X3J16/91-0132
-1- WG21/N006S

What Ever Happened to Generalized Overriding?

[Ldutor's prologue] When multiple inheritance is used (o create a new class, there is a possibility that theie
will be collisions, that is, names used in both of the original classes, bul not having the same meaning. In
the case of virtual function name collisions handling, this problem proved to be difficult. Al the July 1990
meeling, Bjarne Stroustrup brought before the committce a proposal for the gencralized overriding
cxtension (X3J16/90-0098) which addressed this problem.

Following are two articles on generalized overriding, the first was written by William M. Miller shorth
after the July meeting and the second written by Andrew Koenig after the issue was finally resolved.

Willilam M. Miller

The original problem to which this proposal was addressed occurs when a class is multiply dernived from
(wo or more base classes, each of which defines a virtual function with the same name and argument
signature. The existing G+ definition accepts this situation and provides a default which is the correct
resolution in most cases: the derived class can provide a definition which overrides the corresponding
virtual functions from all base classes. That this is not appropriate in some cases can be seen in the
following example, created by Bjarne Stroustrup:

struct shape {(
virtual void draw(); //display the shape
/.

}/.

struct cowboy{
virtual void draw(); // shoot someone

VA
}’.

struct animated_cowboy: shape, cowboy |
void draw(); // shoot or ‘display?
/7.

¥

animated cowboy player;
shape* shape_ ptr=s¢player:;
cowboy* cowboy ptr=¢player;

If a function invokes shape_ptr->draw (), presumably the intent is to put an image on the screcn, not
to cause the cowboy o shoot someone!

The generalized overriding proposal allows the derived class to supply separate virtual overndes for the
virtual functions inherited from various base classes by substituting a different name for each; the new
name will be used in the derived class and all classes derived from it, and the name that would otherwise
have been inherited will be undefined in those classes. For instance, the animated_cowboy class could have
been defined as follows:

struct animated cowboy: shape, cowboy {(
virtual void render() = shape::draw;
virtual void draw() = cowboy::draw;
VI

)

Acall like shape_ptr->draw () will be directed to animated_cowboy::rencer ()

Note also that the new name can be the same as the inherited name as in the overnde speciication o
cowboy: :draw. This fact is useful in avoiding potential bugs that otherwise ship past the programme:
Consider the following example:

struct Bf{
virtual void mf (unsigned int);
/...

}:

struct D:B{
void mf (int);
/7 ...

}z

It is likely that D: :mf (int) was intended to override B:mf (unsigned int). This situation can
easily arise when B is part of a library and a new version of the library is issued, perhaps changing somc of
the arguments w virtual functions. While it is possible for a compiler 10 wam about such a case (currcnt
versions of cfront do so), not all compilers will issue a warning, and the construction is legal G++.

The generalized overriding syntax would enable programmers concened about such potential errors 10
force the compiler to issue an error diagnostic in case of mismatch. For instance, a careful programmer
might code the derived class from the last example as:

struct D:Bf{
virtual void mf(int) = B::mf;
/...

};

Since there is no B: :mf (int) to be overridden, the declaration is in emor and a bug is detected at
compile time rather than upon execution.

A third use of generalized overriding arises less frequently than the name collision described above and is
less difficult to handle via programming, but it is nonetheless reasonable to include the capability in the
proposal: sometimes it is desirable to override separate virtual functions in the base classes with a single
virtwal function in the derived class. The proposal includes the following syntax to allow for this
possibility:
struct plotter(
virtual void print (const char*);
/7 ...
b

struct screenf{
virtual void display(const char?*);
// ...

b

struct screen_plotter:plotter, screen{
virtual void output (const char*)={
plotter::print,
screen: :display
)z

b

If the merged derived class virtual function is w0 be pure, a 0 can be included in the list of base class virtual

functions, again underlining the similarity between the syntax for generalized overriding and that of pure
virtual functions.

Reprinted from C++ Journal Fall 1990

(Editor's Note] The apparent disagreement between Miller above and Koenig in the following on whether
an overridden name may be used is just one of the complex issues that surfaced in thc cmail discussions
after Miller’s article was writien.

Andrew Koenig

This proposal has a lot going for it: it solves a real problem; it is a neat extension of syntax that already
exists (the syntax for pure virtual functions); it is easy to understand; and it can be implemented efficiendy.
Indeed, when the proposal was made at the July meeting in Seattle, everyone liked it.

As it happened, the proposal appeared too late for action at that meeting. The final version of this proposal
was finished about two days before the meeting, so it would take unanimous consent to vote on it. [The
Two-Week Rule was invoked, see Introduction 1.3 Philosophy and Goals] One person did disagree, saying
that the folks back home should really have a chance to look at the proposal and comment on it. That
blocked any possibility of voting on the proposal in July.

Several people were were annoyed at the time, but the sequel proved that the delay was well justificd. A
number of questions had been raised while forming the proposal, but it tumed out that there were still other
questions, some of which were far from easy to answer. One question was whether or not overriding should
apply to data members or non-virtual functions. It turns out to be quite easy to cope with those two cascs
without special language support. For non-virtual functions the technique of writing “forwarding functions”
works fine. For data members, one can also use an inline forwarding function in the derived class, if
necessary, but this is often unnecessary because it is usually unwise to have public data members anyway.
For these reasons, it was proposed that overriding should be allowed only for virtual functions.

The next question was more subtle: does overriding a function remove the overridden name? For example,
should the animated_cowboy struct in the last example be considered to have a draw member at all?
What if draw were overridden from only a single base class? For example—should this be legal?

struct animated cowboy: public shape, public cowboy (
/7
public:
void display() = shape::draw;
void draw() (//... }:
)

The debate went on for quite a while on this question with no conclusive answer. The final consensus was
that it was slightly simpler to define if this was made illegal: that is, once animated_cowboy: :drawis
ambiguous, it should not be possible to use overriding to remove that ambiguity. Instead, it should bc
necessary to choose new names for the draw functions inherited from both the base classes.

Shordy before the November meeting. Doug Mcllroy suggested a different solution to the original problem:

struct shape (
virtual void draw(); //display the shape
/...

)

struct cowboy(
virtual void draw(); // shoot someone
/7.

b

struct shape derived: shape {
virtual void render() { shape::draw();)
virtual void draw() { render(); }
VN

};

struct cowboy_derived: cowboy (
virtual void shoot () { cowboy: :draw(); }
virtual void draw() { shoot ();}
/...

}:

struct animated_cowboy: shape_derived, cowboy_derived {
// override render() or shoot() if desired
// do NOT override draw()
/7. ..

};

animated cowboy* cb = new animated_cowboy;
shape* sp = cb;

cowboy* cp = cb;

sp->draw(); // calls animated_cowboy: :render():
cp->draw(); // calls animated_cowboy: : shoot ();

For each of our base classes, we have a new class whose sole purpose is to rename the virtual members f{or
which we wish to avoid name clashes. It does this by

+ defining a function with a new name that just calls the old function from the base class and

» re-defining the function with the old name to forward calls to the new function.

Once people understood Doug Mcliroy’s solution, support for the new feature evaporated. It is true that this
technique does result in an extra level of virtual function calls, but it should be possible for a compiler to
recognize this technique and optimize those calls away. It is probably less work to do that than 10
implement overriding anyway. Moreover, the advantage of Doug Mcllroy's technique is that people can
begin using it immediately without waiting for the feature to materialize in their implementations.

The proposal was tabled at the November meeting.

(Epilogue] The Two-Week Rule and the extensive discussions on the email reflectors saved the commitee
from the embarrassment of approving an unnecessary language feature.

