
ISO/IEC JTC1 SC22 WG14 WG14/N1388

Date: 2009-06-01

Reference number of document:ISO/IEC WDTR 24731-2

Committee identification: ISO/IEC JTC1 SC22 WG14

SC22 Secretariat: ANSI

Information Technology —

Programming languages, their environments and system software interfaces —

Extensions to the C Library, —

Part II: Dynamic Allocation Functions

Warning

This document is an ISO/IEC draft Technical Report. It is not an ISO/IEC International Technical Report. It is
distributed for review and comment. It is subject to change without notice and shall not be referred to as an
International Technical Report or International Standard.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of
which they are aware and to provide supporting documentation.

Document type: Technical Report Type 2
Document subtype: n/a
Document stage: (5) Publication Stage
Document language: E

WG14/N1388 CommitteeDraft — June 01, 2009 ii

Contents

Foreword ... iii

Introduction .. iv

1. Scope .. 1

2. References ... 1
2.1 Normative references .. 1
2.2 Relationship to other standards ... 2

3. Terms, definitions, and symbols .. 2

4. Predefined macro names ... 3

5. Library ... 4
5.1 Introduction .. 4

5.1.1 Standard headers ... 4
5.1.2 Reserved identifiers ... 4
5.1.3 Use of errno ... 5

5.2 Input/output <stdio.h> .. 6
5.2.1 Streams .. 6
5.2.2 Operations on buffers .. 6
5.2.3 Formatted input/output functions ... 11
5.2.4 Character input/output functions .. 13

5.3 String handling <string.h> .. 15
5.3.1 Copying functions .. 15

5.4 Extended multibyte and wide character utilities <wchar.h> 17
5.4.1 Operations on buffers .. 17
5.4.2 Formatted wide character input/output functions 18
5.4.3 Wide character input/output functions 19

Annex A (informative) Comparison Of Library Methods 22
A.5 Introduction .. 22

Index .. 26

iii CommitteeDraft — June 01, 2009 WG14/N1388

Foreword

1 ISO (the International Organization for Standardization) and IEC (the
International Electrotechnical Commission) form the specialized system for
worldwide standardization. National bodies that are member of ISO or IEC
participate in the development of International Standards through technical
committees established by the respective organization to deal with particular
fields of technical activity. ISO and IEC technical committees collaborate in fields
of mutual interest. Other international organizations, governmental and non-
governmental, in liaison with ISO and IEC, also take part in the work.

2 Technical Reports are drafted in accordance with the rules given in the ISO/IEC
Directives, Part 3. In the field of information technology, ISO and IEC have
established a joint technical committee, ISO/IEC JTC 1. Draft Technical Reports
adopted by the joint technical committee are circulated to national bodies for
voting. Publication as a Technical Report requires approval by at least 75% of the
member bodies casting a vote.

3 The main task of technical committees is to prepare International Standards, but
in exceptional circumstances a technical committee may propose the publication
of a Technical Report of one of the following types:

— type 1, when the required support cannot be obtained for the publication of
an International Standard, despite repeated efforts;

— type 2, when the subject is still under technical development or where for
any other reason there is the future but not immediate possibility of an
agreement on an International Standard;

— type 3, when a technical committee has collected data of a different kind
from that which is normally published as an International Standard ("state
of the art", for example).

4 Technical Reports of types 1 and 2 are subject to review within three years of
publication, to decide whether they can be transformed into International
Standards. Technical Reports of type 3 do not necessarily have to be reviewed
until the data they provide are considered to be no longer valid or useful.

5 ISO/IEC TR 24731, which is a Technical Report of type 2, was prepared by Joint
Technical Committee ISO/IEC JTC 1, Information technology, Subcommittee
SC 22, Programming languages, their environments and system software interfaces.

WG14/N1388 CommitteeDraft — June 01, 2009 iv

Introduction

1 Traditionally, the C Library has contained many functions that trust the
programmer to provide output character arrays big enough to hold the result
being produced. Not only do these functions not check that the arrays are big
enough, they frequently lack the information needed to perform such checks.
While it is possible to write safe, robust, and error-free code using the existing
library, the library tends to promote programming styles that lead to mysterious
failures if a result is too big for the provided array.

2 Perhaps the most common programming style is to declare character arrays large
enough to handle most practical cases. However, if the program encounters
strings too large for it to process, data is written past the end of arrays
overwriting other variables in the program. The program never gets any
indication that a problem exists, and so never has a chance to recover or to fail
gracefully.

3 Worse, this style of programming has compromised the security of computers
and networks. Daemons are given carefully prepared data that overflows
buffers and tricks the daemons into granting access that should be denied.

4 If the programmer writes run time checks to verify lengths before calling library
functions, then those run time checks frequently duplicate work done inside the
library functions, which discover string lengths as a side effect of doing their job.

5 This technical report provides alternative functions for the C library that promote
safer, more secure programming. Part one provides simple replacement
functions for the library functions of ISO/IEC 9899:1999 that provide bounds
checking. Those function can be used as simple replacements for the original
library functions in legacy code. This part of this technical report presents
replacements for many of these functions that use dynamically allocated memory
to ensure that buffer overflow does not occur. Since the use of such functions
requires adding additional calls to free the buffers later, these functions are better
suited to new developments than to retrofitting old code.

6 In general, the functions described in this part of this Technical Report provide
much greater assurance that buffer overflow problems will not occur, since
buffers are always automatically sized to hold the data required. With the
bounds checking functions, if an invalid size was passed to one of the functions,
it could still sufffer from buffer overflow problems, while appearing to have
addressed such issues. Applications that use dynamic memory allocation might,
however, suffer from denial of service attacks where data is presented until
memory is exhausted.

7 These functions are drawn from existing implementations that have widespread
usage. Many of these functions are included in ISO/IEC 9945:2003 (POSIX) and
as such are aligned with that standard.

1 Committee Draft — June 01, 2009 WG14/N1388

1. Scope

1 This Technical Report specifies a series of extensions of the programming
language C, specified by International Standard ISO/IEC 9899:1999.

2 International Standard ISO/IEC 9899:1999 provides important context and
specification for this Technical Report. Clause 4 of this Technical Report should
be read as if it were merged into Subclause 6.10.8 of ISO/IEC 9899:1999. Clause 5
of this Technical Report should be read as if it were merged into the parallel
structure of named Subclauses of Clause 7 of ISO/IEC 9899:1999.

2. References

2.1 Normative references

1 The following normative documents contain provisions which, through reference
in this text, constitute provisions of this Technical Report. For dated references,
subsequent amendments to, or revisions of, any of these publications do not
apply. However, parties to agreements based on this Technical Report are
encouraged to investigate the possibility of applying the most recent editions of
the normative documents indicated below. For undated references, the latest
edition of the normative document referred to applies. Members of ISO and IEC
maintain registers of currently valid International Standards.

2 ISO/IEC 9899:1999, Information technology — Programming languages, their
environments and system software interfaces — Programming Language C.

3 ISO/IEC 9899:1999/Cor 1:2001, Information technology — Programming languages,
their environments and system software interfaces — Programming Language C —
Technical Corrigendum 1 .

4 ISO/IEC 9899:1999/Cor 2:2004, Information technology — Programming languages,
their environments and system software interfaces — Programming Language C —
Technical Corrigendum 2 .

5 ISO/IEC 9945:2003 (including Technical Corrigendum 1), Information technology
— Programming languages, their environments and system software interfaces —
Portable Operating System Interface (POSIX®).

6 ISO/IEC 23360:2006, Information technology — Programming languages, their
environments and system software interfaces — Linux Standard Base.

7 ISO/IEC 646, Information technology — ISO 7-bit coded character set for information
interchange.

WG14/N1388 CommitteeDraft — June 01, 2009 2

8 ISO/IEC 2382−1:1993, Information technology — Vocabulary — Part 1: Fundamental
terms.

9 ISO/IEC 10646 (all parts), Information technology — Universal Multiple-Octet Coded
Character Set (UCS).

2.2 Relationship to other standards

1 Many of the interfaces in this specification are derived from interfaces specified
in other ISO/IEC specifications, and in particular:

— ISO/IEC 9945:2003 (including Technical Corrigendum 1), Information
technology — Programming languages, their environments and system software
interfaces — Portable Operating System Interface (POSIX®).

— ISO/IEC IS 23360:2006, Information technology — Programming languages, their
environments and system software interfaces — Linux Standard Base.

2 Where an interface is described as being derived from either of these standards,
the functionality described on this reference page is intended to be aligned with
that standard. Any conflict between the requirements described here and the
referenced standard is unintentional. This technical report defers to the
underlying standard.

3. Terms, definitions, and symbols

1 Terms are defined where they appear in italic type. Terms explicitly defined in
this Technical Report are not to be presumed to refer implicitly to similar terms
defined elsewhere. Terms not defined in this Technical Report are to be
interpreted according to ISO/IEC 9899:1999 and ISO/IEC 9945-1:2001.

3 Committee Draft — June 01, 2009 WG14/N1388

4. Predefined macro names

1 The following macro name is conditionally defined by the implementation:

__STDC_ALLOC_LIB_ _ The integer constant 200nnnL, intended to indicate
conformance to this technical report.1)

1) The intention is that this will remain an integer constant of typelong int that is increased with

each revision of this technical report.

WG14/N1388 CommitteeDraft — June 01, 2009 4

5. Library

5.1 Introduction

5.1.1 Standard headers

1 The functions, macros, and types defined in Clause 5 and its subclauses are not
defined by their respective headers if __STDC_WANT_LIB_EXT2_ _ is defined as
a macro which expands to the integer constant 0 or is not defined as a macro at
the point in the source file where the appropriate header is included.

2 The functions, macros, and types defined in Clause 5 and its subclauses are
defined by their respective headers if __STDC_WANT_LIB_EXT2_ _ is defined as
a macro which expands to the integer constant 1 at the point in the source file
where the appropriate header is included.2)

3 Within a preprocessing translation unit, __STDC_WANT_LIB_EXT2_ _ shall be
defined identically for all inclusions of any headers from Clause 5. If
__STDC_WANT_LIB_EXT2_ _ is defined differently for any such inclusion, the
implementation shall issue a diagnostic as if a preprocessor error directive was
used.

5.1.2 Reserved identifiers

1 Each macro name in any of the following subclauses is reserved for use as
specified if it is defined by any of its associated headers when included; unless
explicitly stated otherwise (see ISO/IEC 9899:1999 Subclause 7.1.4).

2 All identifiers with external linkage in any of the following subclauses are
reserved for use as identifiers with external linkage if any of them are used by
the program. None of them are reserved if none of them are used.

3 Each identifier with file scope listed in any of the following subclauses is
reserved for use as a macro name and as an identifier with file scope in the same
name space if it is defined by any of its associated headers when included.

2) Future revisions of this technical report may define meanings for other values of

__STDC_WANT_LIB_EXT2_ _.

5 Committee Draft — June 01, 2009 WG14/N1388

5.1.3 Use of errno

1 An implementation may set errno for the functions defined in this technical
report, but is not required to.

WG14/N1388 CommitteeDraft — June 01, 2009 6

5.2 Input/output <stdio.h>

5.2.1 Streams

1 In addition to the requirements of ISO/IEC 9899:1999, clause 7.19.2, streams may
be associated with memory buffers.

2 A stream associated with a memory buffer has the same operations for text files
that a stream associated with an external file would have. In addition, the stream
orientation is determined in exactly the same fashion.

3 Input and output operations on a stream associated with a memory buffer by a
call to fmemopen, open_memstream or open_wmemstream3) are constrained
by the implementation to take place within the bounds of the memory buffer. In
the case of a stream opened by open_memstream or open_wmemstream, the
memory area grows dynamically to accommodate write operations as necessary.
For output, data are moved from the buffer provided by setvbuf to the
memory stream during a flush or close operation. If there is insufficient memory
to grow the memory area, or the operation requires access outside of the
associated memory area, the associated operation fails.

5.2.2 Operations on buffers

5.2.2.1 The fmemopen function

Synopsis

1 #define __STDC_WANT_LIB_EXT2_ _ 1
#include <stdio.h>
FILE * fmemopen(void * restrict buf,

size_t size, const char * restrict mode);

Description

2 This interface is derived from POSIX. Any conflict between the requirements
described here and POSIX is unintentional. This technical report defers to POSIX.

3 The fmemopen function associates the buffer given by the buf and size
arguments with a stream. The buf argument is either a null pointer or points to a

3) Theopen_wmemstream function is defined in<wchar.h>.

7 Committee Draft — June 01, 2009 WG14/N1388

buffer that is at least size bytes long.

4 The mode argument is a character string having one of the following values:

r Open text stream for reading.

w Open text stream for writing.

a Append; open text stream for writing at the first null byte.

r+ Open text stream for update (reading and writing).

w+ Open text stream for update (reading and writing).
Truncate the buffer contents.

a+ Append; open text stream for update (reading and
writing); the initial position is at the first null byte.

rb Open binary stream for reading.

wb Open binary stream for writing.

ab Append; open binary stream for writing at the first null
byte.

rb+ or r+b Open binary stream for update (reading and writing).

wb+ or w+b Open binary stream for update (reading and writing).
Truncate the buffer contents.

ab+ or a+b Append; open binary stream for update (reading and
writing); the initial position is at the first null byte.

5 If a null pointer is specified as the buf argument, fmemopen allocates size
bytes of memory as if by a call to malloc. This buffer shall be automatically
freed when the stream is closed. Because this feature is only useful when the
stream is opened for updating (because there is no way to get a pointer to the
buffer) the fmemopen call may fail if the mode argument does not include a +
when buf is a null pointer.

6 The stream maintains a current position in the buffer. This position is initially set
to either the beginning of the buffer (for r and w modes) or to the first null byte in
the buffer (for a modes). If no null byte is found in append mode, the initial
position is set to one byte after the end of the buffer.

7 If buf is a null pointer, the initial position shall always be set to the beginning of
the buffer.

8 The stream also maintains the size of the current buffer contents. For modes r
and r+ the size is set to the value given by the size argument. For modes w and
w+ the initial size is zero and for modes a and a+ the initial size is either the
position of the first null byte in the buffer or the value of the size argument if no
null byte is found.

WG14/N1388 CommitteeDraft — June 01, 2009 8

9 A read operation on the stream cannot advance the current buffer position
beyond the current buffer size. Reaching the buffer size in a read operation
counts as "end of file". Null bytes in the buffer have no special meaning for reads.
The read operation starts at the current buffer position of the stream.

10 A write operation starts either at the current position of the stream (if mode has
not specified a as the first character) or at the current size of the stream (if mode
had a as the first character). If the current position at the end of the write is larger
than the current buffer size, the current buffer size is set to the current position.
A write operation on the stream cannot advance the current buffer size beyond
the size given in the size argument.

11 When a stream open for writing is flushed or closed, a null byte is written at the
current position or at the end of the buffer, depending on the size of the contents.
If a stream open for update is flushed or closed and the last write has advanced
the current buffer size, a null byte is written at the end of the buffer if it fits.

12 An attempt to seek a memory buffer stream to a negative position or to a position
larger than the buffer size given in the size argument shall fail.

13 Note that when writing to a text stream, line endings may occupy more than one
character in the buffer.

Returns

14 The fmemopen function returns a pointer to the object controlling the stream. If
the open operation fails, fmemopen returns a null pointer.

9 Committee Draft — June 01, 2009 WG14/N1388

Examples

#define __STDC_WANT_LIB_EXT2__ 1
#include <stdio.h>
#include <string.h>

static char buffer[] = "foobar";

int
main (void)
{

int ch;
FILE *stream;

stream = fmemopen(buffer, strlen (buffer), "r");
if (stream == NULL)

/* handle error */;

while ((ch = fgetc(stream)) != EOF)
printf("Got %c\n", ch);

fclose(stream);
return (0);

}

15 This program produces the following output:

Got f
Got o
Got o
Got b
Got a
Got r

5.2.2.2 The open_memstream function

Synopsis

1

WG14/N1388 CommitteeDraft — June 01, 2009 10

#define __STDC_WANT_LIB_EXT2_ _ 1
#include <stdio.h>

FILE * open_memstream(char ** restrict bufp,
size_t * restrict sizep);

Description

2 This interface is derived from POSIX. Any conflict between the requirements
described here and POSIX is unintentional. This technical report defers to POSIX.

3 The open_memstream function creates a byte-oriented stream that is associated
with a dynamically allocated buffer. The buffer is obtained as if by calls to
malloc and realloc and expanded as necessary. The buffer should be freed by
the caller after successfully closing the stream, by means of a call to free. The
stream is opened for writing and is seekable.

4 The stream maintains a current position in the allocated buffer and a current
buffer length. The position is initially set to zero (the beginning of the buffer).
Each write starts at the current position and moves this position by the number
of successfully written bytes. The length is initially set to zero. If a write moves
the position to a value larger than the current length, the current length is set to
this position. In this case a null byte is appended to the current buffer, but not
accounted for in the buffer length.

5 After a successful fflush the pointer referenced by bufp and the variable
referenced by sizep remain valid only until the next write operation on the
stream or a call to fclose.

Returns

6 The open_memstream function returns a pointer to the object controlling the
stream. If the open operation fails, open_memstream returns a null pointer.

11 CommitteeDraft — June 01, 2009 WG14/N1388

Examples

#include <stdio.h>
int main (void)
{

FILE *stream;
char *buf;
size_t len;

stream = open_memstream(&buf, &len);

if (stream == NULL)
/* handle error */;

fprintf(stream, "hello my world");
fflush(stream);
printf("buf=%s, len=%zu\n", buf, len);
fseek(stream, 0, SEEK_SET);
fprintf(stream, "good-bye cruel world");
fclose(stream);
printf("buf=%s, len=%zu\n", buf, len);
free(buf);
return 0;

}

7 This program produces the following output:

buf=hello my world, len=14
buf=good-bye cruel world, len=20

5.2.3 Formatted input/output functions

5.2.3.1 The asprintf function

Synopsis

1

WG14/N1388 CommitteeDraft — June 01, 2009 12

#define __STDC_WANT_LIB_EXT2_ _
#include <stdio.h>
int asprintf(char ** restrict ptr,

const char * restrict format, ...);

Description

2 This interface is derived from LSB. Any conflict between the requirements
described here and LSB is unintentional. This technical report defers to LSB.

3 The asprintf function behaves as sprintf, except that the output string is
dynamically allocated space, allocated as if by a call to malloc, of sufficient
length to hold the resulting string. The address of this dynamically allocated
string is stored in the location referenced by ptr. This dynamically allocated
string should be freed by the caller by means of a call to free when the contents
are no longer required.

5.2.3.2 The vasprintf function

Synopsis

1 #define __STDC_WANT_LIB_EXT2_ _ 1
#include <stdarg.h>
#include <stdio.h>
int vasprintf(char ** restrict ptr,

const char * restrict format, va_list arg);

Description

2 The vasprintf function is equivalent to asprintf, with the variable argument
list replaced by arg, which shall have been initialized by the va_start macro
(and possibly subsequent va_arg calls). The vasprintf function does not
invoke the va_end macro.

5.2.3.3 The fscanf function

Description

1 This interface is derived from POSIX. Any conflict between the requirements
described here and POSIX is unintentional. This technical report defers to POSIX.

13 CommitteeDraft — June 01, 2009 WG14/N1388

2 In addition to the requirements in ISO/IEC 9899:1999 clause 7.19.6.2, the fscanf
function shall support the following requirements for conversion specifications.

3 For the string conversion specifiers c, s and [, there may be an optional
assignment-allocation character, m, that appears in the sequence of characters that
follow the % after any field width and before any length modifier. In this case,
the receiving argument should be of type char **, or wchar_t ** if the length
modifier is l, and shall receive a pointer to a dynamically allocated buffer,
allocated as if by a call to malloc, that contains the converted string. The string
is always null terminated. If there was insufficient memory to allocate a buffer,
the receiving argument receives a pointer to a null value. The buffer should be
freed by the caller by means of a call to free when the contents are no longer
required.

4 If fscanf returns EOF, any memory successfully allocated for parameters using
the assignment-allocation character m for this call shall be freed.

5.2.4 Character input/output functions

5.2.4.1 The getdelim function

Synopsis

1 #define __STDC_WANT_LIB_EXT2_ _ 1
#include <stdio.h>
ssize_t getdelim(char ** restrict lineptr,

size_t * restrict n,
int delimiter, FILE * stream);

Description

2 This interface is derived from POSIX. Any conflict between the requirements
described here and POSIX is unintentional. This technical report defers to POSIX.

3 The getdelim function reads from stream until it encounters a character
matching the delimiter character. The argument delimiter (when converted to
an unsigned char) specifies the character that terminates the input text.

4 The delimiter argument is an int, the value of which should be a character
representable as an unsigned char or equal to the macro EOF. If the
delimiter argument has any other value, the behavior is undefined.

WG14/N1388 CommitteeDraft — June 01, 2009 14

5 The value of *lineptr should be a valid argument that could be passed to the
free function. If *n is nonzero, *lineptr should point to an object containing
at least *n characters.

6 The size of the object pointed to by *lineptr is increased to fit the incoming
line, if it isn’t already large enough. The characters read are stored in the string
pointed to by the argument lineptr.4)

Returns

7 The getdelim function returns the number of characters written into the buffer,
including the delimiter character if one was encountered before EOF. If a read
error occurs, the error indicator for the stream is set and getdelim returns −1.

5.2.4.2 The getline function

Synopsis

1 #define __STDC_WANT_LIB_EXT2_ _ 1
#include <stdio.h>
ssize_t getline(char ** lineptr, size_t * n,

FILE * stream);

Description

2 This interface is derived from POSIX. Any conflict between the requirements
described here and POSIX is unintentional. This technical report defers to POSIX.

3 The getline function is equivalent to the getdelim function with the
delimiter character equal to the newline character.

4) Setting*lineptr to a null pointer and*n to zero are allowed and are a recommended way to start

parsing a file.

15 CommitteeDraft — June 01, 2009 WG14/N1388

5.3 String handling <string.h>

5.3.1 Copying functions

5.3.1.1 The strdup function

Synopsis

1 #define __STDC_WANT_LIB_EXT2_ _ 1
#include <string.h>
char * strdup(const char * str1);

Description

2 This interface is derived from POSIX. Any conflict between the requirements
described here and POSIX is unintentional. This technical report defers to POSIX.
The strdup function shall return a pointer to a new string, which is a duplicate
of the string pointed to by s1. The returned pointer can be passed to free.

Returns

The strdup function returns a pointer to the newly allocated string. A null
pointer is returned if the new string cannot be created.

5.3.1.2 The strndup function

Synopsis

1 #define __STDC_WANT_LIB_EXT2_ _ 1
#include <string.h>
char * strndup(const char * string, size_t n);

Description

2 This interface is derived from POSIX. Any conflict between the requirements
described here and POSIX is unintentional. This technical report defers to POSIX.

3 The strndup function is equivalent to the strdup function, duplicating the
provided string in a new block of memory allocated as if by using malloc,
with the exception being that strndup copies at most n plus one bytes into the

WG14/N1388 CommitteeDraft — June 01, 2009 16

newly allocated memory, terminating the new string with a null byte. If the
length of string is larger than n, only n bytes shall be duplicated. If n is larger
than the length of string, all bytes in string shall be copied into the new
memory buffer, including the terminating null byte. The newly created string
shall always be properly terminated.

Returns

4 The strndup function returns a pointer to the allocated string, or a null pointer
if there was insufficient space. The allocated space should be subsequently freed
by a call to free.

17 CommitteeDraft — June 01, 2009 WG14/N1388

5.4 Extended multibyte and wide character utilities <wchar.h>

5.4.1 Operations on buffers

5.4.1.1 The open_wmemstream function

Synopsis

1 #define __STDC_WANT_LIB_EXT2_ _ 1
#include <wchar.h>
FILE *open_wmemstream(wchar_t ** bufp, size_t * sizep);

Description

2 This interface is derived from POSIX. Any conflict between the requirements
described here and POSIX is unintentional. This technical report defers to POSIX.

3 The open_wmemstream function creates a wide oriented stream that is
associated with a dynamically allocated buffer5). The buffer is obtained as if by
calls to malloc and realloc and expanded as necessary. The buffer should be
freed by the caller after successfully closing the stream, by means of a call to
free. The stream is opened for writing and is seekable.

4 The stream maintains a current position in the allocated buffer and a current
buffer length. The position is initially set to zero (the beginning of the buffer).
Each write starts at the current position and moves this position by the number
of successfully written wide characters. The length is initially set to zero. If a
write moves the position to a value larger than the current length, the current
length is set to this position. In this case a null wide character is appended to the
current buffer, but not accounted for in the buffer length.

5 After a successful fflush the pointer referenced by bufp and the variable
referenced by sizep remain valid only until the next write operation on the
stream or a call to fclose.

Returns

6 Upon successful completion, open_wmemstream returns a pointer to the object
controlling the stream. If the open operation fails, open_wmemstream returns a

5) Memory buffer based streams are described in <stdio.h>.

WG14/N1388 CommitteeDraft — June 01, 2009 18

null pointer.

5.4.2 Formatted wide character input/output functions

5.4.2.1 The aswprintf function

Synopsis

1 #define __STDC_WANT_LIB_EXT2_ _
#include <stdio.h>
#include <wchar.h>
int aswprintf(wchar_t ** restrict ptr,

const wchar_t * restrict format, ...);

Description

2 The aswprintf function behaves as swprintf, except that the output string is
dynamically allocated space, allocated as if by a call to malloc, of sufficient
length to hold the resulting string. The address of this dynamically allocated
string is stored in the location referenced by ptr. This dynamically allocated
string should be freed by the caller by means of a call to free when the contents
are no longer required.

5.4.2.2 The vaswprintf function

Synopsis

1 #define __STDC_WANT_LIB_EXT2_ _ 1
#include <stdarg.h>
#include <stdio.h>
#include <wchar.h>
int vaswprintf(wchar_t ** restrict ptr,

const wchar_t * restrict format, va_list arg);

Description

2 The vaswprintf function is equivalent to aswprintf, with the variable
argument list replaced by arg, which shall have been initialized by the
va_start macro (and possibly subsequent va_arg calls). The vaswprintf

19 CommitteeDraft — June 01, 2009 WG14/N1388

function does not invoke the va_end macro.

5.4.2.3 The fwscanf function

Description

1 In addition to the requirements

2 This interface is derived from POSIX. Any conflict between the requirements
described here and POSIX is unintentional. This technical report defers to POSIX.

3 In addition to the requirements in ISO/IEC 9899:1999 clause 7.24.2.2, the
fwscanf function shall support the following requirements for conversion
specifications.

4 For the string conversion specifiers c, s and [, there may be an optional
assignment-allocation character, m, that appears in the sequence of characters that
follow the % after any field width and before any length modifier. In this case,
the receiving argument should be of type char **, or wchar_t ** if the length
modifier is l, and shall receive a pointer to a dynamically allocated buffer,
allocated as if by a call to malloc, that contains the converted string. If the l
length modifier is not specified, the corresponding argument should be of type
char **, and shall receive a pointer to a dynamically allocated buffer
containing characters from the input field, converted as if by repeated calls to the
wcrtomb function, with the conversion state described by an mbstate_t object
initialized to zero before the first wide character is converted.

5 In either case, the string shall always be null terminated. If there was insufficient
memory to allocate a buffer, the receiving argument shall receive a pointer to a
null value.

6 If fwscanf returns EOF, any memory successfully allocated for parameters
using the assignment-allocation character m for this call shall be freed.

5.4.3 Wide character input/output functions

5.4.3.1 The getwdelim function

Synopsis

WG14/N1388 CommitteeDraft — June 01, 2009 20

#define __STDC_WANT_LIB_EXT2_ _ 1
#include <stdio.h>
ssize_t getwdelim(wchar_t ** restrict lineptr,

size_t * restrict n,
wint_t delimiter, FILE * stream);

Description

1 The getwdelim function shall read from stream until it encounters a wide
character matching the delimiter character. The argument delimiter shall
specify the character that terminates the read process.

2 The delimiter argument is a wint_t, the value of which should be a wide
character representable as an wchar_t or equal value to the macro WEOF. If the
delimiter argument has any other value, the behavior is undefined.

3 The value of *lineptr should be a valid argument that could be passed to the
free function. If *n is nonzero, *lineptr should point to an object containing
at least *n wide characters.

4 The size of the object pointed to by *lineptr shall be increased to fit the
incoming line, if it isn’t already large enough. The wide characters read shall be
stored in the string pointed to by the argument lineptr.6)

Returns

5 Upon successful completion the getwdelim function shall return the number of
wide characters written into the buffer, including the delimiter character if one
was encountered before end of file. Otherwise it shall return −1.

5.4.3.2 The getwline function

Synopsis

1 #define __STDC_WANT_LIB_EXT2_ _ 1
#include <stdio.h>
ssize_t getwline(wchar_t ** lineptr, size_t * n,

FILE * stream);

6) Setting *lineptr to a null pointer and *n to zero are allowed and a

recommended way to start parsing a file.

21 CommitteeDraft — June 01, 2009 WG14/N1388

Description

2 The getwline function shall be equivalent to the getwdelim function with the
delimiter character equal to the wide newline character.

WG14/N1388 CommitteeDraft — June 01, 2009 22

Annex A

(informative)
Comparison Of Library Methods

A.5 Introduction

1 This annex presents a small program to illustrate the differences between the
approaches of ISO/IEC 9899:1999, the bounds checking functions presented in
Part 1 of this Technical Report, and the allocating functions of this part of this
Technical Report.

A.5.1 Standard C

1 This example uses only interfaces present in ISO/IEC 9899:1999.

#include <stdio.h>
#include <stdlib.h>

void
get_y_or_n(void)
{

char response[8];

printf("Continue? [y] n: ");
gets(response);
if (response[0] == ’n’)

exit(0);
return;

}

2 This program has undefined behavior if more than 8 characters are entered at the
prompt.

23 CommitteeDraft — June 01, 2009 WG14/N1388

A.5.2 Bounds Checking

1 This example uses the interfaces described in part 1 of this Technical Report.

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <stdio.h>
#include <stdlib.h>

void
get_y_or_n(void)
{

char response[8];
size_t len = sizeof(response);

printf("Continue? [y] n: ");
gets_s(response, len);
if (response[0] == ’n’)

exit(0);
return;

}

2 This program is very similar to to the original ISO/IEC 9899:1999 example,
except that the array bounds are checked. There is implementation defined
behavior (typically abort) if more than 8 characters are input.

3 This program can be improved to remove the implementation defined behavior
at the cost of additional complexity7):

7) This program has implementation defined behavior in the presence of

multiple threads; however, ISO/IEC 9899:1999 does not specify any

behavior for multi-threaded programs.

WG14/N1388 CommitteeDraft — June 01, 2009 24

#define __STDC_WANT_LIB_EXT1_ _ 1

#include <stdio.h>
#include <stdlib.h>

void
get_y_or_n(void)
{

char response[8];
size_t len = sizeof(response);
constraint_handler_t oconstraint;

oconstraint = set_constraint_handler_s(ignore_handler_s);
printf("Continue? [y] n: ");
if((gets_s(response, len) == NULL) || (response[0] == ’n’)) {

(void) set_constraint_handler_s(oconstraint);
exit(0);

}
(void) set_constraint_handler_s(oconstraint);
return;

}

A.5.3 Dynamic Memory

1 This program uses the interfaces decribed in this part of this Technical Report.

25 CommitteeDraft — June 01, 2009 WG14/N1388

#define __STDC_WANT_LIB_EXT2__ 1
#include <stdio.h>
#include <stdlib.h>

void
get_y_or_n(void)
{

char *response = NULL;
size_t len;

printf("Continue? [y] n: ");
if((getline(&response, &len, stdin) < 0) ||

(len && response[0] == ’n’)) {
if(response)

free(response);
exit(0);

}
free(response);
return;

}

2 This program has defined behavior for any input. This includes the assumption
that an extremely long line that exhausts all available memory to hold it should
be treated as if it were a "no" response. While it requires calls to free to release
any allocated memory, it is almost as simple as the original ISO/IEC 9899:1999
example.

WG14/N1388 CommitteeDraft — June 01, 2009 26

Index

<stdio.h> header, 5.2
<string.h> header, 5.3
<wchar.h> header, 5.4
__STDC_ALLOC_LIB_ _ macro, 4
__STDC_WANT_LIB_EXT2_ _ macro, 5.1.1

function, 5.2.3.2, 5.4.2.2

asprintf function, 5.2.3.1
aswprintf function, 5.4.2.1

buffer
operations, 5.2.2, 5.4.1

character input/output functions, 5.2.4
copying functions

string, 5.3.1

end-of-file macro, see EOF macro

file
formatted IO, 5.2.3, 5.4.2

fmemopen function, 5.2.2.1
formatted input/output functions, 5.2.3

wide character, 5.4.2
fscanf function, 5.2.3.3
fwscanf function, 5.4.2.3

getdelim function, 5.2.4.1
getline function, 5.2.4.2
getwdelim function, 5.4.3.1
getwline function, 5.4.3.2

header, see also standard headers

identifier
reserved, 5.1.2

input/output functions
character, 5.2.4
formatted

wide character, 5.4.2
wide character

formatted, 5.4.2
input/output header, 5.2
ISO/IEC 10646, 2.1
ISO/IEC 23360, 2.1, 2.2
ISO/IEC 2382−1, 2.1
ISO/IEC 646, 2.1
ISO/IEC 9899, 2.1, 3, 5.1.2
ISO/IEC 9899Cor 1, 2.1

ISO/IEC 9899Cor 2, 2.1
ISO/IEC 9945, 2.1, 2.2
ISO/IEC 9945−1, 3
italic type convention, 3

library, 5
LSB, 2.2

macro name
predefined, 4

memory buffers, 5.2.1
memory streams, 5.2.1

open_memstream function, 5.2.2.2
open_wmemstream, 5.4.1.1
open_wmemstream function, 5.4.1.1
operations on buffers, 5.2.2
operations on wide character buffers, 5.4.1

POSIX, 2.2
predefined macro names, 4

reserved identifiers, 5.1.2

standard headers
<stdio.h>, 5.2
<string.h>, 5.3
<wchar.h>, 5.4

stdio.h header, 5.2
strdup function, 5.3.1.1
streams, 5.2.1
string

copying functions, 5.3.1
string handling header, 5.3
string.h header, 5.3
strndup function, 5.3.1.2
symbols, 3

terms, 3

wchar.h header, 5.4
wide character

formatted input/output functions, 5.4.2
operations on buffers, 5.4.1

27 CommitteeDraft — June 01, 2009 WG14/N1388

WG14/N1388 CommitteeDraft — June 01, 2009 28

	Foreword
	1. Scope
	2. References
	2.1 Normative references
	2.2 Relationship to other standards

	3. Terms, definitions, and symbols
	4. Predefined macro names
	5. Library
	5.1 Introduction
	5.1.1 Standard headers
	5.1.2 Reserved identifiers
	5.1.3 Use of errno

	5.2 Input/output <stdio.h>
	5.2.1 Streams
	5.2.2 Operations on buffers
	5.2.2.1 The fmemopen function
	5.2.2.2 The open_memstream function

	5.2.3 Formatted input/output functions
	5.2.3.1 The asprintf function
	5.2.3.2 The vasprintf function
	5.2.3.3 The fscanf function

	5.2.4 Character input/output functions
	5.2.4.1 The getdelim function
	5.2.4.2 The getline function

	5.3 String handling <string.h>
	5.3.1 Copying functions
	5.3.1.1 The strdup function
	5.3.1.2 The strndup function

	5.4 Extended multibyte and wide character utilities <wchar.h>
	5.4.1 Operations on buffers
	5.4.1.1 The open_wmemstream function

	5.4.2 Formatted wide character input/output functions
	5.4.2.1 The aswprintf function
	5.4.2.2 The vaswprintf function
	5.4.2.3 The fwscanf function

	5.4.3 Wide character input/output functions
	5.4.3.1 The getwdelim function
	5.4.3.2 The getwline function

	Annex A (informative) Comparison Of Library Methods
	A.5 Introduction
	A.5.1 Standard C
	A.5.2 Bounds Checking
	A.5.3 Dynamic Memory

	Index

