U-06-|7
Initialization and Destruction of Static Objects
X3J16/91-0053

- — John Wilkinson, jfw@sgi.com
Silicon Graphics

1. Initialization of nonlocal static objects
L1 What should the standard say?
Tbeuaretwopﬁncipleswhichitmhighlydesimblemobsene:

(l)Noubealnaﬁcobjaasdeﬁnedinamﬂaﬁonunhmnstbeiniﬁaﬁzedinlhecuﬂuthatmeirdeﬁnizims
appear in the translation unit.

(2) A nonlocal static object must be initialized before its first use.

The carrent draft does not specify (1). It says that constructors for nonlocal static objects are called in the
order they occur in a file (Section 12.6.1), but says nothing about other initializations. This needs to be
corrected. :

The draft goes farther than (2):

(3) The nonlocal static objects in a translation unit must be initialized before the first use of any function or
object defined in that translation unit (Section 3.4).

But this will not do, as the following example shows:
intx = f() // first use of f()

lftheuseoffointhciniﬁalizaﬁonofxisitsﬁrstuse,thenG)saysdntxmustbeiniﬁaliwdbeforeitis

To avoid this difficulty, Jonathan suggested changing the wording of (3) to something like

(3a) The nonlocal static objects in a translation unit must be initialized before the first use of any function
or object defined in that translation unit, in a thread starting from main().

This however abandons (2) entirely. It allows (though it does not require) an implementation to initialize

all nonlocal static objects at startup, without regard to ordering between translation units,

o me—— —

If we want to retain the apparent intent of (3), I suggest the wording

(3b) The nonlocal static objects in a translation unit must be initialized before any object or function
deﬁnedinthatnnitisusedbymyotherﬂanslaﬁbnmﬁt;ﬂxenuﬂocalmﬁcobjectsinthetnnslaﬁonunit
containing main() must be initialized before control enters main().

1 suggest then that the draft should include language equivalent to (1), and language equivalent to either
(3a), or (3b). (3a) acknowledges the status quo and abandons the attempt to enforce initialization order

between translation units. (3b) expresses the apparent intent of the current draft. In the next section, I
discuss possible implementations of (3b).

X3J16/91-0053

1.2 Implementation

If we are going to put something like (3b) into the standard, we should make sure that the implementation
cost is not too great. Even though something similar is in the draft now, everybody has really been geiting
along without it; in this respect it is like an extension. Nobody is going to want it if, for example, every
translation unit in a program has to be recompiled whenever any one of them changes. This means that the
necessary information must be present in the compiled code (object files or libraries: I note in passing that
these terms are not defined in the draft standard). Again, if too much stuff has to be added to the object
files to support this feature, or if the runtime cost is too great, then it probably isn't worth it. I will look at
two possible approaches, which are intended to work with information that can reasonably be expected to
be available in existing object files. The first approach, static determination of initialization order,
unfortunately doesn’t quite work. The second seems entirely workable, but entails a slight runtime cost.

I make the following assumptions:

(1) The translator generates a single static initialization function for each translation unit which defines one
or more nonlocal static objects requiring initialization, and this initialization function can be recognized: it
might, for example, be called __sti__<something>.

(2) We can determine for a given function what symbols it refers to wﬁbh are not defined in the translation
unit where the function is defined.

(3) We can determine for each symbol what translation unit it is defined in.

All these assumptions should be valid, for example, for the output of a UNIX relocatable load.
1.2.1 Static determination of initialization order

We build a dependency graph among the functions in the program as follows:
If f calls g, then f depends on g.

I f refers to a symbol defined in another translation unit, then f depends on the static initialization function
" for that translation unit.

We ignore the functions that cannot be reached by a path from main() or from the static initializer function
for the translation unit containing main(). If any static initialization function belongs to a cycle, complain.
Otherwise take any initialization order satisfying the condition that if sti2 depends on stil, then stil is
called before sti2.

Fmally.wepatchﬂwexecumblesodmmcmﬁcinhialiuﬁonfmmmaﬂedummmhdwm
determined.)

: Unfortunately this doesn’t quite work, as illustrated by the following example:

X3J16/91-0053

main.C: XC Y.C:

extern X x1; extem Y yl;- Y:Y((n=5;)
Yyl
virtual int foo();

,

struct D: B (
virtual int foo();

int D::foo()
{return y1.n;}

struct X {
intn;
XO0:

)

X:X0
{bp=new D;
n = bp->fo0();}

X x1;

Here the dependency of X::X(on D::foo() is hidden by the virtual function mechanism, so the need to
initialize y1 before x1 is undetected..

122 Dynamic initialization
For each translation unit with a static initialization function, build a table with one entry for each externally
visible symbol defined in that translation unit. Initialize the table with zeros (or any invalid addresses).

For each translation unit, for every reference to a symbol defined in another unit with a static initialization
function, replace that reference by an indirect reference through the appropriate address table.

Build & fault-handler to caich the invalid references. The handler should call the appropriate static
initialization function and initialize the appropriate table (the table address should be available). The
handler should be set up so that the address lookup is retried on retum from the handler.

_Ihelievelhisshouldwork.nuhccostofaeonpleofinsmcﬁonsforevayexwmaltefumtonsy:hbol

defined in a translation unit with nonlocal static objects requiring initialization. This cost could be trimmed
somewhat: the translation unit containing main(), for example, has to be initialized at startup anyway, $o
references into it would not need to become indirect.

2. Destruction of static objects

Destructors for static objects are discussed in the following passages:
In Section 3.4:
*Destructors...for initialized static objects are called when returning from main() and when calling exit).

3

X3J16/91-0053

Destruction is done in reverse order of initialization..If atexit() is to be called, objects initialized before an
atexit() call may not be destroyed until after the function specified in the atexit() call has been called.”

In Section 6.7:

*The destructor [for a local static object] must be called either immediately before or as part of the calls
to the atexit() functions. Exactly when is undefined.”
This is confusing in a number of ways:
(1) 3.4 says that a local static object must be destroyed after the calls to the atexit() functions; 6.7 says the
opposite. _

(2) 3.4 says that local static objects are destroyed in reverse order of initialization; 6.7 implies this order is
undefined.

'. (3) If a function with a local static object with a destructor is registered with atexit(), the rule in 6.7 seems

o

-

to have problems.

(4) If there is no atexit() call, what happens with local static objects? Presumably they should still get

- destroyed, but 6.7 doesn’t say that.

(5) If 3.4 is supposed to apply just to nonlocal static objects, then 3.4 and 6.7 together say that local static
objects should get destroyed before nonlocal static objects if there is an atexit() call. It seems reasonable
that this should be the case anyway, in spite of the objection in (3).

(6) If 3.4 applies to local static objects, it seems to say more than is needed; I see no reason why local static

" objects in different scopes should have to be destroyed in reverse order of initialization.

- (7)1 have trouble with "objects initialized before an atexit() call..." What difference does it make when an

object is initialized in relation to when atexit() is called?

I would suggest rewording these sections with the following effect:

(1) All destructors for static objects should be called after the functions registered with atexit().

(2) Destructors for nonlocal static objects should be called in reverse order of initialization.

(3) Destructors for iocd static objects should be called before destructors for nonlocal static objects.

Destructors for static objects local to a given function should be called in reverse order of initialization.
The precise timing of the calls is otherwise undefined.

N

