the
monitor type is the following:

uMutex class monitor-name {

private:
// these members are not visible externally
protected:
// these members are visible to descendants
public:
// these members are visible externally
b

Monitor Creation and Destruction

A monitor is the same as a normal class with respect to creation. As well, its mutex members are callable
after creation. When a monitor is deallocated, the execution of its destructor must wait until it can gain

17

access to the monitor, just like the other public members of the monitor; hence, termination of a block
containing a monitor or deleting a dynamically allocated monitor may block if the destructor cannot be
executed immediately. Ultimately, we want to restart tasks blocked within a terminating monitor by raising
an exception to notify them that their call failed. We are currently examining how to incorporate exceptions
among tasks within the proposed C++ exception model.

Monitor Control and Communication

uWait, uSignal, and uCondition variables provide the same functionality as for a conventional monitor (13].
In pC++, the uAccept statement can also be used to control which member(s) can be executed mext. The
ability to use uAccept in a monitor makes it more general than a conventional monitor because it specifies
an entry member, while uSignal specifies only a condition variable. When possible, this gives the ability
to restrict which member can be called, instead of having to accept all calls and subsequently handling or
blocking them, as for conventional monitors. Figure 4 compares a traditional style monitor using explicit
condition variables to one that uses accept statements. The problem is the exchange of a value (telephone
numbers) between two kinds of tasks (girls and boys). While the new style monitor example allows removal
of all explicit condition variables, this is not always possible.

Traditional Method New Method
uMutex ciass DatingService { uMutex class DatingService {
int GirlPhoneNo, BoyPhoneNo; int GirlPhoneNo, BoyPhoneNo;
uCondition GirlWaiting, BoyWaiting; public:
public: DatingService() {
int Girl(int PhoneNo) { GirlPhoneNo = BoyPhoneNo = —1;
if (BoyWaiting.uEmpty()) { }: // DatingService
uWait GirlWaiting; int Girl(int PhoneNo) {
GirlPhoneNo = PhoneNo; GirlPhoneNo = PhoneNo;
} else { if (BoyPhoneNo == -1) {
GirlPhoneNo = PhoneNo; uAccept(Boy);
uSignal BoyWaiting; Y/ if
Y/ i int temp = BoyPhoneNo;
return BoyPhoneNo; BoyPhoneNo = —1;
}; // Girl return temp;
int Boy(int PhoneNo) { }: // Gixl
if (GirlWaiting.uEmpty()) { int Boy(int PhoneNo) {
uWait BoyWaiting; BoyPhoneNo = PhoneNo;
BoyPhoneNo = PhoneNo; if (GirlPhoneNo == -1) {
} eise { uAccept(Girl);
BoyPhoneNo = PhoneNo; Y/ i
uSignal GirlWaiting; int temp = GirlPhoneNo;
Y/ if GirlPhoneNo = -1;
return GirlPhoneNo; return temp;
}: /] Boy }i // Boy
}: // DatingService }: // DatingService

Figure 4: Traditional versus New Monitor Control

COROUTINE-MONITOR

The coroutine-monitor is a coroutine whose member routines provide mutual exclusion; thus, they can be
invoked simultaneously by different tasks. A coroutine-monitor type has a combination of the properties of
a coroutine and a monitor, and can be used where a combination of these properties are needed, such as

a finite-state machine that is used by multiple tasks. A coroutine-monitor type has all the properties of a
class. The general form of the coroutine-monitor type is the following:

18

uMutex uCoroutine coroutine-name {

private:
// these members are not visible externally
protected:
// these members are visible to descendants
void main(); // starting member
public:

// these members are visible externally

-

Currently, we have little experience in using a coroutine-monitor, nevertheless we believe it warrants further
examination.

Coroutine-Monitor Creation and Destruction

A coroutine-monitor is the same as a monitor with respect to creation and destruction.

Coroutine-Monitor Control and Communication
A coroutine-monitor can make use of uSuspend, uResume, uAccept and uCondition variables, uWait and

uSignal to move a thread among execution-states and to block and restart threads that enter it.

TASK

A task is an object with its own thread of control and whose public member routines provide mutual
exclusion. A task type has all the properties of a class. The general form of the task type is the following:

[uMutex] uTask task-name {

private:
// these members are not visible externally
protected:
. // these members are visible to descendants
void main(); // starting member
public:

// these members are visible externally

-

Task Creation and Destruction

A task is the same as a simple-task with respect to creation and destruction. As well, its mutex members
are not callable after creation. This is because the mutual exclusion property precludes another thread from
executing in the task until the task’s thread has accepted a mutex member. Ultimately, we want to restart
tasks blocked within a terminating task by raising an exception to notify them that their call failed. We are
currently examining how to incorporate exceptions among tasks within the proposed C++ exception model.

Task Control and Communication

A task can make use of uAccept and uCondition variables, uWait and uSignal to block and restart threads
that enter it. Appendix A shows the archetypical disk scheduler implemented as a task that must process
requests in an order other than first-in first-out to achieve efficient utilization of the disk.

INHERITANCE

While concurrency and our set of elementary execution properties do not imply any particular polymor-
phism/reuse mechanism, C++ supports these concepts using inheritance; therefore, this section examines

19

how inheritance affects our constructs. C++ provides two forms of inheritance: “private” inheritance, which
provides code reuse, and “public” inheritance, which provides reuse and subtyping (a promise of behavioural
compatibility). (These terms must not be confused with C++ visibility terms with the same names.)

In C++ there is only one kind of type, class; class definitions can inherit from one another using both
single and multiple inheritance. In p#C++ there are three kinds of types, class, coroutine, and simple-task, so
the situation is more complex. The trivial case where a class or coroutine or simple-task type inherits from
another class or coroutine or simple-task, respectively, is supported in 4C++. When coroutines and tasks
inherit from other such types, each entity in the hierarchy may specify a main member; the main member
specified in the last derived class of the hierarchy is the one that is started when a new instance is created.
Clearly, there must be at least one main member specified in the hierarchy. For a task or a monitor type,
new member routines that are defined by the derived class can be accepted by statements in a new main
routine or in redefined virtual routines.

Having mutex types inherit from non-mutex types may be useful to generaté concurrent usable types
from existing non-concurrent types, for example, to define a queue that is derived from a simple queue and
that can be accessed concurrently. However, there is a fundamental problem with non-virtual members in
C++. To change a simple queue to a shared queue, for example, would require a monitor to inherit from
the class Queue and to redefine all of the class’s member routines so that the correct mutual exclusion
occurs when they are invoked. However, non-virtual routines in the Queue class might be called instead
because non-virtual routines are statically bound. Consider, this attempt to create a sharable queue from a
non-sharable queue:

class Queue {
public:
void insert(...) ...
virtual void remove(...) ...
b
uMutex class MutexQueue : public Queue {
virtual void insert(...) ...
virtual void remove(...) ...

I8

Queue *qp = new MutexQueue; // subtyping allows assignment
qp—>insert(...); // call to a non—virtual member routine, statically bound
qp—>remove(...); // call to a virtual member routine, dynamically bound

Routine Queue::insert does not provide mutual exclusion because it is a member of the class, while routines
MutexQueve::insert and MutexQueue::remove do provide mutual exclusion. Because the pointer variable qp
is of type Queue, the call qp->insert calls Queue::insert even though insert was redefined in MutexQueue; so
no mutual exclusion occurs. In contrast, the call to remove is dynamically bound, so the redefined routine
in the monitor is invoked and appropriate synchronization occurs. The unexpected lack of mutual exclusion
would cause many errors in usage. In object-oriented programming languages that have only virtual member
routines, this is not a problem. The problem does not occur with private inheritance because no subtype
relationship is created and hence the assignment to qp would be invalid.

Currently, we do not support inheritance among different kinds of types. While there are some imple-
mentation difficulties with certain combinations and potential problems with non-virtual routines, the main
reason is a fundamental one. Types are written as a class or a coroutine or a simple-task possibly with mutual
exclusion, and we do not believe that the coding styles used in each can be arbitrarily mixed. For example,
an object produced by a task that inherits from a class can be passed to a routine expecting instances of the
class and the routine might call one of the object’s member routines that inadvertently blocks the current
thread indefinitely. While this could happen in general, we believe there is a significantly greater chance if

users casually combine types of different kinds. We plan to study this design decision with the expectation
of relaxing it in the future.

20

IMPLEMENTATION AND PERFORMANCE

Our current implementation is a translator that reads a program containing the language extensions and
translates each extension into one or more C++ statements, which are then compiled by an appropriate
C++ compiler and linked with a concurrency runtime library, called the uC++ kernel. Because pC++ is
only a translator and not a compiler, some restrictions apply that would be unnecessary if the extensions
were actually part of a C++ programming language extension. For example, some runtime member routines
are publicly visible when they should not be; therefore, uC++ programs should not contain variable names
that start with a “u” followed by a capital letter. Similar, but less extensive translators have been built:
Concurrent C++ [20] and MC (21]. All programming examples in this paper compile and execute using the
pC++ translator and concurrency kernel.

The pC++ kernel is a library of classes and routines that provide low-level light-weight concurrency
support on uniprocessor and multiprocessor computers running the UNIX" operating system. The uC++
kernel does not call the UNIX kernel to perform a context switch or to schedule tasks, and it uses shared
memory for communication. As a result, performance for execution of and communication among large
numbers of tasks is significantly increased over UNIX processes. The maximum number of tasks that can
exist is restricted only by the amount of memory available in a program. The minimum stack size for
an execution-state is machine dependent, but is as small as 256 bytes. The storage management of all
pC++ objects, the scheduling of tasks on virtual Pprocessors within clusters, and the pre-emptive round-robin
scheduling to interleave task execution is performed by the uC++ kernel.

Unfortunately, the uC++ kernel is not yet fully integrated with all the functionality needed by the uC++
constructs. An example problem is that a task cannot be declared in the external area because the pC++
kernel may not have started execution before the first task is initialized. As well, uC++ allows at most 32
mutex members because a 32 bit mask is used to test for accepted member routines. This approach does not
extend to support multiple inheritance; however, we do not believe that multiple inheritance is particularly
useful for these abstractions nor do we believe that the performance degradation required to support multiple
inheritance is acceptable.

Benchmark times for several of the key operations in uC++ are given in Appendix C. It takes only one
microsecond to create a class in a block because there is no initialization of any class variables; the one
microsecond is the time to allocate the Recessary storage on the stack and execute an iteration of the test
loop. It takes more time to create a monitor because the mutex data structure is initialized and there is also
an initialization cost for each mutex routine. Notice that the cost for operations such as accepting a call or
resuming/suspending or signaling/waiting are the same because they are independent of the kind of object.
Certain multiprocessor timings are higher than their uniprocessor counterparts because of the extra locking
code necessary on multiprocessor machines.

COMPARISON WITH OTHER WORK

The comparison section is divided into a discussion of concurrency libraries that have been built using C++
and some programming languages that have attempted to solve problems raised in this paper.

Concurrency Libraries

Initially, we attempted to add the new types and statements by creating a library of class definitions that
were used through inheritance and preprocessor macros. This approach has been used to provide coroutine
facilities [22, 23] and simple parallel facilities [24, 12]. For example, the library approach involves defining
an abstract class, Task, which implements the task abstraction. New task types are created by inheritance
from Task, and tasks are instances of these types.

Task creation must be arranged so that the task body does not start execution until all of the task’s
initialization code has finished. This requires that the task body be placed at the end of the new class’s
constructor, with code to start a new thread in Task::Task(). One thread then continues normally, returning
from Task::Task() to complete execution of the constructors, while the other thread returns directly to the

"UNIX is & registered trademark of AT&T Bell Laboratories

21

point where the task was declared. This is accomplished in the library approach by having one thread
“diddle” with the stack to find the return address of the constructor called at the declaration. However, this
scheme prevents further inheritance; it is impossible to derive a type from a task type if the new type requires
a constructor, since the new constructor would be executed only after the parent constructor containing the
task body. It alsc seems impossible to write stack diddling code which causes one thread to return directly
to the declaration point if the exact number of levels of inheritance is not known. We tried to implement
another scheme that did not rely on stack diddling while still allowing inheritance and found it was impossible
because a constructor cannot determine if it is the last constructor in an inheritance chain. Therefore, it is
not possible to determine when all initialization is completed so that the new thread can be started.

Another way to solve this problem is to provide tasks with a start() member routine in class Task, which
must be called after the creation of a task, as in PRESTO. Task::Task() would set up the new thread,
but start() would set it running. However, this two-step initialization procedure introduces a new user
responsibility: to invoke start before invoking any member routines or accessing any member variables.

A similar two-thread problem occurs during deletion when the destructors are called. The destructor of
a task can be invoked while the task body is executing, but clean-up code must not execute until the task
body has terminated. Therefore, the code needed to wait for a thread’s termination cannot simply be placed
in Task::"Task(), because it would be executed after all the derived class destructors have executed. Task
designers could be required to put the termination code in the new task type’s destructor, but that would
prevent further inheritance. Task could provide a finish() routine, analogous to start(), which must be called
before task deletion, but that is error-prone because a user may fail to call finish appropriately, for example,
before the end of a block containing a local task.

Communication among tasks also presents difficulties. In library-based schemes, it is often done via
message queues. However, a single queue per task is inadequate; the queue’s message type inevitably
becomes a union of several “real” message types, and static type checking is compromised. (Why not use
inheritance from a Message class, instead of a union? The task would still have to perform type tests on
messages before accessing them.) If multiple queues are used, some analogue of the Ada select statement
is needed to allow a task to block for a message to appear on one of the queues. There is also no way
to statically state that a queue is owned by one task, otherwise many tasks could select from potentially
overlapping sets of queues. This would be expensive since the addition of a task to all the queues would
have to be an atomic operation; similarly for removing a task. Finally, message queues are best defined as
generic data structures, but C++ does not yet support generics. -

If the more natural routine-call mechanism is to be used for communication among tasks, each public
member routine would have to have special code at the start of each public member, which would be the
user’s responsibility to include. The special declaration would have a constructor that provided mutual
exclusion to the task’s public member routines. Further, we could not find any convenient way to provide
an Ada-like select statement without extending the language.

In the end, we found the library approach to be unsatisfactory. We decided that language extensions
would better suit our goals by providing more flexible and consistent primitives, and static checking. Other
object-oriented programming languages that support inheritance of routines, such as LOGLAN’S8 (25]) and
Beta [26] or wrapper routines, as in GNU C++ [27), might be able to support some or all of the necessary

capabilities without extensions to the programming language. It is also likely that language extensions could
provide greater efficiency than a set of library routines.

Concurrent Programming Languages

There are a large number of concurrency designs in an equally large number of programming languages. For
this comparison, we have selected only programming languages that provide statically type-safe communi-
cation. In all the languages examined, Tequests can be postponed by establishing a protocol between client
and server, which may require creation of new threads for or implicit buffering of each request. However, as
stated in the design premises, a protocol can violate the server’s abstraction if the client does not adhere to
it; therefore, solutions involving a protocol are deemed unacceptable.

22

Ada

Many of the Ada constructs have been discussed through contrasts with uC++ constructs in previous parts
of the paper. Briefly, Ada supports concurrency through an object-based construct called a task, which has
multiple entry points. It provides an accept statement for accepting calls to a particular entry and a select
statement for accepting calls to one of a number of entries. A task type extends the task construct making
it almost identical to a class by allowing instantiation of multiple instances of the type. However, a task

type differs from a traditional class type because the body of an entry is specified with the accept statement,
rather than with the definition of the entry itself.

There are 4 major problems with the Ada approach to concurrency:
1. There is no direct mechanism to return values from an entry.
An accept can only appear in the body of a task.

- The when clause of a select cannot access the arguments of the accept call.

nbwp

- Only a static number of requests can be postponed while continuing to accept new requests, which is
further restricted by not being able to recursively accept a particular entry.

The first restriction is a syntactic annoyance as it is possible to return values through the argument-parameter
mechanism. The second restriction is more serious as it affects the ability to modularize a program; nev-
ertheless, it is still possible to write programs, although awkwardly in some cases. The third restriction
makes it impossible to use the state of the request to determine if a request should be accepted. The fourth
Iestriction is very serious as it makes programs that sensibly need this capability complicated or impossible
to implement. Solutions presented to overcome the third and fourth restriction, e.g. entry families, are not
general [28, section 13.2.11).

Our design does not have problems 1, 2 and 4, and problem 3 is handled indirectly by the solution to 4,
which is the ability to receive a request, examine its parameter values, and then postpone it.

BNR Pascal

BNR Pascal [29] provides a task similar to our process construct with type QUEUE, and DEFER and REEN-
TER statements, which are like our uCondition, uWait and uSignal, respectively. Postponing is done with
DEFER(queite-name), which Postpones the current request on the specified quene. Re-acceptance is done
with REENTER(queue-name), which restarts the process at the head of the queue (if any) at the beginning
of the entry routine it initially called, instead of continuing from the point of its suspension. Unfortunately,
this scheme causes code at the beginning of a deferred member to be executed multiple times, which can
result in complex switching logic at the start of entry routines to determine whether or not execution has
resulted from a REENTER, and if so, why it was deferred. Hence, programmers must maintain and test
additional state information which is €ITOI-prone.

SR

SR [19] provides concurrent objects that can have both concurrent member routines and entry members with
Ada style accept statements. The way in which a member is invoked (by a call or send) indicates whether or
not the caller blocks until the called member is finished. (A member declaration can state that it can only
be called or only sent to.) The four combinations of call type and member type give SR remote procedure
call, Mesa-style process emission, Ada-style rendezvous and non-blocking message passing.

Our approach and the SR approach can build identical concurrency abstractions. The main difference is in
the way these abstractions are accessed by a user. SR’s send provides a form of asynchronous communication
(called semisynchronous), while our system would require a user to explicitly buffer requests or create a
courier or future task to perform a call and wait for its completion (and possibly a result). As stated in
the design premises, we do not believe asynchronous communication should be a primitive capability of the

programming language because it is too complex a mechanism to be hidden, and SR’s semisynchronous
communication requires automatic buffering.

23

SR does not provide a mechanism to postpone an accepted request. It does provide facilities to selectively
accept requests using the and clause, which is like the Ada when clause, but does allow access to the arguments
of an entry call.

As an aside, SR also provides a by clause to search a particular queue of pending requests. The by clause
cannot be used to selectively decide to accept an entry, only to choose among available requests after a
decision to accept an entry has been made. Like the and clause, the by clause can make use of arguments of
a call. However, there is a class of problems that cannot be handled using a by clause [30]. These problems
are characterized by a selection criteria that involves information on two or more entry queues. For example,
tasks G and B each call different entry routines of a task and the acceptance criteria involves testing data
from each others arguments, as in, a G task with argument X must wait until a B task with an argument X
appears and vice versa.

Concurrent C++

Our work is similar to that done in Concurrent C++ [20]. However, our design is significantly more extensive
in facilities provided and more general in the ability of a task to service requests in arbitrary order. As
well, our design is a cleaner integration of concurrency into C++ because we did not have the requirement
to simultaneously support concurrency within C [31] using the same mechanism. Concurrent C++ provides
the same constructs for deferring requests and searching queues as SR and, like SR, it cannot postpone an
accepted request.

CONCLUSIONS
During the course of this work we have convinced ourselves of the following points:

o three fundamental execution properties, thread, execution-state, and mutual exclusion, when combined
in different ways lead to many existing programming language abstractions and several new and in-
teresting ones. These execution properties are fundamental to the execution of all programs on von
Neumann machines. This systematic approach to justifying what abstractions to introduce in a pro-
gramming language is extremely important. It shows that programming language design does not have
to be based solely on designer biases, but can be derived from a small set of basic primitives. While we
are not yet convinced that all the abstractions presented by this particular set of elementary properties
will be useful in every day programming, at this time we cannot eliminate any of them. Only concrete
experience with these abstractions will provide the necessary information to make these decisions.

o statically type-safe direct communication is essential for reliable efficient concurrency and it can be
supported by standard argument-parameter communication in routine calls, independent of any other
aspects such as polymorphism/reuse.

o controlling which request is accepted next and servicing requests in arbitrary order can be supported in
a statically type-safe way. This includes the ability to postpone a request after it is accepted, possibly
multiple times during its servicing.

o all mutual exclusion can be made implicit by incorporating it as a special property of calls to certain
kinds of objects. Further, the scope of synchronization can be restricted to within objects by restricting
the scope of condition variables.

Finally, it is possible to embed all of these facilities in the language C++ in a reasonably graceful and efficient
way.

ACKNOWLEDGMENTS

We would like to thank Mike Coffin for reading and commenting on this work.

24

APPENDIX A DISK SCHEDULER

The following example illustrates a fully implemented disk scheduler using pC++. The disk scheduling
algorithm is the elevator algorithm, which services all the requests in one direction and then reverses direction.
A linked list is used to store incoming requests while the disk is busy servicing a particular request. The
nodes of the list are stored on the stack of the calling tasks so that postponing does not consume resources.
The list is maintained in sorted order by cylinder number and there is a pointer which scans backward and
forward through the list. New requests can be added both before and after the scan pointer while the disk is
busy. If new requests are added before the scan pointer in the direction of travel, they are serviced on that
scan.

To prevent deadlocks between the disk and disk scheduler, the disk calls the scheduler to get the next
request that it services. This call does two things: it passes to the scheduler the status of the just completed
disk request, which is then returned from scheduler to disk user, and it returns the information for the next
disk operation. When a user’s request is accepted, the parameter values from the request are copied to
local variables in the scheduler and then the user waits on the condition queue CurrentRequest. Hence, the
scheduler only has a single copy of the request that is currently being serviced by the disk. The cost is the
restarting of the user to retrieve the values from their stack, which is small in a shared memory environment.

typedef char Buffer{50]; // dummy data buffer

const int NoOfCylinders = 100,
enum 10Status { 10_COMPLETE, 10_ERROR };

class IORequest {
public:
int track;
int sector;
Buffer *bufadr;
}; // IORequest

class WaitingRequest : public Sequable { // element for a waiting request list
public:
int track;
uCondition regq;
WaitingRequest(int track) { WaitingRequest::track = track; }
}; // WaitingRequest

declare(Sequence, WaitingRequest); // generic doubly linked list

class Elevator : public Sequence(WaitingRequest) {

/| make doubly linked list into an ordered list
}: // Elevator

uTask DiskScheduler {
Elevator PendingClients:; /[ordered list of client requests
boolean DiskinUse;
WaitingRequest *ActiveClient;
10Status ActiveStatus;
IORequest ActiveRequest:

uCondition CurrentRequest, DiskWaiting;
void main();
publie:
IORequest WorkRequest(10Status)
I0Status DiskRequest(I0Request &);
void Die();
}: // DiskScheduler

25

void DiskScheduler::main() {
Disk disk(*this);

DiskinUse = TRUE;
ActiveClient = NULL;

for (i) {
uAccept(Die) {
break;
} uOr uAccept(WorkRequest) {
} uOr uAccept(DiskRequest) {
} // uAccept
} /] for
ActiveRequest.track = —1;
uSignal DiskWaiting;
} // DiskScheduler::main

10Status DiskScheduler::DiskRequest(IORequest &req) {
WaitingRequest np(req.track);

if (!DiskinUse) {
DiskinUse = TRUE;
ActiveClient = &np;
ActiveRequest = req;
uSignal DiskWaiting;

} else {
PendingClients.insert(&np);
uWait np.req;
ActiveRequest = req;

Y/ i

uWait CurrentRequest;

return(ActiveStatus);

} // DiskScheduler::DiskRequest

|ORequest DiskScheduler::WorkRequest(10Status status) {

if (ActiveClient != NULL) {
ActiveStatus = status;
uSignal CurrentRequest;
ActiveClient = NULL;

Y11if

DiskinUse = FALSE;
if (!PendingClients.uEmpty()) {
DiskinUse = TRUE;
ActiveCiient = PendingClients.remove();
uSignal ActiveClient—>req;
} else {
uWait DiskWaiting;
Y/ i

// start the disk

// request from system

// request from disk
// request from clients

// terminate the disk

// preallocate waiting list element

/] disk free ?

// insert in ascending order by track number

// wait for disk to handle request

// reply to waiting client

// any clients waiting ?

// get work from waiting client

// wait for client to arrive

// the global variable ActiveRequest is assigned the current request

return{ActiveRequest);
} // DiskScheduler::WorkRequest

void DiskScheduler::Die() {
} // DiskScheduler::Die

// return work for disk

APPENDIX B COROUTINE BINARY INSERTION SORT

The coroutine BinarySort inputs positive integer values to be sorted and sorts them using the binary insertion
sort method. For each integer in the set to be sorted, BinarySort is restarted with the integer as the argument.
The end of the set of integers to be sorted is signaled with the value -1. When the coroutine receives a value
of -1, it stops sorting and prepares to return the sorted integers one at a time. To retrieve the sorted integers,
BinarySort is restarted once for each integer in the sorted set. Each restart returns as its result the next
integer of the sorted set. The last value returned by BinarySort is -1, which denotes the end of the sorted
set, and then BinarySort terminates.

If the set of integers contains more than one value, BinarySort sorts them by creating two more instances
of BinarySort, and having each of them sort some of the integers. Each of the two new coroutines may
eventually have to create two more coroutines in turn. The result is a binary tree of coroutines.

uCoroutine BinarySort {
int in, out;
void main();
public:
void input(int val) {
in = val;
uResume;
}i // input
int output() {
uResume;
return out;
}: // input
}: // BinarySort

void BinarySort::main() {

int pivot;
pivot = in; // first value is the pivot value
if (pivot == —1) { // no data values

uSuspend; // acknowledge end of input

out = —1; C

return; // terminate output
Y/ it
BinarySort less, greater; /[create siblings
for (5;){

uSuspend; // get more input

if (in == —1) break;
if (in <= pivot) { // direct value along appropriate branch
less.input(in);
} else {
greater.input(in);

Y/l i
} 1/ for
less.input(—1); // terminate input
greater.input(-1); // terminate input
uSuspend; // acknowledge end of input

// return sorted values

for (5;){

out = less.output(); /] retrieve the smaller values

27

if (out == —1) break; // no more smaller values ?

uSuspend; // return smaller values

} /] for '

out = pivot;

uSuspend; // return the pivot

for () {
out = greater.output(); // retrieve the larger values

if (out == —1) break; // mo more larger values ?

uSuspend; // return larger values

} // for

out = —1;

return; // terminate output

} // BinarySort::main

APPENDIX C uC++ TIMINGS

All timings are run on a Sequent Symmetry S27 (Intel 386, 16Mhz processor), each operation is performed
10,000 times, and both time slicing and runtime checking are turned off. Times are in microseconds.

Uniprocessor
Operation || create/ | create/ | 16 bytes in/ | 16 bytes in/ | resume/ | signal/
delete delete 4 bytes out 4 bytes out | suspend wait
Abstraction block | dynamic | direct call | accepted call cycle cycle
class ~ 1 33 4 N/A N/A N/A
coroutine 55 88 5 N/A 110 N/A
simple-task 167 201 4 N/A N/A N/A
monitor 3 38 15 159 N/A 140
coroutine-monitor 58 93 16 160 111 141
task 168 203 N/A 159 N/A 142
Multiprocessor

Only one processor is used.

Operation || create/ | cxeate/ | 16 bytes in/ | 16 bytes in/ | resume/ | signal/
delete delete 4 bytes out 4 bytes out | suspend wait
Abstraction block | dynamic | direct call | accepted call cycle cycle
class 1 33 4 N/A N/A N/A
coroutine 55 88 4 N/A 110 N/A
simple-task 180 214 5 N/A N/A N/A
monitor 4 39 19 171 N/A 151
coroutine-monitor 60 93 19 170 111 151
task 181 214 N/A 171 N/A 153
REFERENCES

1. M. A. Ellis and B. Stroustrup, The Annotated C++ Reference Manual, Addison Wesley, first edn, 1990.

2. B. Meyer, Object-orienied Software Construction, Prentice Hall International Series in Computer Science.
Prentice-Hall, 1988.

3. Standardiseringskommissionen i Sverige, Databehandling - Programsprik - SIM ULA, 1987, Svensk
Standard SS 63 61 14.

28

1=8

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. C.Schaffert, T. Cooper, B. Bullis, M. Kilian, and C. Wilpot, ‘An Introduction to Trellis/Owl’, SIGPLAN
Notices, 21, (11), 9-16, Nov. 1986.

- P. A. Buhr, G. Ditchfield, and C. R. Zarnke, ‘Adding Concurrency to a Statically Type-Safe Object-
Oriented Programming Language’, SIGPLAN Notices, 24, (4), 18-21, Apr. 1989, Proceedings of the

ACM SIGPLAN Workshop on Object-Based Concurrent Programming, Sept. 26-27, 1988, San Diego,
California, U.S.A.

P. Brinch Hansen, ‘The Programming Language Concurrent Pascal’, IEEE Trans. Softw. Eng., 2,
199-206, June 1975.

. J. G. Mitchell, W. Maybury, and R. Sweet, ‘Mesa Language Manual’, Technical Report CSL-79-3,
Xerox Palo Alto Research Center, Apr. 1979.

. R.C. Holt and J. R. Cordy, ‘The Turing Programming Language’, Commun. ACM, 31, (12), 1410-1423,
Dec. 1988.

- N. Carriero and D. Gelernter, ‘Linda in Context’, Commun. ACM, 32, (4), 444-458, Apr. 1989.

W. M. Gentleman, ‘Message Passing between Sequential Processes: the Reply Primitive and the Ad-
ministrator Concept’, Software-Practice and Ezperience, 11, (5), 435-466, May 1981.

R. Hieb and R. K. Dybvig, ‘Continuations and Concurrency’, SIGPLAN Notices, 25, (3), 128-136,
Mar. 1990, Proceedings of the Second ACM SIGPLAN Symposium on Principles & Practise of Parallel
Programming, March. 14-16, 1990, Seattle, Washington, U.S.A.

B. N. Bershad, E. D. Lazowska, and H. M. Levy, ‘PRESTO: A System for Object-oriented Parallel
Programming’, Software-Practice and Ezperience, 18, (8), 713-732, Aug. 1988.

C. A. R. Hoare, ‘Monitors: An Operating System Structuring Concept’, Commun. ACM, 17, (10),
549-557, Oct. 1974.

C. D. Marlin, Coroutines: A Programming Methodology, a Language Design and an Implementation,

volume 95 of Lecture Notes in Computer Science, Ed. by G. Goos and J. Hartmanis, Springer-Verlag,
1980.

R. E. Strom, D. F. Bacon, A. P. Goldberg, A. Lowry, D. M. Yellin, and S. A. Yemini, ‘Hermes: A

Language for Distributed Computing’, Technical report, IBM T. J. Watson Research Center, Yorktown
Heights, New York, U. S. A., 10598, Oct. 1990.

P. A. Bubr and R. A. Stroobosscher, ‘The uSystem: Providing Light-Weight Concurrency on Shared-

Memory Multiprocessor Computers Running UNIX’, Software-Practice and Ezperience, 20, (9), 929-963,
Sept. 1990.

United States Department of Defense, The Programming Language Ada: Reference Manual, ANSI /MIL-
STD-1815A-1983 edn, Feb. 1983, Published by Springer-Verlag.

A. N. Habermann and I. R. Nassi, ‘Efficient Implementation of Ada Tasks’, Technical Report CMU-
CS-80-103, Carnegie—Mellon‘ University, 1980.

G.R. Andrews, R. A. Olsson, M. Coffin, I. Elshoff, K. Nilsen, T. Purdin, and G. Townsend, ‘An Overview
of the SR Language and Implementation’, ACM Trans. Prog. Lang. Syst., 10, (1), 51-86, Jan. 1988.

N. H. Gehani and W. D. Roome, ‘Concurrent C++: Concurrent Programming with Class(es)’, Software-
Practice and Ezperience, 18, (12), 1157-1177, Dec. 1988.

A. Rizk and F. Halsall, ‘Design and Implementation of a C-based Language for Distributed Real-time
Systems’, SIGPLAN Notices, 22, (6), 83-100, June 1987.

29

22

23.

24.

25.

26.

27.

28.

29.

30.

31

J. E. Shopiro, ‘Extending the C++ Task System for Real-Time Control’, In Proceedings and Additional
Papers C++ Workshop, pages 77-94, Santa Fe, New Mexico, U.S.A, Nov. 1987. USENIX Association.

P. Labreche, ‘Interactors: A Real-Time Executive with Multiparty Interactions in C++’, SIGPLAN
Notices, 25, (4), 20-32, Apr. 1990.

T. W. Doeppner and A. J. Gebele, ‘C++ on a Parallel Machine’, In Proceedings and Additional Papers
C++ Workshop, pages 94-107, Santa Fe, New Mexico, U.S.A, Nov. 1987. USENIX Association.

B. Ciesielski, A. Kreczmar, M. Lao, A. Litwiniuk, T. Przytycka, A. Salwicki, J. Warpechowska,
M. Warpechowski, A. Szalas, and D. Szczepanska-Wasersztrum, ‘Report on the Programming Lan-
guage LOGLAN’88’, Technical report, Institute of Informatics, University of Warsaw, Pkin 8th Floor,
00-901 Warsaw, Poland, Dec. 1988.

B. B. Kristensen, O. L. Madsen, B. Mgller-Pedersen, and K. Nygaard, ‘The BETA Programming
Language’, In B. Shriver and P. Wegner, editors, Research Directions in Object-Oriented Programming,
Computer Systems Series, pages 7-48. MIT Press, 1987.

M. D. Tiemann, ‘Solving the RPC problem in GNU C++’, In Proceedings of the USENIX C++ Conference,
pages 343-361, Denver, Colorado, U.S.A, Oct. 1988. USENIX Association.

J. D. Ichbiah, J. G. P. Barnes, R. J. Firth, and M. Woodger, Rational for the Design of the ADA
Programming Language, Under Secretary of Defense, Research and Engineering, Ada Joint Program
Office, OUSDRE(R&AT), The Pentagon, Washington, D. C., 20301, U. S. A., 1986.

R. Kamel and N. Gammage, ‘Experience with Rendezvous’, In Proceedings of the 1988 International
Conference on Computer Languages, pages 143-149, Oct. 1988.

C. L. A. Clatke, ‘Language and Compiler Support for Synchronous Message Passing Architectures’,
Master’s thesis, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1, 1990.

N. H. Gehani and W. D. Roome, The Concurreni C Programming Language, Silicon Press, Summit,
NJ, 1989.

30

