Accredited Standards Committee® Doc No: X3J16/91-0060
X3, INFORMATION PROCESSING SYSTEMS Date: July 8,1991
: ) Project: Programming Language C++
. Ref Doc: X3J16/91-0059
: Reply to: Jonathan E. Shopiro
' shopiro@research.att.com

Report on Changes in the June ‘91 Working Paper

Introduction

Changes between X3J16/91-0059, the June 1991 Working Paper, and the previous version,
X3116/91-0009, are shown by change bars in the draft. The slides from my talk on the new draft,
given in Lund, Sweden, are attached to this report.

The most important changes in this revision of the draft are the sections on the Ci++ memory
model and the definitions of terms in Chapter 1. The C++ memory model is essentially the same
as that of C, but there is no single clear definition of the C memory model in the C Standard.
Instead, it is defined primarily by implication.

Memory Model and Type

‘There are two notions of type in both C and C++. The first is the type of an object, which depends
on the language construct (declaration, new-expression, etc.) that caused the object to be created.
The second is the type of an expression used to access an object or a location in memory. Of
course the type of the expression used to access an object is usually the same as the type of the
object and in that case there are no semantic problems. However many questions about the
freedom of implementors can be asked as questions about what must or may happen if an object
of type A is accessed by an expression of type B. Thus a clear memory model helps the user
know what he can rely on and lets the implementor know what he must do.

A perhaps questionable issue is whether the fundamental unit of storage in the model is the
byte or character. The C Standard 3.1.2.5, Types, discusses types without mentioning bytes.
However, C2.2.1.2, Multibyte characters, makes it clear that characters are stored in bytes.

A related issue is addresses and pointers. There is no direct representation for the address of
abyte in C or C++, but C3.5.2.1, Structure and Union Specifiers, discusses the addresses of
structure members as byte addresses. C1.6 says that an object occupies a contiguous sequence of
bytes. The phrase “contiguous sequence of bytes™ is not defined but the simplest way to explain it
is that it is a set of bytes, each of which has an address and the addresses of the bytes in the
sequence are linearly ordered.

A pointer is not the same as a byte address because it has a type. However, a pointer to void
is essentially a byte address because a pointer of any type can be converted to pointer to void and
back without change. Also the definition of alignment (C1.6) indicates that a byte address is
essentially an integer.

® Operating under the procedures of the American National Standards Institute (ANSI)
Standards Secretariat: CBEMA, 311 First St. NW, Suite 500, Washington, DC 20001



I think that what all this implies is that the byte address of a C object is the address of the J
first byte of the object. The Standard would be a lot simpler if it came out and said so. For C++
the same thing could be true for complete objects, that is, objects which are not sub-objects of
some other object.

ki

Definitions

The definition of undefined is intended to show that the Standard defines the C++ language and
specifies what conforming C++ processors must do. Certain operations in the C++ language are
errors and for some of those, the Standard does not specify what the processor must do. Those
cases are called “undefined” and the processor may do anything, as far as the Standard is
concemned.

Similarly, the definitions of unspecified, implementation-defined, and locale-specific are
intended to constrain the behavior of the processor a little more tightly than in the C Standard.

J





