Standard Exceptions
X3J16/91-0116
WG21/0049

Jerry Schwarz
jss@lucid.com

Sept. 20, 1991

1 DMotivation

Ever since X3J16 agreed to incorporate exception handling there has been dis-
cussion of whether there should be classes and functions in the standard to
support general exception handling. This paper says how a believe this ques-
tion should be addressed.

I propose that a new header file named <xmsg> be added to the standard and
that it declare the classes and functions proposed here.

My goals in formulating this proposal (in priority order) are
¢ Programs that simply want to print an error message and exit when an

exception is thrown should be able to do so easily with some chance that
the error message will give a meaningful indication of the error.

o User libraries should be able to extend the standard mechanisms so that
(a) is also readily accomplished with them.

® A program that wants to determine with more precision the kind of error
that occured and recover appropriately should be able to do so.

e The burden imposed on the rest of the library in order to use the mecha-
nism should be minimal.

‘e Implementation of the mechanism should be easy.

What I have in mind for is that the following should be a plausible way to wrap
C++ code that otherwise ignores exceptions.

int main(int arge, char** argv)

{
try {
real_main(argc,argv);
return 0 ;
} cateh (xmsggm) {
cerr << "exiting because of exception: "
<< m.why << endl ;
return 1 ;
}
b4

If something as simple as the above is to work, then all exceptions thrown by
the standard library should be derived from xmsg and xmsg should contain an
insertable value which I will assume is a string. I don’t think there is much
more that can be meaningfully included in xmsg. Some people have proposed
an integer error code (analogous to errno) be part of xmsg. But I don’t agree.
vm.why should already contain in human readable form whatever information
would be provided by an integer error code. Additional discrimination required
by the program should be accomplished by catch clauses on classes derived from
xmsg.

2 xmsg

The goals of the previous section lead to a class

class xmsg {
public:
xmsg(string msg) ;
string why() ;
void raise() throw(xmsg);
}

The absence of a default constructor encourages the rule that every xmsg should
contain a meaningful message.
x.why() is the string used to construct x. That is xmsg(s).why()==s.

raise adds no functionality but is included as a convenient hook for debugging.
It is defined by

void xmsg::raise() { throw *this ; }

Details of exceptions to be raised by particular classes will generally be contained
in the descriptions of those classes. For example, a class ios::failure has

already been proposed to deal with exceptions in the stream classes. This should
be derived from xmsg.

3 Allocation

Probably the most common “mistake” made in C++ programs is to assume
that evaluation of a new expression does not result in a null pointer. Checks
for this condition quickly leads to unreadable code and serve no useful purpose.
Because there is usually no sensible recovery. The easiest way to “fix” such
programs is to change the behavior of operator new so that it never returns a
null pointer. When the system runs out of space a new expression should throw
an exception. When I proposed this in Lund and the discussion was generally
favorable although there was some hesitation.

Worries concerned situations in which some more space can be made availble
to operator new. I believe such recovery actions should be done by a function
called from operator new rather than by the caller. At Lund I thought that
the RM specified set_new_ handler as a way to specify the recovery actions. I
have since discovered that set_new handler is a cfront feature not mentioned

in the RM.

The current static mechanism for replacing the global operator new is unsatis-
factory. Its major problem is that since the choice is made statically at linktime,
a library cannot reasonably define its own. Because it might conflict with the
operator new required by another library or the library user. I believe a dy-
namic mechanism for replacing operator new is required. But that is beyond
the scope of this document.

All the RM(5.3.3/10) currently says is

Any form of operator new() may indicate failure to allocate storage
by returning 0(the null pointer). In this case no initialization is done
and the value of the [new] expression is 0.

I propose to replace this paragraph by

Any form of operator new() may indicate failure to allocate storage

by throwing an exception. If it returns 0 the effect is implementation
defined.

But I have never written any code that relies on the current behavior. People
who have such code might desire that this paragraph not be changed.

In any event I assume that the behavior of the default operator new will be to
throw an exception. I propose to have a class

class xalloc: public xmsg {
xalloc(string msg, size_t size) ;
size_t requested() ;
void raise() ;

};

The base xmsg would be initialized by some combination of msg and size. I
don’t think the standard should prescribe the form of the message but something
along the lines of

msg + ': Insufficient space to allocate "
+ itos(size) + " bytes"

might be plausible.

Since the exception is going to be thrown when the system runs out of space the
question arises as to where to find the space to construct the xmsg and (more
importantly) any space required to throw an exception. The answer is that the
allocator must hold back sufficient space to enable successful construction and
throwing the exception. The easiest way to hold back the space for the xalloc
is to allocate it as a static object. If that is done, the message can’t be made
to depend on the amound of space requested. Which is why I don’t want to
prescribe the contents of the message.

In general operator new has to be careful that any operations it does don’t end
up in recursive calls. This may be particularly delicate if the normal exception
mechanism mechanism would normally use operator new to allocate space. To
cope with this I override pvxmsg::raise and require that pvxalloc::raise may be
called from a global operator new and will throw itself.

Suppose you want to give a more specific error when the program runs out of
space while trying to allocate for class Foo. You might write

void* Foo::operator new(size_t size)
{
try {
return ::operator new(size) ;
} catch (xallocg x) {
xalloc("in Foo: " + x.msg, x.size).raise()

Unfortunately the string concatenation is likely to result in a recursive call to
operator new. The general technique of catching an exception and adding
information to the message is a good one, but it may be advisable to avoid it
with xmsg.

4 Miscellaneous Conditions
Another class I propose

class xassert : public xmsg {
assert(string msg, string file, int line);
const string file ;
const int line ;

A form of the assert macro should be available that throws an xassert when
its condition was false rather than printing a message and calling abort, as
the C standard requires. I propose this simply replace the definiton of assert
contained in the C library.

As the RM stands now there are a large number of undefined actions that can
occur at runtime. I have in mind things like dereferencing a NULL pointer. In
some environments these are detectable and in such environments a reasonable
action would be to throw an xassert (or other xmsg). I'd like to encourage
implementations to do this without mandating it for specific runtime errors.
Perhaps we should put something in the library like

template <class T> TZ xref(T* p)
{

assert(!p) ;

Teturn *p ;

One undefined situation where I I believe it is reasonable to require implemen-
tations to throw an xmsg is failling off the bottom of a function that is supposed
to return a value. There is no runtime cost (because the program isn’t supposed
to do this) and the space cost would seem to be minimal.

A related issue is errno. I’'m not sure what to do about it. I don’t want to
mandate massive changes in the C library, but on the other hand the current sit-
uation is so unpleasant that I don’t like leaving it alone either. Any suggestions
would be appreciated.

5 Name space

One problem with the proposals contained in this paper are that they constitute
a moderate amount of name space pollution. So it might better to do something
like like

class stdx

{
classmsg { ... } ;
class alloc : publicmsg { ... } ;
class assert : public msg { ... } ;
}

