T ISOMEC JTCUSC22

Secretariat: CANADA (SCC) N 1251
SEPTEMBER 1992

TITLE: Draft Paper on: Programming Language
Independent Specification Methods

SOURCE: Secretariat ISO/IEC JTC1/SC22

WORK ITEM: N/A
STATUS: New

CROSS REFERENCE: N/A

DOCUMENT TYPE: Information document

ACTION: For information to SC22 Member Bodies.

Address reply to: ISO/IEC JTC1/SC22 Secretariat
J.L. Coeé
Treasury Board Secretariat ~
140 O'Connor St., 10th Floor, Ottawa, Ontario, Canada, K1A ORS
Tel.: (613)957-2496 Telex: 053-3336 Fax: (613)996-2690

Wéil /N 28

ISO/IEC JTC 1/sC22/WG15 N/ 73
TCOS-LIS Draft 4

n
R E

o §

/{f‘;//»

.-"F‘

Draft TCOS-SSC Technical Report —
- Programming Language Independent
Specification Methods

Sponsor
Technical Committee on Operating Systems
and Application Environments
of the
IEEE Computer Society

Work Item Number: JTC 1.22.21.x.y

Abstract: Programming Language Independent Specification Methods provides guidance
to the working groups in the TCOS Standards Subcommittee who are preparing language-
independent specifications and language bindings for approval as IEEE standards and
eventually ISO/IEC standards. It describes an interface model with abstract datatypes and
abstract procedure calls, specifies the notational conventions associated with the model,
and provides guidelines for the use of the model in programming-language-independent
specifications and language bindings to them. Although this document has been purposely
designed to look somewhat like a real standard, it is not an official IEEE or ISO publication.

Eeywords: language-independent specifications, language bindings, datatype, procedure

TCOS-LIS / D4
May 1991

This is an unapproved draft and is subject to change.
All rights reserved by the Institute of
Electrical and Electronics Engineers.

Do not specify or claim conformance to this document.

N

The Institute of Electrical and Electronics Engineers, Inc.
345 East 47th Street, New York, NY 10017, USA

Copyright IEEE, all rights reserved. Permission is granted for
unlimited reproduction in any form as long as the document or parts
of the document are copied exactly and the copies are used for IEEE

purposes and related 1SO /IEC JTCI standards activities only.
Reproductions are not to be sold and the material in the ducument is

not to be published in any book, magazine, or trade journal

Mey 1991

UNAPPROVED DRAFT. All Rights Reserved by IEEE.
Preliminary—=Subject to Revision.

Contents

PAGE

Foreword . - - - - L] - - L] - - L] - L - - - - - - - L] L] v
Document Statng : ¢« « ¢ o o s o @ @ @ & # & % & & & % % s ¥
Sectionl: Background . . . « « + ¢ ¢ o o s o o s o o o o 1

Section 2: Scope and Purpose e o s o e e o & o s o & s s o o 3
2 1 Gﬂals - L] - - - - - - . - - . - - - - - - . - 3
2.2 NOD-GOE]S L] L] . L . - - L] . . L] . . I . . . - . . . 4

Section 3: References . « o« « o o o « o o o o o o « o o« o« o 7
Section 4: Definitions . + « « o« + o o s o o o« s o « « « « « 9

Section5: TheModel « « . « .+ « + + « . . 11
5.1 Usingthe Model T E L
5.2 Execution Sequence and Concurrency R W o m % O§ & o w 12
5.3 Datatypes . . . i F o R W R F e A R E 3§ o e s 23

5.3.1 Value Spaces . o owove o e mn o & e e s A8
5.3.2 Properties and Operatmns &' g i % & w ow o ow 34
5.3.3 Base Datatypes and Datatype Denvataon i i i AR e 1B
53.4 Constructed Datatypes 15
5.3.5 Common Datatypes & W & % ko %W % § % @ & & © 18
5.4 Value Names . . e o s e+ s s e e s s e s = = o o 19
5.5 Procedures « & v ¢ 4 4 4 4 4 e e 4 e . . . 19

Section 6: Conventions « « « « « &« & + « o o o o « o o« « « . 21
6.1 Notation . . ¢ o ¢ ¢ ¢ ¢ o o o o & o o o o o o« o =« =21
6.2 Identifiers
6.3 Datatypes « « . .
6.4 Value Names i E A B § e s
6.5 Procedures

L] L] L] .
L]
L]
-
3]
w

Section7: Conformance . . . & v v v v 4 & & o« « o o« « « . 95

Section 8: Guidelines for Language-Independent Spec:ﬁcatmns § o o ow
8.1 General Guidelines w oo e e we @ wr el
8.1.1 Document Organization . . « . . o ¢ & o o« o« « . 27

8.12 Terminology s @ w R os e o o ow o 2T

8.1.3 Documentation Reqmrements - oomow s % s e w0 i w w8

8.1.4 Language-SpecificFeatures 28

810 AOMIILY & '« o 5 & & ¥ ¢ % ¥ % § & 5 4 @ e o= 28

UNAPPROVED DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

82 Identifiers . « « « « o o
8.3 Datatypes . i

8.3.1 Opaque Datatypes
8.3.2 Named Datatypes
8.3.3 Order Datatypes . . w @ & F &
8.3.4 Numeric Datatypes . . « « +« « « « =« =«
8.3.5 Special Datatypes . « = + & + o ¢ « . -
8.3.6 DerivedDatatypes . .« « « « ¢ « « o o -
8.3.7 Constructed Datatypes . e
8.3.8 Handling’flagwords’ . « « « « « « « o o
8.3.9 HandlmgSets and Lists . o B 3 8 5 @ 8
8.4 Value Names . . v o
8.5 Procedures g @
8.5.1 How Bigare At.om:.c Procedures'? o i e
852 Atomic Set-and-Return-Previous-Value Procedures
8.5.3 Atomic Compound Procedures . « § %
8.5.4 Avoid Overloaded Procedures - « . -
855 No Side Effects on Procedure Failure
8.5.6 Procedures that’Can’t Fail'’
8.5.7 Boolean Procedures
8.5.8 Undefined vs Ignored Input Pa.rameters .
8.5.9

Undefined Output Parameters . . « . . =«

8.5.10 Procedure Descriptions . .

Section 9: Guidelines for Language Bindings
9.1 General Guidelines .

9.1.1
9.1.2
9.1.3

Identify Language-Spemﬁc Interfaces s @ W %
Atomicity &
Provide Crosa-References .

9.2 Identifiers . . . S s oW W R oW § s

93 Datatypes « « « « o+ « o o o o+

9.4 Vaiue Names R E R R R
9.5 Interface Objects« « « « « « « « « &
9.6 Procedures . « « « « s o o 9+ o

Annex A (informative) Examples . . « « « « « « + o -

A.1 Directories . . . « w w e e w8 8 5 &
A.1.1 Directory Operat.mns T R R
A 2 Working Directory . . . ¢ % o

A.2.1 Change Current Workmg Du'ect.ory o % B . .
A 2.2 Get Working Directory Pathname . . ‘

Identiﬁerlnde.x................

Alphabetic TopicalIndex . « « « « ¢ « « o« o o + =

UNAPPROVED DRAFT. All Rights Reserved by IEEE.,

Preliminary—Subject to Revision.

29
29
29
29
30
30
30
30
30
30
31
31
31
31
32
32
32
32
33
33
33
34
34

35
35
35
36
36
36
37
38
38
38

41
41
42
45
45

47

49

TABLES

Table 1 - REViSiDn Hi.StvDIy . . . -

UNAPPROVED DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

iv

0 o™ 1 ;e W

[T (o
mqmmhmﬁlﬂo

TCOS-LIS/D4

Foreword

This TCOS-SS Technical Report describes methods for producing programming-
language-independent functional specifications, and for producing programming
language bindings to those functional specifications. These methods include
abstract models and notations, together with guidelines for their use. These
guidelines are intended to be followed by all functional specifications and language
binding standards developed within the IEEE Technical Committee on Operating
Systems.

The models and guidelines described in this document are adapted from current
ISOMEC JTC1/SC22/WG11 draft technical reports and guidelines concerning
language-independent specifications and language bindings. Because there are no
adopted standards or guidelines in this area, this document provides normative
text to be included within all TCOS-SS functional specifications, concerning
Definitions, Conventions, and Conformance. When ISO/IEC standards for language-
independent specifications are adopted, these TCOS-SS guidelines can be amended
to conform to those standards, where appropriate, and the normative text can be
replaced by references to those standards. In the interim, successive revisions of
these guidelines will be informed by changes in the ISO/IEC draft guidelines, as
these become available.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

Foreword v

20
21

23
24
25
26
27
28
29
30
31
32
33
34

35

36

Document Status

This document is a draft version of a proposed TCOS-SS Technical Report contain-
ing guidelines to be used by the TCOS-SS working groups to develop functional
specifications in language-independent form and language bindings to those func-
tional specifications. '

Draft 4 is the first draft produced using the document build tools developed by Hal
Jespersen and Donn Terry. Shaded margins are used in this draft to indicate
Rationale or Editor’s Notes. Text introduced or substantially modified in this draft
is indicated by a small numeral (the draft number) in the right-hand margin. A
topical index is provided in this draft, but is it buggy and substantially incomplete.
The identifier index is empty. These shortcomings will be remedied in future
drafts.

Section 6 (Conventions) has been revised to show the notation actually used in
1003.1LIS/D1. New material has been added to Sections 5, 8, and 9. The Annex A
examples from previous drafts have been removed, and replaced by sample text
from Section 5 of 1003.1LIS/D1. The list of open issues in Annex B has been
removed, since it is no longer current. In some cases, relevant text has been
added to the appropriate sections in the body of the document. Further material
addressing previously identified issues will be added in subsequent drafts.

Table 1 — Revision History

Lo S

Lo A

Revision
Date Number Author(s) Summary of Changes

88-12-07 0.01 Barker, Connors Initial Draft

89-03-17 0.02 Connors, Kimmel First revision, based on feedback received during January

1989 POSIX 1003 meetings. Added front matter.

89-08-03 0.03 Kimmel Updated for use by other TCOS-SS working groups. Content

specific to the conversion of 1003.1 has been removed.

90-07-05 1.0 Rabin, Walli Reorganized, revised, and enlarged. The datatype model
was replaced and adapted from JTCL/SC22/WG11 N162

Guidelines on Language-Independent Datatypes.

90-10-15 2.0 Rabin, Walli Revised, based on feedback received during the July, 1990

POSIX meetings.

91-01-04 3.0 Rabin, Walli Minor revisions, including some alignment of terminology

with WG11.
91-05-10 4.0 Rabin Revised, based on experience developing 1003.1LIS/D1.0.

Please direct written comments to the author using the following address:

UNAPPROVED DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

vi o Document Status

AN

37

39

41

E&ES

Paul Rabin

Open Software Foundation
11 Cambridge Center
Cambridge, Massachusetts
USA 02142

rabin@osf.org or uunet!osf.orgirabin

FAX: +1 617 225 2782
TEL: +1 617 621 8873

UNAPPROVED DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

Document Status

[T TS T T~ L B T -

o
[

13
14
15

16
17
18
19

20
21

TCOS-LIS/D4

Programming Language Independent
Specification Methods

Section 1: Background

"Since in principle there is no reason why a particular system facil-
ity should not be used by a program, regardless of the language in
which it is written, it is the practice of system facility specifiers to
define an ’abstract’ functional interface that is language indepen-
dent. In this way, the concepts in a particular system facility may be
refined by experts in that area without regard for language peculiar-
ities. An internally coherent view of a particular system facility is
defined, relating system functions to each other in a consistent way
and relating the system functions to other layers within the system
facility, including protocols for communication with other objects in
the total system.""

Language-independent specifications are components of an architectural approach
to the specification of open systems. This approach seeks to promote the free
interoperation and substitution of system components by providing rigorous and
public specifications of functional interfaces.

The ISO, together with its committees and subcommittees, defines the highest pre-
cedence standards for open systems, and also provides guidelines for the develop-
ment of standards for open systems. The ISO has mandated that language-
independent specifications be provided together with language bindings for all

1) ISO/MEC JTCL/SC22 document N754 - Guidelines for Language Bindings, page 2.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

1 Background 1

TCOS-LIS/D4 LANGUAGE INDEPENDENT

system services. These language-independent specifications play a central role in
the standards arena.

« A language-independent service specification specifies those requirements that
are common to all language bindings to that service, and hence provides a func-
tional specification to which language bindings may conform.

« A language-independent service specification is a re-usable component for con-
structing language bindings.

« A language-independent service specification provides an abstract specification of
a service, and hence facilitates more rigorous modelling of services.

« A language-independent service specification facilitates interoperability between
applications using different languages to share a common service implementation.

« A language-independent service specification facilitates the specification of rela-
tionships between one service and another.

All TCOS-SS interface specifications that are forwarded to ISO/IEC
IRRT22/WG15 for adoption as International Standards will consist of a
language-independent functional specification plus one or more language bindings.

Because a functional specification is abstract, a degree of divergence among its
language bindings is permitted, even encouraged to the extent that the languages
themselves differ from each other. It is precisely the purpose of a functional
specification to define those aspects in which the various language bindings should
conform to each other and those aspects in which they may differ. The methods
described in this document aim to provide the greatest possible flexibility for
language bindings. .

New features may arise in a functional specification first, or as language-specific
extensions in one of the language bindings. Once a new feature is incorporated in
a revision of a functional specification, it will be propagated to revisions of the
language bindings. Development should be coordinated to prevent unnecessary
divergence of the language bindings from each other.

The specification scheme described in this document assumes that a language
binding is dependent on prior specifications for both the language and the service,
and has the obligation of conformance to them, rather than the reverse. In the
case of TCOS-SS services, the language binding has come first, and been the source
for the specifications of the language and the service. This naturally causes a
conflict between the authority of the primary language binding and that of the
language-independent service specification. Initially, the primary language bind-
ing will be authoritative. However, as other language bindings are developed and
used, the language-independent service specification will take on a more indepen-
dent role.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

2 1 Background

- Ok W

o m™

10
11

13
14
15
16

17
18
19
20

21

26
27
28
29

30
31

TCOS-LIS/D4

Section 2: Scope and Purpose

This document is addressed to members of TCOS-SS working groups developing
functional specifications or language bindings to functional specifications. Its pur-
pose is to assist and coordinate the development of functional specifications and
language bindings by defining an abstract model, and providing guidelines for the
use of that model in the development of new functional specifications, the deriva-
tion of a base standard from an existing language binding, and the development of
new language bindings to a functional specification.

The model presented in this document is not intended to formalize all parts of an
interface specification, but only those aspects that are of concern to language bind-
ings. The semantics of the underlying services are not specifically addressed,
although they may be addressed by extensions of the current methods.

The model is primarily intended for use in developing language-independent
specifications for operating system and related services, and language bindings for
procedural programming languages. Whether the same or other methods are
suitable for other types of services and programming languages has not been
investigated.

This document provides technical guidelines for the development of language-
independent specifications and language bindings. This document does not pro-
vide organizational or administrative guidelines for the management of the
development process.?)

2.1 Goals

The proposals contained in this document have the following objectives:

1. To meet requirements to provide language-independent functional
specifications, and to conform to ISO guidelines for the development of these
specifications and of language bindings to them.

2. To facilitate the development of language-independent functional
specifications that have sufficient richness and precision to ensure common,

recognizable base functionality across all language bindings for application
developers.

2) See [I1S01], Guidelines 1-5.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

2.1 Goals 3

828

32
33
34

36
37

38
39
40
41
42

TCOS-LIS/D4 LANGUAGE INDEPENDENT

3.

To facilitate the development of language bindings to these functional
specifications and to allow these language bindings the greatest possible
flexibility to exploit the strengths of each particular language.

2.2 Non-Goals

The following related objectives are consciously excluded as being outside of the
scope of the immediate requirements:

b 5

To ensure interoperability between programs or program modules written in
different programming languages. Language-independent specifications
should identify those system datatypes whose interchange is required for a
minimum level of interoperabilitv. However, the mechanism to be used to
support interchange of system of other datatypes will not be specified.

Interoperability is a difficult and poorly understood problem. At least parts
of this problem seem to fall within the scope of language and networking con-
cerns rather than operating system concerns. The appropriate division of
labor needs to be explored more fully. As the solutions become better under-
stood, and the requirements that properly belong to operating system inter-
face specifications become better defined, these requirements will be added
to the scope of this document.

Briefly, there are three related problems under the umbrella of interopera-
bility that seem to be most closely tied to language-independent
specifications:

First, the system exports private datatypes to applications, mainly for use as
identifiers or attributes of system objects. A distributed application needs to
be able to share values of these system datatypes among its separate parts.

Second, applications define their own datatypes for internal use. A distri-
buted application needs to export these datatypes to the system, when it
uses system services to store or transport values of these application data-
types among its separate parts.

Third, applications need to use standard datatypes defined by an external
authority, including characters, time values, mathematical structures, etc.
Values of such standard datatypes need to be freely transportable between
the application and the system, and among different parts of an application.

To define complete service or interface semantics through the use of formal,
verifiable specification languages.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

2 Scope and Purpose

AN

© 687

- 68

69

70

71
72

73
74

- 75

76

78

A a9

80

81
82
83

84

85

86
87
88
89

91

93
94

95

97
98

100
101
102
103

SPECIFICATION METHODS TCOS-LIS/D4

Some formalization of functional specifications is needed in order to facilitate
both the derivation and the validation of language bindings. This require-
ment primarily concerns interface syntax and a thin layer of semantics for
the datatypes passed across the interface. Beyond this, it is certainly desir-
able that the underlying semantics (for instance, of the objects implemented
by the service) be clear, explicit, and unambiguous. For the forseeable
future, functional specifications will have a "formalization gradient”; that is,
the level of formalization will decrease with depth from the surface (inter-
face). Language bindings that attempt to map to features below the surface
in order to gain flexibility, will have greater difficulty the deeper they go.

3. To ensure the portability of language or binding implementations, for
instance by defining an actual system interface.

A functional specification defines an abstraction of the same application
interface that the language binding defines more concretely, not a lower-level
interface on top of which language support may be implemented.

4. To permit direct binding to the language-independent specification, by speci-
fying interfaces in an implemented (or easily implementable) notation that
might permit binding through embedded alien syntax or other methods.

A functional specification defines an abstraction of an API, not an API. Each
language binding will define a concrete API that uses native syntax.

The first two excluded objectives are simply beyond the scope of the current pro-
ject, but do not conflict with the models or guidelines described in this document.
Future work should extend the first tentative steps taken here in these areas.
The second two excluded objectives do fundamentally conflict with the approach
taken here, and are not possible extensions of this work.

Note that this document does not specifically address the related issue of interna-
tionalization, which shares a concern for the treatment of character datatypes.
The term "language-independent” in this document always refers to programming
languages and not to so-called natural languages.

Note also that this document is not a standard, and cannot be referenced by nor-
mative text within a standard. Functional specifications need to specify their own
service interfaces, including datatypes and procedure calls. The model presented
in this document describes the information needed to specify datatypes and pro-
cedure calls, together with sample specifications for the datatypes likely to be
needed for the specification of TCOS-SS interfaces. These should be imitated
rather than referenced by functional specifications. When ISO standards for
Language-Independent Datatypes and Procedure Calls become available, func-
tional specifications may reference these as appropriate.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

2.2 Non-Goals 5

TCOS-LIS/D4

Section 3: References

UNAPPROVED DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

3 References

L] B W -

© o =

10

11

13
14

15
16
17
18
19

20
21

23

24

25

26

27

28

29

30

31

32

TCOS-LIS/D4

[POSIX.1]

PSSG]

[SO1]

[s02]

[S03]

[SO4])

[SO5]

ECMA]

[PCTE]

DM]

ASN.1]

LANGUAGE INDEPENDENT

IS 9945-1: 1990

IEEE Std 1003.1-1990

Portable Operating System Interface for Computer
Environments

POSIX Standards Style Guide
Draft 4

ISO/IEC JTC1/SC22 N754

Work Item JTC1.22.14

Proposed DTR 10182 on: Information Processing Systems -
Guidelines for Language Bindings

ISO/IEC JTC1/SC22 N842

Work Item JTC1.22.17

ANSI X3T2/90-087

Common Language-Independent Datatypes: Working Draft #4

ISO/IEC JTC1/SC22/WG11 N188

Work Item JTC1.22.16

ANSI X3T2/90-074

Common Language-Independent Procedure Calling Mechanism:
Working Draft Version 2.1

ISO/IEC JTC1/SC22/WG11 N194R
Language-Independent Standards: Second Draft

ISO/IEC JTC1/SC21 N4927
Information Processing Systems - Open Systems Interconnection -
Remote Procedure Call

ECMA-127 Remote Procedure Call Using OSI
ECMA-xxx Portable Common Tool Environment
Draft 6 - October, 1989

= ISO/IEC JTC1/SC22/WG15 N70

OSI Object Management API Specification

Version 2.0 Draft 5

X.400 API Association and X/Open Company Limited

ISO 8824: 1987
OSI Abstract Syntax Notation One

UNAPPROVED DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

3 References

[B =

10

11

13
14

15
16

17
18
19

20
21

8B

24
25

26

27

29

30

TCOS-LIS/D4

Section 4: Definitions

[Some or all of these definitions should appear in each language-independent functional
specification.]

Abstract Datatype: A datatype defined by its properties, rather than by the
representation of its values.

Base Datatype: A datatype whose definition is used in the definition of a derived
datatype, especially a datatype whose values are, or are components of, the values
of a constructed datatype.

Concrete Datatype: A datatype directly supported by a programming language.

Constructed Datatype: A datatype defined by a standard construction method from
previously defined or primitive datatypes.

Datatype: A collection of distinguished values, together with a collection of charac-
terizing operations on those values.

Datatype Family: A set of related datatypes sharing a common, parameterized data-
type definition.

Derived Datatype: A datatype that is defined in terms of one or more previously
defined base datatypes.

Functional Specification: A specification, using a language-independent notation, of
a service, or set of services, that are available to applications written in several
programming languages.

Language Binding: A specification of the standard interface to a service, or set of
services, for applications written in a particular programming language.

Language Standard: A specification of the syntax and semantics of applications
written in a particular programming language.

Procedure: A program abstraction with formal input and output parameters that
are bound to objects or values in the application that invokes it.

Overloading: The encoding of multiple service features in a single interface feature.

Status Datatype: An abstract datatype whose values may be bound to "control"
values as well as "data" values.

Value: A member of the value space of a datatype.
Value Space: The set of values associated with a datatype.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

4 Definitions 9

O o 3 N Ok W

gl I

14
15
16
17
18
19
20

D

24

26

27

28
29
30
31
32

34

TCOS-LIS/D4

Section 5: The Model

The model described in this section provides a conceptual foundation for the terms
and notation used to specify procedural interfaces in a language-independent
manner. Because the model will be used to specify a variety of interfaces that w:]l
in turn have language bindings from a variety of programming languages, it 1is
subject to seemingly conflicting requirements. The model must be rich enough to
allow the specification of all service interfaces of interest, and also weak enough so
that it can be easily mapped onto the facilities provided by a wide range of pro-
gramming languages. Of course, in any particular case, only a limited binding
may be possible between a service interface and a programming language. The
purpose of the model is to facilitate language bindings to the extent that they are
possible, and to provide a tool that may be used during the definition of new ser-
vices and languages to anticipate the effect of various choices on future language
bindings.

The model includes those interface features that are intended to be shared by all
language bindings to a language-independent specification, and excludes those
features that may differ. The features included in the model are abstract data-
types and abstract procedure interfaces. All other features of language bindings,
such as memory allocation, parameter passing, exception handling, implementa-
tion of datatypes, choice of identifiers, and packaging and visibility control are
excluded from the model.

The model does not include elements whose values can be altered by assignment.
The definition of objects, and of associated allocation and reference mechanisms
are features delegated to the language binding.

The model does not include mechanisms for grouping interface elements and con-
trolling their visibility to applications. Such mechanisms may be defined by par-
ticular language bindings.

5.1 Using the Model

The model is intended to provide an conceptual framework in which language-
independent functional specifications can be defined. In this framework, interface
features are abstract, that is, they are defined in terms of their properties and
behavior rather than their implementation. Each language binding binds these
abstract features to concrete features that are expressible in the language, and
hence implementable by the language implementation. If the language itself sup-
ports deferred binding, some interface features may remain abstract in the
language binding. Such features will be finally bound to concrete features at

UNAPPROVED DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

5.1 Using the Model 11

PO S

36

i gy

a8
39

40

41

a&8 88

47

49
50

e Bl

52

. 53

54

55
56
57
58
59

61
62
63
65

67

69

70

P

72

TCOS-LIS/D4 LANGUAGE INDEPENDENT

compile time, or even at run time.

Interoperability requires the ability to transfer values between program modules
written in different programming languages. This seems to be precluded by hav-
ing abstract datatypes separately bound by each language binding. Instead, the
binding must occur in the functional specification itself, or in the implementation.
Specifying concrete datatypes in the functional specification defeats the purpose of
allowing maximum autonomy to each language binding, yet many programming
languages cannot defer value and datatype binding to the implementation.

The model is intended to be used to specify the interfaces to services, but not to
specify the semantics of these services. The model does not impose a means for
specifying the semantics of the underlying objects accessed via the abstract inter-
faces defined by a language-independent specification. Various informal or formal
methods may be used. Developers of new functional specifications are encouraged
to approach the problem of specifying semantics with the same techniques of func-
tional and datatype abstraction on which the interface model is based.

To what extent is it possible to specify a service interface without specifying the
underlying object model implemented by the service? Should different models and
notations be used to specify interface syntax and semantics?

5.2 Execution Sequence and Concurrency

The model specifies abstract procedural interfaces. Unless otherwise specified, a
procedure call transfers a single thread of control from the application to the
implementation and back to the application. In certain interfaces, the thread of
control does not return to the application, or returns together with a new thread
of control. In other cases, the thread of control passes from the implementation to
the application and then back to the implementation.

In certain cases, there may be restrictions on the order in which operations may
be performed sequentially on certain objects. In certain cases, operations by mul-
tiple threads of execution on the same object are guaranteed to be serialized. In
other cases, the application is responsible for ensuring serialization. Since the
model only concerns the interface itself, it places no restrictions on the con-
currency behavior above or below the interface. Hence, all requirements relating
to execution sequence or concurrency must be specified explicitly in each func-
tional specification.

This is an area where the model should be extended. Programming languages
may have difficulty binding to certain control structures, so functional
specifications should be as explicit as possible about their requirements in this
regard.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

12 5 The Model

73

74
75
76
77
78
79

80
81
82

83

85
86
87
88

89
90
91
92
93
94
95

97
98
99
100
101
102

103

104
105

106
107
108
109

110
111
112
113

SPECIFICATION METHODS TCOS-LIS/D4

5.3 Datatypes

The datatype model presented here is adapted from the model presented in
JTC1/SC22 N842 Common Language-Independent Datatypes Working Draft #4
[SO2). Features were omitted that were not needed for developing language-
independent specifications of TCOS-SS interfaces. That document should be refer-
enced for further explanation of the model presented here, and for guidance in
extending this model.

The datatype model is intended to include all datatypes needed to specify TCOS-SS
interfaces, and to support the range of abstractions needed to permit flexible
language binding, while preserving the essential characteristics of each datatype.

For the purpose of this model, a datatype is considered to be a set of values
together with a set of operations on those values. The identity of values of a data-
type is dependent on the operations associated with the datatype. The identities
of the operations themselves is assumed to be unproblematic. All values of a data-
type must be the result of some set of operations that do not themselves depend on
any value. For any set of operations, identical values yield identical results.

The set of all possible abstract datatypes is itself a complex datatype (fortunately
outside the scope of this datatype model!), with mappings between the value
spaces and operations of related datatypes. There are many possible ways to
describe these relationships, and hence to categorize and specify particular data-
types. The current approach is partly analytical and partly descriptive. A variety
of datatype attributes are defined in order to permit flexible specification of data-

types.

Because the model does not include datatype-valued expressions, a simple
approach to datatype identity is possible: Datatypes with distinct names are dis-
tinct datatypes, regardless of their definitions (or implementations). Each value is
considered to be associated with a unique datatype. In certain cases the natural
mapping between the value spaces of two or more related datatypes is sufficiently
obvious that references to corresponding values may be substituted for each other
without harm.

5.3.1 Value Spaces

The value space of an abstract datatype has characteristics that are independent
of the relationships between values. These include:

o Atomicity: A datatype is atomic if its values have no visible components that can
be operated on independently. An atomic datatype value appears simple, regard-
less of its possible implementation. Non-atomic datatypes are constructed from
atomic datatypes by standard construction operations.

o Nameability: Completely opaque datatypes have no names for any of their
values. Other datatypes may have names for some or all values. Names may be
defined by external standards or conventions, or may be declared in a functional
specification.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

5.3 Datatypes 13

[

198

199
200
201

202
203
204

205
206
207

208
209
210

211

228

229

230

TCOS-LIS/D4 LANGUAGE INDEPENDENT

The following fundamental datatype construction methods are available:

e Array: An array datatype is derived from two datatypes: a base datatype and an
index datatype. A value of an array datatype is a mapping from the index data-
type to the base datatype.

« Choice: A choice datatype is derived from one or more base datatypes. A value
of a choice datatype is a set of mappings from names to base datatypes, exdctly
one of which is valid.

« Record: A record datatype is derived from one or more base datatypes. A value
of a record datatype is a set of mappings from names to base datatypes, all of
which are valid.

Identity of values of constructed datatypes is defined as identity of corresponding
component values, recursively applied. For choice datatypes, corresponding com-
ponent values must be either both defined or both undefined.

5.3.5 Common Datatypes

The model defines a set of commonly used datatypes and datatype families, both
simple and constructed. The further information needed to define a particular

member of a datatype family, including base datatypes or numeric parameters, is
described in each case. The syntax associated with each of these datatypes is

defined in Section 6 - Conventions.

The following list is provisional. A rationale needs to be provided for the particu-
lar selection of basic datatypes. The definitions for the basic datatypes should be
structured according to the previously defined concepts. The character and time
datatypes, in particular, may require additional concepts.

5.3.5.1 Boolean

A datatype with two values, named "TRUE" and "FALSE", and a set of logical
operations: NOT, OR, AND, XOR, etc.

Parameters: None

5.3.5.2 Bit

A datatype with two values, named "0" ("ZERO") and "1" ("ONE"), and a set of bit-
wise operations: NOT, OR, AND, XOR, etc. The values are ordered, with 0<1.

Parameters: None

5.3.5.3 Opaque

This is a family of datatypes, with no order or other operations defined. An
opaque datatype may have associated names that identify distinguished values.

Parameters: Number of distinct values

UNAPPROVED DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

16 5 The Model

238

234
235

i 237
. 238

G 239
240
241

% s

243

245
246
247

248

249

250
251
252

253

254
255
256
257
258
259

260

261
262
263
264

265

266

267
268
269

SPECIFICATION METHODS TCOS-LIS/D4

5.3.5.4 State

This is a family of unordered, finite datatypes. Each value is identified by an asso-
ciated name.

Parameters: List of names

The name of this datatype family was changed from "Enumerated” to "State” for
alignment with [ISO2]. Previous drafts raised the issue of whether ordered or
unordered datatypes (or both) should be supported. This draft includes the (unor-
dered) State datatype family, but not the (ordered) Enumerated datatype family,
because no requirement for an ordered type with defined names has been found in
POSIX.1].

5.3.5.5 Ordinal

This is a family of discrete, ordered datatypes, each of which is a bounded
subrange of the (ideal) infinite ordinal datatype. Ordinal datatypes are pure order
datatypes. Normally, the first value of an ordinal datatype has the name "1", and
successive values have the same names as the successive integers.

Parameters: Number of values

5.3.5.6 Integer

This is a family of ordered datatypes, each of which is a bounded subrange of the
(ideal) infinite integer datatype. Each integer datatype inherits the operations of
the base datatype: add, subtract, multiply, divide.

Parameters: Lower bound, Upper bound

Although arbitrary subranges are possible, in practice particular datatypes are
specified as signed or unsigned, and by a number of values equal to 2°n. Integer
datatypes that map efficiently onto hardware-supported datatypes are the most
commonly used. In most cases the range includes zero as midpoint or endpoint. A
recent exception is the datatype ssize_t (defined in [POSIX. 1]), which has the range
[-1, SSIZE_MAX].

5.3.5.7 Array

This is a family of datatypes constructed from a base datatype and an index data-
type. The base datatype may be any datatype. The index datatype must be a
finite, ordered datatype. A value of an array datatype contains a value of the base
datatype corresponding to each value of the index datatype.

Parameters: Base datatype, Index datatype

5.3.5.8 Choice

This is a family of datatypes constructed from a sequence of base datatypes, each
associated with a name. A value of a choice datatype contains, for exactly one
name, a value of the corresponding base datatype.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

5.3 Datatypes 17

270

271

272
273
274

275

276

277
278
279
280
281

282
283
284

285

286
287
288
289
290
291
292

293

294

295
296
297

298
299

300

301
302

TCOS-LIS/D4 LANGUAGE INDEPENDENT

Parameters: List of <name, datatype> pairs

5.3.5.9 Record

This is a family of datatypes constructed from a sequence of base datatypes, each
associated with a name. A value of a record datatype contains, for each name, a

value of the corresponding base datatypes.

Parameters: List of <name, datatype> pairs

5.3.5.10 List

This is a family of datatypes constructed from a base datatype. A value of a list
datatype contains a sequence of zero or more values of the base datatype. Apply-
ing an operation to all members of a list may be supported through either of two

datatypes of programming paradigm. In the first, the sequencing control is pro-
vided by the application. In the second, it is provided by the implementation.

Parameters: Base datatype, optional maximum length

Is there a need for a datatype thut supports concatenation like a list, but supports
indexing like an array?

5.3.5.11 Set

This is a family of datatypes constructed from a base datatype. A value of a set
datatype contains an unordered collection of values of the base datatype, each
occurring at most once. The is_member operation returns a boolean value that
depends on whether the specified value is a member of the set. Applying an
operation to all members of a set may be supported through either of two data-
types of programming paradigm. In the first, the sequencing control is provided
by the application. In the second, it is provided by the implementation.

Parameters: Base datatype

5.3.5.12 Character

This is a family of datatypes whose values are either "glyphs" or special non-
printing control characters. All character datatypes used in TCOS-SS functional
specifications include the set of Portable Filename Characters, defined in POSIX.1.

Character datatypes are considered unordered; all collation properties are exter-
nal to the model.

Parameters: Character Set

A character set can be specified by designating an externally specified character
set, or by enumeration, or by a combination of these.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

18 5 The Model

.

. 303

i 304

305

306
307
308

309

310

311
312
313
314

315

316

317
318
319
320

321

322
323
324
325
326
327
328

329
330

331
332
333
334
335
336
337
338

SPECIFICATION METHODS TCOS-LIS/D4

Character datatypes depend only on the character set, and not on the encoding of
the character set.

5.3.5.13 Character String

This is a family of datatypes constructed from a base character datatype. A value
of a character string datatype is a sequence of values of the base character data-

type.
Parameters: Base character datatype, optional maximum length

5.3.5.14 Time

This is a family of scaled, one-dimensional vector datatypes used to measure t@e
intervals. Time units are specified by designating an externally specified time
unit (e.g., "second”, "day”). Time scales are specified as multiples or fractions of
the time unit.

Parameters: Unit, Scale, Maximum value

5.4 Value Names

The model includes symbolic names that are used to represent specific values of
specific datatypes. The model does not specify when a name is bound to its value:
at compile time, link time, or load time. The use of a value name as a parameter
in a datatype specification does not imply that its value is defined at compile time.

5.5 Procedures

Procedures are modelled as abstract interfaces. Unlike most real programming
languages, the model allows input and output parameters of any datatype. All
parameters are passed by value. There are no in-out parameters, or parameters
passed by name or by reference. Information communicated between a caller and
a service is contained wholly within the procedure parameters (except for the
status value). There is no use of "global variables’ in the model. Of course, real
language bindings may choose other means for passing values across the interface.

Procedures do not have a distinguished return parameter. All returned values are
modelled as output parameters.

Procedures also return an abstract status value. In a language binding, the status
value may be mapped in various ways, including to an output parameter, a global
status variable, or an exception mechanism. Status values are also typed, so that
each procedure can be associated with a particular status value space. All status
datatypes will have a distinguished value indicating successful completion, and
other values indicating specific reasons for failure. OQutput parameters are valid if
the status value indicates success, and are invalid otherwise. There is no provi-
sion for informational status. If the status value is not the unique value

UNAPPROVED DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

5.5 Procedures : 19

Lo

339
340

34

342
343
344

345
Ui 346
Y 847
38

350

& 381

352
353

TCOS-LIS/D4 LANGUAGE INDEPENDENT

indicating success, the procedure is assumed to have failed with no side effects,
unless specified otherwise.

This procedure model follows the success/failure procedure model used in
[POSIX.1]. On success, all output parameters have defined values and all expected
side effects occur. On failure, no output parameters have defined values and no
side effects occur, except that a diagnostic status value is made available to the
application. This status value is not considered an output parameter because
language bindings might map the status value to control features such as excep-
tion handlers, as well as to data features. How the success or failure of each pro-
cedure is indicated to applications is defined by each language binding.

Members of WG11 have suggested a more general model that does not distinguish
between success and failure, and allows arbitrary subsets of the output parame-
ters to have defined values for each status.

The interface model includes procedures exported by the application as well as
those exported by the service implementation. Examples of the former from the C

language include "main()" and signal handlers.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

20 5 The Model

Lo T o Y

Lo S N

B =

wm ~1 ;& O = W

w

10

11

13
14

15

16
17
18

19
20
21

23

% TCOS-LIS/D4

Section 6: Conventions

[This Conventions section will be included in every language-independent functional
specification.

The POSIX Standards Style Guide [PSSG] describes macros that can be used to formar the
notation defined below. |

This subclause defines the notation used within this standard to specify the infor-
mation that is communicated through interfaces to the defined services. The
notation assumes a model of an abstract procedural interface, although language
bindings to this standard may take other forms.

The key elements of the notation are abstract data datatype definitions, value
name definitions, and procedure definitions.

It is expected that in each case the notations specified here will be supplemented
by additional descriptions using other notational schemes. For instance, for the
specification of each procedure, the notation described below is to be used in the
Synopsis section, while the semantics are described in the Description section.

6.1 Notation

A modified BNF notation is used in this section. The characters ", "=", "<", ">",
"|" "{", and "}" are always part of this notation and are never used in terminal
strings.

Non-terminal elements consist of a "<" character followed by an identifier followed
by a ">" character. Each production consists of a non-terminal followed by the
characters ":=" followed by a right-hand-side expression. In a right-hand-side
expression, the "|" character separates alternate elements, and the "{" and "}"
characters delimit optional elements.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

6.1 Notation 21

24

25
26
27
28
29
30
31
32
a3
34
a5
36
37

38
39

40
41

42

49

50
51
62
53

TCOS-LIS/D4 LANGUAGE INDEPENDENT

6.2 Identifiers

<identifier> ::= <initial-char> <identifier-body>
<initial-char> ::= <upper-case-letter> | <lower-case-letter>
<identifier-body> ::= <body-char> { <identifier-body> }
<body-char> ::= <upper-case-letter> | <lower-case-letter> |
<digit> | <separator>
<lower-case-letter>::=alblcldlelflglhlil
jlklllmlinlolplglrlsltl
ulviwlxlylz
<upper-case-letter> ::= A | B

I

CIDIEIFIGIHIII
JIKILIMINIOIPIQIRISITI
UIVIW YIZ :

617

X1
| 6 181910

o —

<digit>:=11213141
<separator> :=- | _

The following typographic conventions are used as a mnemonic aid to indicate the
syntactic datatype of identifiers.

1. Lowercase identifiers in the Helvetica Italic font are used for datatype and pro-
cedure names. Datatype names are distinguished by the suffix "_type".

Examples: directory_handle_type,open_directory
2. Roman uppercase identifiers are used for value names. _
Examples: TRUE, MAX_DIRECTORY_HANDLE

3. Lowercase identifiers in the New Century Schoolbook Italic font are used for
procedure parameters.

Examples: directory_name

6.3 Datatypes
The following notation is used to specify a datatype synopsis:

Datatype: <datatype-name>
Definition: <datatype-definition>
Description:

where

UNAPPROVED DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

22 : 6 Conventions

55
56

2a2BR2BEEY

=

71
72
73
74
75

76

78
- 79

80

81

g &S

85

87

SPECIFICATION METHODS

This notation scheme is incomplete. The notations for specifying character data-
types, time datatypes, and for specifying a datatype "from scratch” have not yet

<datatype-name> ::= <identifier>

<datatype-definition> ::= <atomic-type> | <constructed-type>

<atomic-type> ::= boolean_type/<opaque-type>
<ordinal-type> | <integer-type>

<opaque-type> ::= opaque/<size>

<state-type> ::= state[<state-list>

<state-list> ::= <state-value> { , <state-value> }

<state-value> ::= <identifier>

<ordinal-type> ::= ordinal_type/<size>

<size> ::= <number>

<integer-type> ::= integer_type/<minimum>

<minimums> ::= <signed-number>

<maximum> ::= <signed-number>

<constructed-type> ::= <array-type> | <choice-type> | <record-type>
<array-type> ::= array<index-type>of

<index-type> ::= <ordinal-type> | <integer-type> | <state-type>
<base-type> ::= <type>

<choice-type> ::= choice[<member-list>

<record-type> ::= record/[<member-list>

<member-list> ::= <member-definition> { , <member-definition> }
<member-definition> ::= <member-name> : <member-type>
<member-name> ::= <identifier>

<member-type> ::= <type>

been formulated. Suggestions are welcome.

6.4 Value Names

The following notation is used to specify a value name synopsis:

Name: <value-name>
Definition: <datatype>
Description:

where

<value-name> ::= <identifier>
<datatype> ::= <datatype-name> | <datatype-definition>

UNAPPROVED DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

6.4 Value Names

TCOS-LIS/D4

88

89

91
92
93
94
95

97

98

100

TCOS-LIS/D4

6.5 Procedures

The following notation is used to specify a procedure:

Procedure: <procedure-name>
Status Type: <datatype>

Input: <parameter-name> :
<parameter-nare> :

Output: <parameter-name> :
<parameter-name> :

Description:

where

<datatype>
<datatype>
<datatype>
<datatype>

<procedure-name> ::= <identifier>

<datatype> ::= <datatype-name> | <datatype-definition>

<parameter-name> ::= <identifier>

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

LANGUAGE INDEPENDENT

Preliminary—Subject to Revision.

AN

6 Conventions

L

O O O Y

SPECIFICATION METHODS TCOS-LIS/D4

54 <datatype-name> ::= <identifier>

55 <datatype-definition> ::= <atomic-type> | <constructed-type>

56 <atomic-type> ::= boolean_type/<opaque-type>

57 <ordinal-type> | <integer-type>

58 <opaque-type> ::= opaque/<size>

59 <state-type> ::= state[<state-list>

60 <state-list> ::= <state-value> { , <state-value> }

.61 <state-value> ::= <identifier>

62 <ordinal-type> ::= ordinal_type/<size>

63 <size> ::= <number>

64 <integer-type> ::= integer_type/<minimum>

65 <minimum> ::= <signed-number>

66 <maximum> ::= <signed-number>

67 <constructed-type> ::= <array-type> | <choice-type> | <record-type>

68 <array-type> ::= array<index-type>of

69 <index-type> ::= <ordinal-type> | <integer-type> | <state-type>

70 <base-type> ::= <type>

71 <choice-type> ::= choice[<member-list>

72 <record-type> ::= record/<member-list>

73 <member-list> ::= <member-definition> { , <member-definition> }
74 <member-definition> ::= <member-name> : <member-type>

75 <member-name> ::= <identifier>

76 <member-type> ::= <type>

77 This notation scheme is incomplete. The notations for specifying character data-
78 types, time datatypes, and for specifying a datatype "from scratch" have not yet
79 been formulated. Suggestions are welcome.

80 6.4 Value Names

81 The following notation is used to specify a value name synopsis:

82 Name: <value-name>
83 Definition: <datatype>
84 Description:

85 where

86 <value-name> ::= <identifier>
87 <datatype> ::= <datatype-name> | <datatype-definition>

UNAPPROVED DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

6.4 Value Names ' 23

AN

89

91

a3

I8& R

98
99

TCOS-LIS/D4

6.5 Procedures

The following notation is used to specify a procedure:

Procedure: <procedure-name>
Status Type: <datatype>

Input: <parameter-name>
<parameter-name> :

Output: <parameter-name> :
<parameter-name>

Description:

where

: <datatype>

<datatype>
<datatype>

: <datatype>

<procedure-name> ::= <ident:ier>

<datatype> ::= <datatype-name> | <datatype-definition>

<parameter-name> ::= <identifier>

UNAPPROVED DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24

LANGUAGE INDEPENDENT

6 Conventions

[- S L

[]

o =3 o

10

11

TCOS-LIS/D4

Section 7: Conformance

[The following clauses should be included in every language-independent functional
specification.]

Editor's Note: This section will define the general requirements for conformance of a
language binding to a language-independent functional specification.

Conformance depends on properties of the mapping berween the datarypes, value names, and
procedures of the language binding to those of the language-independent specification. For
instance, the mapping musr preserve equality and other relations berween each datarype’s
values. How should these properties be specified?

Possible conformance levels include:
e direcr conformance
e parrial conformance

 conformance with extensions

UNAPPROVED DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

7 Conformance 25

13
14
15
16
17
18
19
20

N I

24

26

TCOS-LIS/D4

Section 8: Guidelines for Language-Independent Specifications

This chapter provides guidelines for developing a new abstract interface
specification or deriving one from an existing language binding.

8.1 General Guidelines

8.1.1 Document Organization

In developing a language-independent standard from a language-specific standard,
it may happen that the changes made in the translation process suggest improve-
ments to the document organization of the language-independent standard. The
benefits of such changes need to be balanced against the value for purposes of
review of maintaining a close correspondence between the sections of the
language-independent standard and those of the language-specific standard from
which it was derived. .

8.1.2 Terminology

The development of a language-independent standard from existing language-
specific system service specifications involves the articulation of a new, abstract
interface based on coherent data and procedure models. The entire specification
must be reviewed carefully to determine which requirements are language-specific
and which are language-independent, and to invent new points of articulation
between them where necessary. Thus, the development process imposes the
requirement and provides the opportunity for a greater rigor in the use of termi-
nology.

It must be ensured that all normative terms and phrases are defined, and used
consistently, and that any use of undefined terms does not lead to normative
ambiguity.

Clear and consistent terminology should be used when referring to system objects

and their attributes, to associations between objects, and to internal procedures
that are invoked directly or indirectly.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

8.1 General Guidelines 27

ol b o b B B e L O

L

L

27

28
29
30
31

32
as
34

a5
36
37
38
39
40

41

EE&ER

386

48
49

50
51
52

53
54
55

56

57
58
59
60

TCOS-LIS/D4 LANGUAGE INDEPENDENT

8.1.3 Documentation Requirements

The translation to language-independent form introduces the new term
"language-binding defined”, analogous to "implementation defined”, for those
features and behaviors that are not specified in a language-independent standard
but are required to be specified in each language binding.

The terms "unspecified” and "undefined" also shift in meaning, since any feature
or behavior that is unspecified or undefined in a language-independent standard
may be specified in a language binding, or specified to be implementation defined.

As a result of these changes in the framework of documentation requirements, all
uses of these terms must be reconsidered in the translation process. Some
features and behaviors that are specified in a language-specific standard become
language-binding specified in a language-independent standard. Some features
and behaviors that are implementation-defined in a language-specific standard
become unspecified in a language-independent standard.

8.1.4 Language-Specific Features

Interfaces should be generalized, removing restrictions imposed by a particular
language binding. Language-independent interface specifications should abstract
from the implementation to the purpose of the interface.

« Features that are part of a specific language binding, but for which the primary
specification is the language standard, should not be included in the language-
independent specification.

e Features that depend on, or are made necessary by features of the specific
language, should not be included in the language-independent specification.

o Features that are included in a specific language binding for historical reasons
only, or are deprecated, should not be included in the language-independent
specification.

Features that originate in a specific language binding but are supportable and
useful to other language bindings should be included in the language-independent
specification, though perhaps in a more general form.

8.1.5 Atomicity

In general, the language-independent specification should describe atomic
features that will not be further subdivided by language bindings. Features
should be combined only where it is desirable for all language bindings to group
features the same way.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

28 8 Guidelines for Language-Independent Specifications

\

61

62

I3&23

69
70

71

72
73

74
75
76

78
79

80
81

83
84

85

86
87
88

89

91

SPECIFICATION METHODS TCOS-LIS/D4

8.2 Identifiers

Since the language-independent service specification is intended for human reada-
bility, identifiers should be descriptive without being cumbersome. Identifiers
should adhere to a consistent style, and use typographic and other conventions to
distinguish syntactic categories, such as procedures, parameters, datatypes, and
value names. Commonly used abbreviations, such as "id" for "identifier", are
acceptable if used consistently. '

It is useful for language-independent specifications to recommend for language
bindings any natural groupings of identifiers that should be capable of being
independently made visible by applications.

8.3 Datatypes

Select a datatype that is as abstract as possible, yet provides the required opera-
tions.

New datatypes should be specified by recursively specifying constructed datatypes.
Eventually, the construction will rest on one or more simple datatypes. Each con-
structed datatype should be specified by its method of construction and the data-
types of its component values. Each simple datatype that is a member of a data-
type family should be specified by its distinguishing attributes within that data-
type family.

When specifying opaque datatypes, any names representing values of that data-
type should be specified with it. -

For each datatype, the standard should specify whether the language binding
should fully specify the corresponding concrete datatype, or instead defer this to
the implementation. ' “

8.3.1 Opaque Datatypes

Use opaque datatypes to indicate that values have no visible semantics. Be sure
to specify the required number of different values that must be supported by an
opaque datatype.

Use opaque datatypes for attributes of, and handles for, externally defined objects.

8.3.2 Named Datatypes

For each state datatype used, the functional specification should specify whether
the datatype is extensible.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

8.3 Datatypes 29

AN

Y

93

94

95

R

98

100

101

102
103
104
105
106

107

108
109
110
111

112
113

114

115
116
117

TCOS-LIS/D4 : LANGUAGE INDEPENDENT

8.3.3 Order Datatypes
Use order datatypes for sequencing and array indexing.

8.3.4 Numeric Datatypes

Use numeric datatypes only for counting and measuring. Be sure to specify the
required range of values.

8.3.5 Special Datatypes

8.3.6 Derived Datatypes
8.3.6.1 Abstracted Datatypes

8.3.6.2 Restricted Datatypes

If a parameter is a restricted datatype, it may be treated as if it were a less res-
tricted version of the base datatype, with an exception status if the actual parame-
ter is outside of the declared datatype. This is permitted because in general,
language bindings cannot be expected to perform range checking for restricted
datatypes.

8.3.7 Constructed Datatypes

Constructed datatypes should be used only where a specific data representation is
required, and where the datatype values have only those properties implied by the
construction method. Aggregate datatypes may prove restrictive if access control
mechanisms do not affect all fields equally.

For each union or record datatype used, the functional specification should specify
whether the datatype is closed or extensible.

8.3.8 Handling ’flag words’

If a group of flags represents an object state, this should be specified as a record of
boolean_type values. If a group of flags specifies command options, this should be
specified as separate boolean_type values.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

30 8 Guidelines for Language-Independent Specifications

137

138

139
140
141

142
143
144
145
146

147
148
149

151

SPECIFICATION METHODS . TCOS-LIS/D4

8.3.9 Handling Sets and Lists

Concentrate on defining the datatypes. Don't constrain bindings to one set ?f
operations: get_next_element vs callback_for_each_element. A choice that is
natural for one language binding may not be so for another.

8.4 Value Names

Most value names fall into one of the following categories:
« configuration parameters: boolean and integer values

« state datatype values

 opaque datatype values

Names that represent values of state datatypes or opaque datatypes shou_ld be
specified as part of the definition of the datatype. Unlike these, the meaning gf
configuration parameters is not closely associated with the datatypes of their
values, so these should be specified separately.

Where a functional specification uses an abstract datatype to represent a concrete
datatype in a language binding, literal value names should be represented by

~ corresponding symbolic value names.

Functional specifications should indicate when names are bound to their values.

An important use of value names is to announce configuration options. Guidelines
should be provided for this.

8.5 Procedures

8.5.1 How Big are Atomic Procedures?

When a language-independent specification is developed to support two or more
existing language bindings, identification of the appropriate atomic procedures
may be difficult.

The procedures in language bindings must be specifiable in terms of combinations
of procedures in the associated language-independent standard. Hence, the
atomic procedures selected in a language-independent standard should be no
larger than the functional intersections of the procedures of all language bindings
that must be supported.

On the other hand, a language binding is incomplete to the extent that all possible
combinations of the atomic procedures in the associated language-independent
standard are not supported. Hence, the atomic procedures selected in a
language-independent standard should be no smaller than the corresponding pro-
cedures of all language bindings that need to be supported.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

8.5 Procedures 31

[

'S

Lo

[)

P

LN I O

152
153
154

155
156
157
158
159
160
161
162
163
164
165
166

167

168
169
170

171

172
173

174

175
176
177
178
179
180
181
182
183

184

185
186

187
188
189

TCOS-LIS/D4 LANGUAGE INDEPENDENT

In case of conflict between these rules, the former takes precedence, since it is
more important for a language binding to be well-defined than for it to be com-

plete.

8.5.2 Atomic Set-and-Return-Previous-Value Procedures

For procedures that get and set service or service object attributes, two
approaches to defining atomic procedures are possible. One is to have a single
procedure that sets a new value of the attribute and returns the previous value.
The other is to have two separate procedures: one to set a new value of the attri-
bute, and one to get the current value of the attribute. In the first aproach it is
not possible to atomically get the current value of the attribute without tem-
porarily modifying that value in a way that might be externally visible.. In the
second approach it is not possible to atomically set a new value and get the
current value. Each approach provides useful atomic procedures for a different
program design. A compromise approach would define two procedures: one to get
the current value, and one to both set a new value and return the current value.

8.5.3 Atomic Compound Procedures

A procedure might atomically perform some subset of a group of actions, with the
subset depending on the value of some parameters. In this case, breaking the pro-
cedure up into elementary procedures to undo overloading would change the
semantics, since atomic combined actions would no longer be supported.

The choice of atomic operations affects the object model. If the a group of attri-
butes can only be set together, then they constitute a single attribute.

8.5.4 Avoid Overloaded Procedures

Break up parameters that encode multiple values. Break up procedures whose
parameters use different value subranges with different meanings, or which use
different values to indicate different functions. Care must be taken, however, to
avoid the introduction of race conditions. Overloaded procedures that use
different parameter values, or the presence or absence of a parameter value, to
indicate alternate underlying procedures, may be safely broken up to expose the
underlying procedures. However, procedures that use overloading to indicate a
selection of underlying procedures that are to be performed atomically, cannot be
broken up without introducing race conditions.

8.5.5 No Side Effects on Procedure Failure

Any exceptions to the general rule that procedures that fail shall have no side
effects should be carefully documented.

The specification of side effects on failure, or valid output parameters on failure,
should be avoided. Whenever an error condition would result in a determinate
side effect or a determinate output parameter value, this condition should be

UNAPPROVED DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

32 8 Guidelines for Language-Independent Specifications

PO O U S S S O O O S

[

O O S

114
115
116
117

119

5

EEREEER BR

147

149
150
151
152

154
155
156
157

TCOS-LIS/D4 : LANGUAGE INDEPENDENT

o Cardinality: A datatype may have a finite or infinite number of different values.
Infinite datatypes are seldom used directly in abstract interface specifications, but
are useful for the definition of other datatypes. The cardinality of finite datatypes
may be fixed in a functional specification or deferred to the language binding or
implementation.

5.3.2 Properties and Operations

Other characteristics of a datatype depend on relationships among members of the
value space of the datatype. Completely opaque datatypes have no visible rela-
tionships among their values. The value spaces of non-opaque datatypes have a
visible structure that is defined by functions associated with the datatype.

Since the functions associated with a datatype can be composéd to yield new func-
tions, the complete set of functions defined on the value space of a datatype may
be quite large. It is usually sufficient (and preferable) to list only a small set of
basic functions. Where alternate basic function sets are possible, the choice of a
specific basic function set can have a significant effect on the programming style of
applications and the efficiency of implementations.

Because the model includes "pure” values, and does not (currently) include objects
whose value can be altered by assignment, all datatypes support operations to test
for value identity, but need not support assignment of values.

e Order: The most common relation between values is order. A datatype whose
values have only order relations is an order datatype. Order datatypes support an
in_order function that takes two values of the datatype and returns a boolean
value: TRUE if its arguments are in order and FALSE otherwise. If the order data-
type is discrete, it will support functions that return the predecessor or successor
of a value. If the order datatype has a least or greatest value, it will support func-
tions that return them. The family of order datatypes alone is quite varied,
including linear and cyclic orders. A datatype whose relations include order rela-
tions is called An ordered datatype, to distinguish it from the pure order data-
types.

e Numeric: Most order datatypes have numeric analogs that supplement the
order functions with arithmetic functions. Non-standard order datatypes may
require non-standard arithmetic functions. Numeric datatypes may be pure, non-
dimensional quantities (scalars) that may be freely combined using arithmetic
operations, or they may have one or more associated dimensions, such as length or
time, that must be "conserved" by arithmetic operations. Among the numeric
datatypes are integer datatypes, scaled datatypes, rational datatypes, real data-
types, complex datatypes, etc. Scaled datatypes (defined in [ISO2]) behave like
integers multiplied by a constant integral or fractional scale factor. Of the
numeric datatypes, only integer and scaled datatypes are likely to be used in
TCOS-SS functional specifications.

« Special: This group of datatypes includes all those that support functions other
than those supported by order datatypes or numeric datatypes. These functions
may be defined in various ways, including axiomatically, or by enumeration of
their values.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

14 5 The Model

158

159
160
161
162

163
164
165
166
167
168
169

170

171
172
173
174

1756
176
177
178
179

180
181

182
183

184
185
186
187
188
189

©. 190

191

192
193
194
185
196
197

SPECIFICATION METHODS TCOS-LIS/D4

5.3.3 Base Datatypes and Datatype Derivation

Although datatypes may be defined "from scratch"”, by defining the value space and
the operations on that value space, datatypes are more commonly defined by their
relation to similar, already defined datatypes. For this purpose, a set of base data-
types is predefined in the model (see below).

Datatype derivation can be either abstract or concrete. Abstract datatype deriva-
tion is simply a specification convenience, which does not imply a similar relation-
ship between the implementations of the base and the derived datatypes. Con-
crete datatype derivation, on the other hand, does imply an analogous relationship
between the implementations of the base and derived datatypes, and implies sup-
port for "casting” operations to generate values of the derived datatype from those
of the base datatype, and conversely.

The following fundamental datatype derivation methods are available:

o Restriction: A restricted datatype is one that is derived from another datatype
by selecting a subset of its value space, but keeping the same associated functions
(with suitably adjusted domain and range). Examples are subrange datatypes and
constructed datatypes with invariants.

o Abstraction: An abstracted datatype is one that is derived from another data-
type by keeping the same value space, but removing some of the supported func-
tions on values. An example is the order datatype derived from the integer data-
type by keeping the value space and value names but removing the arithmetic
operations.

» Extension: An extended datatype is one that is derived from another datatype
by the addition of new values to its value space.

o Enrichment: An enriched datatype is one that is derived from another datatype
by defining additional functions on its value space.

Of course, the change of value space that occurs in the derivation of a restricted or
extended datatype usually involves changes in the domain and range of the func-
tions defined on that value space. These changes may introduce exception condi-
tions. A function on a restricted datatype may yield a value that lies outside the
value subset associated with that datatype. For example, the last value of a
bounded order datatype has no successor.

How should such exception conditions be specified?

5.3.4 Constructed Datatypes

Constructed datatypes use special kinds of concrete datatype derivation to create
a non-atomic value space from one or more base datatypes. Constructed data-
types support no operations except the casting operations, so their component
values are separately manipulable. This makes them particularly useful as
representations within a module that defines and exports new functions, and
exports the datatype as an atomic datatype.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

5.3 Datatypes 15

AN

180
191

192

193
194
185
196
197
198
199
200
201
202
203

204
205
206
207

208

209
210
211
212
213
214

215
216
217
218
219

220

SPECIFICATION METHODS . TCOS-LIS/D4

specified as a success condition. If necessary, additional output parameters can be
defined to provide diagnostic information.

8.5.6 Procedures that ’Can’t Fail’

Error conditions can be defined in three ways: by the language-independent stan-
dard, by the language binding, or by the implementation. The current distinction,
between procedures that shall not fail and procedures that simply have no error
conditions defined, refers to the implementation. In the former case, implementa-
tions shall not define error conditions; in the latter case implementations may
define error conditions. However, language bindings may always define error con-
ditions. Even a procedure that returns an integer might raise an exception in a
language that supports dynamic typing if called with an argument of the wrong
datatype. The language-independent standard should not distinguish between
procedures where language-specific errors are likely to be defined and procedures
where language-specific errors are not likely to be defined.

For now, we are assuming that error conditions defined by language bindings and
implementations will share the same status type. This implies that Status Type
should be specified for all procedures, whether or not the language-independent
specification specifies any conditions in which the procedure will fail.

8.5.7 Boolean Procedures

In creating a language-independent specification, there is often a choice to be
made between alternate versions of procedures whose purpose is to perform a test.
In the procedure model, test procedures can be specified to return a boolean_type
output parameter that depends on the result of the test, or they can be specified to
succeed or fail, depending on the result of the test. In certain language bindings,
these versions may require very different programming styles.

If the boolean_type version is used, it should be carefully specified which condi-
tions result in success with an output value of FALSE and which conditions result
in failure. Depending on the definitions of these conditions, the boolean_type ver-
sion might require an order for the detection of error conditions that is not
required by the other version.

8.5.8 Undefined vs Ignored Input Parameters

In the procedure model, all input parameters must have defined values on a pro-
cedure call. This model permits a parameter value to be ignored in certain cases,
but this should be avoided in general as a form of overloading.

A different case is when the presence or absence of a value for an input parameter
has a controlling effect on a procedure. This should be modelled by a boolean_type
input parameter accompanying the optional input parameter. If the boolean_type
parameter has the value TRUE, the associated input parameter will be used; if
FALSE, the associated input parameter will be ignored. Language bindings that
support optional procedure parameters, or provide a special NULL value for the

UNAPPROVED DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

8.5 Procedures 33

N

P O O O O O S O S =

[

LR R R

[A

[

[O

230

231

232
233

235
236

237

238
239

240
241

242
243

244

245
246

247
248

249
250

TCOS-LIS/D4 ; LANGUAGE INDEPENDENT

parameter datatype, can eliminate the boolean_type parameter.

8.5.9 Undefined Output Parameters

In the procedure model described in TCOS LIS, all output parameters have defined
values after a successful procedure call. In a few cases in POSIX.1LIS, output
parameters are undefined for successful procedures. In these cases, each such
output parameter is accompanied by a new boolean parameter whose value indi-
cates whether the accompanied parameter is defined or not.

8.5.10 Procedure Descriptions

In addition to the interface specifications captured by the model, further
specifications are needed, including:

o Restrictions on the use of this interface due to access controls or required
privileges.

« Restrictions on the sequential or concurrent order in which this interface may be
called.

« Restrictions dependent on the internal state of the service implementation.

o The precise dependency of the values of the output parameters on the values of
the input parameters and the internal state of the service implementation.

« The initial state of the service implementation, and for each possible state, the
new state resulting from a successful call to the procedure.

The specification of conditions that will or may result in the unsuccessful comple-
tion of the procedure, and the status value that will be returned in each case, is
part of the informal interface description, and not part of the interface definition.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

34 8 Guidelines for Language-Independent Specifications

O S

-1 &

o o

10
11

13
14
15
16
17
18

19

20

BRRB

24

26
27

Section 9: Guidelines for Language Bindings

This section provides guidelines for specifying programming language bindings to
a language-independent specification.

9.1 General Guidelines

A language binding defines a mapping between a language standard and a func-
tional specification. This mapping should be harmonious, so that correct and
natural access to the service features is provided to programs that are not only
correct, but have good style in the particular programming language®.

Features should not be duplicated. Service features should be bound to existing
language features, where possible, rather than to newly invented features.

Language bindings should reference the associated functional specification and
language standard whenever feasible rather than duplicating specifications con-
tained in those standards.

It is not necessary that a language binding provide access to all features of a func-
tional specification. In particular, features of a base standard may be omitted
from a language binding to that base standard where these conflict with features
of the associate language standard. The omission from a language binding of any
feature of the associated functional specification should be documented in that
language binding together with a rationale for the omission.

9.1.1 Identify Language-Specific Interfaces

All features of the language binding that have no equivalents in the language-
independent specification must be identified as language-specific extensions. This
includes both interfaces that are defined in the language standard, and interfaces
that are unique to the language binding.

3) It is desirable that both language standards and functional specifications be accompanied by
guidelines for language bindings. This will facilitate the development of new language
bindings, and will encourage consistency among bindings to different functional specifications
and to different languages, respectively. See [ISO1], Guideline 4, p. 18.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

9.1 General Guidelines 35

29

30
31
32
33

35

36
37
38
39
40

41

SERERN

TCOS-LIS/D4 . LANGUAGE INDEPENDENT

9.1.2 Atomicity

The language binding may combine groups of features specified in the functional
specification into a single feature or interface. However, a language binding
should not map multiple features onto a single feature of the functional
specification. In particular, interfaces that change the state of the service imple-
mentation shall not be subdivided. It is permissible, though discouraged, to subdi-
vide non-state-changing interfaces®.

The mapping of abstract and opaque datatypes by datatypes supported by the
language may require exposing representations, and therefore parts, of values
intended to be treated as wholes. Care must be taken so that the interfaces pro-
vided in the language binding, including language-specific extensions, preserve the
integrity of these values.

9.1.3 Provide Cross-References

It is preferable for language bindings to a functional specification to have the same
structure and organization as the functional specification, to facilitate comparison
and verification of conformance®. Wherever a language binding follows a different
document organization, adequate indices and cross-references must be provided to
allow correlation with the functional specification.

9.2 Identifiers

Each language binding must map the identifiers in the language-independent
specification to identifiers in the programming language. These identifiers should
conform to the conventions for identifier style in the language, as well as the for-
mal requirements on character set, maximum length, etc. .

The language binding must specify any effects of application constructs on the visi-
bility of identifiers, and any requirements or options for the presence of such
application constructs. The language binding must also specify which identifiers
are reserved in each case, and the effect of application use of defined or reserved
identifiers. ‘

Since applications and language binding implementations may both introduce
indentifiers into an applications identifier name-space, language bindings should
provide mechanisms for identifier name-space management. Where the program-
ming language provides the necessary facilities (and they should be encouraged to
do so), a modular approach to name-space management should be taken, including
support for the following features:

4) See [ISO1)] Guideline 8, page 20.
5) See [ISO1] Guideline 48, page 37.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

36 9 Guidelines for Language Bindings

Lo A

N L

98

100
101
102

SFECIFICATION METHODS : TCOS-LIS/D4

« Where language binding identifiers fall into functional clusters that might be
separately useful to applications, mechanisms should be provided for applications
to control the visibility of each cluster separately.

o Applications should be able to freely define identifiers, without interference from
indentifiers imported from language bindings.

« In environments where language bindings for multiple system services are avail-
able to applications, it is desirable to provide mechanisms for applications to selec-
tively make visible the identifiers exported by any set of language bindings, and to
qualify identifiers in order to avoid conflicts between identifiers imported from
more than one language binding, or between an imported and an application-
defined identifier.

«In environments where some language binding implementations may export
identifiers to other language binding implementations, it is desirable to provide
mechanisms to ensure that identifiers defined by an application do not interfere
with identifiers exported from one language binding implementation to another,
and that the visibility of identifiers exported by a language binding does not entail
the visibility to applications of identifiers imported by that language binding.

A less desirable approach is to share identifier name-spaces among the application
and all language bindings in an environment. This entails allocating reserved
name-spaces to each language binding, with the remainder available for use by
applications. Aside from restricting the name-spaces available to applications
(and to language binding implementations), this approach creates a coordination
problem among language bindings.

9.3 Datatypes

For each datatype included in a language binding, all required operations must be
supported. Additional operations may also be supported where these do not
conflict with the required operations. Such additional operations must be docu-
mented as language-specific extensions. Where such extensions are of general
utility, they should be incorporated in future revisicns of the language-
independent specification. In general, language-specific extensions should be
avoided, to minimize the divergence of the different language bindings to a service.

o use language-supported datatypes where possible
« use explicit procedures for datatypes not supported by the language
« take advantage of datatype-checking mechanisms

Different instances of an abstract datatype family need not be bound to members
of the same concrete datatype family. For instance, different list datatypes need
not be implemented the same way.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

9.3 Datatypes 37

L LI

L

[A

103

104
105
106

107

108
109
110
111

112
113
114

115
116
117
118

119

120
121

130
131
132

133
134
135
136

137
138
139

TCOS-LIS/D4 LANGUAGE INDEPENDENT

9.4 Value Names

Value names in the abstract interface specification should be preserved in the
language binding. That is, they should not be replaced by literal values-, however
the abstract datatype of the value name is represented in the language binding.

9.5 Interface Objects

Where a language-independent specification specifies all interfaces in terms of
values, and keeps all system objects hidden below the interface, language bindings
may expose certain objects at the interface. Examples in [POSIX.1] are the DIR
and FILE structures.

In such cases, language bindings must include additional requirements on applica-
tions regarding the initialization of objects, the effect of using copies of objects, and
restrictions on concurrent access to objects.

Language bindings that might be used in multi-threaded environments should
avoid the use of static objects for parameter passing, and should specify which pro-
cedure calls will behave as if serialized. Language bindings may provide addi-
tional mechanisms (i.e., locking) for application control of serialization.

9.6 Procedures

" For each procedure in the language-independent functional specification, several

decisions need to be made:

« Choose the parameter passing method. Examples include: by value, by refer-
ence, by implicit reference using a global object.

« If the language supports functions, the use of the return value must be decided.

o Choose the mechanism for reporting status. Examples include: return value,
global value, or exception mechanism.

Where possible, parameters should be passed by value. Many languages impose
restrictions on the datatypes that can be passed by value. Nearly all languages
allow only a single output parameter to be passed by value. For output parame-
ters passed by reference, it must be decided whether the caller or the service will
allocate memory to store the value. Language bindings may map a parameter
passed by reference to a global object, although this is generally undesirable.

The actual parameter passing mechanism used in a language binding may intro-
duce language-specific error conditions. For instance, if an out parameter is
passed by reference, the procedure might fail if the reference supplied by the
caller is invalid, or the target object is too small.

Where the interface elements present in the language binding map directly to
those of the abstract service specification, it is not necessary to repeat the inter-
face semantics. Instead, a cross-reference to the appropriate part of the abstract

UNAPPROVED DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

38 : 9 Guidelines for Language Bindings

™

140
141
142
143

144
145

146
147

148

149

150
151
152
153

154
155

156
157

158
159

160

161
162

SPECIFICATION METHODS TCOS-LIS/D4

services specification should be given. Where the mapping is not direct, such
specification should be provided as is necessary to indicate the relation between
the behavior of the interfaces in the language binding to that of the interfaces in
the abstract service specification.

For each interface element in the language-independent specification, a type of
mapping must be chosen.

e high-level: use ex:is;ting language services or create new services at the same
level as existing language services

« low-level: provide direct access to service interfaces
» no mapping: if service feature conflicts with language model

Wherever there is substantial overlap between the service features and the
features of the language binding, the relation between them must be specified. If
the mapping is direct, the correspondence between the identifiers used in the ser-
vice specification and those used in the language binding must be given.

If the language binding does not provide a direct mapping to a service interface,
additional information is needed. :

o What is the relation between the states of the language binding features and the
underlying service features? How are they synchronized?

o What are the restrictions on interoperability between the (high-level) language
interfaces and the (low-level) service interfaces?

» How is control transferred between the high-level and the low-level interfaces?

A non-direct mapping is one that uses different datatypes or values, or depends on
state information outside of the service implementation.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

9.6 Procedures 39

N

TCOS-LIS/D4

Annex A
(informative)

Examples

The following examples are taken from the initial draft of the language- 4
independent version of [POSIX.1].

A.l1 Directories

UNAPPROVED DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

A.1 Directories 41

10
11

13
14
15

16
17
18
19
20

21
22

24

26

27

28
29
30
31
32
a3

34
35
36
37
38

39
40
41

EE&ER

TCOS-LIS/D4 LANGUAGE INDEPENDENT

A.1.1 Directory Operations

A.1.1.1 Synopsis

Datatype: directory_handle_type
Definition: opaque_type{MAX_DIRECTORY_HANDLE]
Description: Directory stream. See Description.

Name: MAX DIRECTORY_HANDLE
Datatype: integer_typel<implementation defined>]
Description: Number of possible values in directory._handle_type.

Procedure: open_directory

Status Type: posix_status_type

Input: directory_name :pathname_type
Output: directory_handle .directory_handle_type

Procedure: read_a_directory_entry

Status Type: posix_status_type

Input: directory_handle :directory_handle_type

Output: directory_entry_name :filename_type
end_directory_flag:boolean_type

Procedure: rewind_directory
Status Type: posix_status_type
Input: directory_handle :directory_handle_type

Procedure: close_directory)
Status Type: posix_status_type
Input: directory_handle :directory_handle_type

A.1.1.2 Description

A value of type directory_handle_type represents a directory stream, which is a
sequence of all the directory entries in a particular directory. A conforming appli-
cation shall only attempt to access directory entries using a value of type
directory_handle_typethat has been returned from a successful call to the read_a_-
directory_entry procedure and shall not attempt to access directory entries after a
successful call to the close_directory procedure on that directory stream.

Directory entries represent files; directory entries may be removed from a direc-
tory or added to a directory asynchronously to the operations described in this
subclause (A.1.1). The directory_handle_type may be implemented using a file
descriptor. In that case, applications can only open up to a total of (OPEN_MAX)
files and directories; see

A successful call to any of the overiay_process_image procedures shall close any
directory streams that are open in the calling process. The result of using a direc-
tory stream after one of the overiay process_image family of procedures is
undefined. After a call to the fork_a_process procedure either the parent or the
child (but not both) can continue processing the directory stream using the read_-
a_directory_entry procedure or rewind_directory procedure or both. If both the

UNAPPROVED DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

42 A Examples

O S

O S

Lo

R

A L C o S U -

[U

& &

47

49

50
51
52
53
54

55
56

57
58
59
60

61

a8

65
66
67
68

69
70
71

72
73

74

75
76

T7

78

79

80
81
82

SPECIFICATION METHODS TCOS-LISD4

parent and child processes use these procedures, the result is undefined. Either
or both processes can use the close_directory procedure.

The open_directory procedure shall open a directory stream corresponding to the
directory named by directory_name. The directory stream shall be positioned at
the first entry.

The read_a_directory_entry procedure shall return the directory entry at the
current position in the directory stream to which directory_handle refers, and
position the directory stream at the next entry. After the last entry in the direc-
tory has been returned, subsequent calls to read_a_directory_entry shall set end_-
directory_flag to TRUE and the value of directory_entry_name is undefined.

The read_a_directory_entry procedure shall not return an empty directory_entry_-
name. It is unspecified whether entries are returned for dot or dot-dot.

The read_a_directory_entry procedure may buffer several directory entries per
actual read operation; the read_a_directory_entry procedure shall mark for update
the time_file_last_dccessed field of the directory each time the directory is actually
read.

The rewind_directory procedure shall reset the position of the directory stream to
which directory_handle refers to the beginning of the directory. It also shall cause
the directory stream to refer to the current state of the corresponding directory,
as a call to open_directory procedure would have done.

If a directory entry that has not been returned is removed from or added to the
directory after the most recent call to the open_directory or rewind_directory pro-
cedures, whether a subsequent call to read_a_directory_entry procedure returns
that entry is unspecified.

The close_directory procedure shall close the directory stream referred to by
directory_handle. If a file descriptor is used to implement type directory_handle_-
type, that file descriptor shall be closed.

If the directory_handle value passed to any of these procedures does not refer to a
currently open directory stream, the result is undefined.

A.1.1.3 Errors

If any of the following conditions occur, the open_directory procedure shall fail and
post the corresponding status value:

error_access_denied
Search permission is denied for a component of the path prefix of
directory_name, or read permission is denied for the directory itself.

error_name_length_limit
The length of the directory_name argument exceeds {PATH_MAX], or a
pathname component is longer than {(NAME_MAX] while {POSIX_NO_-

UNAPPROVED DRAFT. All Rights Reserved by IEEE.
' Preliminary—Subject to Revision.

A_1 Directories 43

[3

L T

Lo

[A

PO OO S

Lo

83

84

85

87

88

89

91

93

95

£388

99
100

101
102
103

104

105

TCOS-LIS/D4 LANGUAGE INDEPENDENT

TRUNC] is in effect.

error_file_does_not_exist
The named directory does not exist or directory_name is empty.

error_is_not_a_directory
A component of directory_name is not a directory.
For each of the following conditions, when the condition is detected, the open_-
directory procedure shall fail and post the corresponding status value:

error_process_open _file_limit
Too many file descriptors are currently open for the process.

error_system_open_file_limit
Too many file descriptors are currently open in the system.
For each of the following conditions, when the condition is detected, the read_a_-
directory_entry procedure shall fail and post the corresponding status value:

error_invalid_file_descriptor
The directory_handle argument does not refer to an open directory
stream.

For each of the following conditions, when the condition is detected, the close_-
directory procedure shall fail and post the the corresponding status value:

error_invalid_file_descriptor
The directory_handle argument does not refer to an open directory

stream.

A

A.1.1.4 Cross-References

None.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

44 A Examples

N

106

107

108

109
110
111

112

113
114
115
116

117
118

119

120
121

124
126
127

128
129

130
131

132

133

SPECIFICATION METHODS TCOS-LIS/D4

A.2 Working Directory

A.2.1 Change Current Working Directory

A.2.1.1 Synopsis

Procedure: change_current_working_directory
Status Type: posix_status_type
Input: target_directory_name :pathname_type

A.2.1.2 Description

The change_current_working_directory procedure shall cause the named directory
to become the current working directory, that is, the starting point for resolutions
of pathnames not beginning with slash. The target_directory_name argument is
the name of the directory to change to.

If the change_current_working_directory procedure fails, the current working direc-
tory shall remain unchanged by this procedure.

A.2.1.3 Errors

If any of the following conditions occur, the change_curent_ working_directory pro-
cedure shall fail and post the corresponding status value:

error_access_denied ;
Search permission is denied for any component of the pathname.

error_name_length_limit
The target_directory_name argument exceeds {PATH_MAX] in length, or
a pathname component is longer than {NAME_MAX]} while {POSIX_NO_-
TRUNC] is in effect.

error_is_not_a_directory
A component of the pathname is not a directory.

error_file_does_not_exist
The named dire¢tory does not exist or target_directory_name is empty.

A.2.1.4 Cross-References

get_current_working_directory, A.2.2.1.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

A2 Worki.ng Directory 45

AN

L A

Lo

Lo

Lo

[

134

135

136
137
138

139

140
141

142

143
144

145
146

147

148

TCOS-LIS/D4 , LANGUAGE INDEPENDENT

A.2.2 Get Working Directory Pathname

A.2.2.1 Synopsis

Procedure: get current_working_directory

Status Type: posix_status_type
Output: directory_name :pathname_type

A.2.2.2 Description

The get_current_working_directory procedure shall return an absolute pathname of

the current working directory.

A.2.2.3 Errors

For each of the following conditions, if the condition is detected, the get_current_-
working_directory procedure shall fail and post the corresponding status value:

error_access_denied

Read or search permission was denied for a component of the pathname.

A.2.2.4 Cross-References
change_current_working_directory, A.2.1.1.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

A Examples

'S

[

'

Identifier Index

Identifier Index

UNAPPROVED DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

TCOS-LIS/D4

47

TCOS-LIS/D4

Alphabetic Topical Index

A

[-.. 23

/| ... 23

Abstracted Datatypes ... 30
AND ... 16

ANSI ... 8

Array ... 17

ASN.1 ... 8

Atomic Compound Procedures ... 32

Atomic Set-and-Return-Previous-Value Pro-
cedures ... 32

Atomicity ... 28, 36
Avoid Overloaded Procedures ... 32

B

Background ... 1

background ... 1

Base Datatypes and Datatype Derivation
... 15 '

Bit ... 16

BNF ... 21

Boolean Procedures ... 33
Boolean ... 16
boolean_type ... 42

C

Change Current Working Directory ... 45

change_current_working_directory ... 4546
definition of procedure ... 45

Character String ... 19

Character ... 18

Choice ... 17

ciose__‘dirscrory ... 42-44
definition of procedure ... 42

Common Datatypes ... 16

Constructed Datatypes ... 15, 30
Conventions ... 21
Cross-References ... 44-46

current working directory
change ... 45

D

<datatype-name> ... 22
Datatypes ... 13, 22, 29, 37
datatypes

directory_handle_type ... 42
Definitions ... 9
Derived Datatypes ... 30
Directories ... 41
directory entry ... 42-43
Directory Operations ... 42
directory ... 22,41-46

change current working ... 45
working pathname ... 46

directory_entry_name ... 42-43
directory_handle ... 42-44

directory_handle_type ... 22, 42-43
definition of datatype ... 42

directory_name ... 22, 42-44, 46
DIR ... 38

Document Organization ... 27
Document Status

document

Documentation Requirements ... 28
dot ... 43

dot-dot ... 43

DIR ... 8

E

ECMA-127 ... 8

ECMA ... 8

end_directory_flag ... 4243
error_access_denied ... 43, 45-46
error_file_does_not_exist ... 4445

UNAPPROVED DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

conformance

Conformance ... 25
conformance ... 25, 36
Alphabetic Topical Index

49

TCOS-LIS/D4

error_invalid_file_descriptor ... 44
error_is_not_a_directory ... 44-45
error_name_length_limit ... 43,45
error_process_open_file_limit ... 44
error_system_open_file_limit ... 44
Examples ... 41

Execution Sequence and Concurrency ...

F

FALSE ... 14,16, 33
FAX

file descriptor ... 42-44
filename_type ... 42
FILE ... 38

Foreword

fork_a_process ... 42

G

General Guidelines ... 27, 35
Get Working Directory Pathname ... 46

get_current_working_directory ... 45-46
definition of procedure ... 46

Goals ... 3
Guidelines for Language Bindings ... 35

Guidelines for Language-Independent
Specifications ... 27

H

Handling 'flag words’ ... 30
Handling Sets and Lists ... 31

How Big are Atomic Procedures? ... 31
I
Identifiers ... 22, 29, 36

Identify Language-Specific Interfaces .
IEEE Std 1003.1 ... 8

IEEE

implementation defined ... 28
<index-type> ... 23

Integer ... 17

integer_type ... 42

12

. 35

Interface Objects ... 38
1IsO 8824 ... 8

1sol ... 3,8, 35-36
Iso2 ... 8,13-14, 17
ISO3 ...
I1so4 ...
I1s05 ...

o 00 0o

J

JIC1

L

language binding
language-binding defined ... 28
Language-Specific Features ... 28
LIS ... 34

LIS/D1

List ... 18

M

MAX DIRECTORY_HANDLE
definition of ... 42

Model ... 11

... 22,42

N

Named Datatypes ... 29
[NAME_MAX] ... 43,45)

No Side Effects on Procedure Failure
Non-Goals ... 4

Notation ... 21

NOT ... 16

NULL ... 33

Numeric Datatypes ... 30

O

ONE ... 16
Opaque Datatypes ... 29
Opaque ... 16

opaque_lype ... 42
open_a_file
definition of procedure ... 42

UNAPPROVED DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

Alphabetic Topical Index

N

. 32

open_directory ... 22,42-44
definition of procedure ... 42

{OPEN_MAX] ... 42

Order Datatypes ... 30

Ordinal ... 17

osI ... 8

overiay_process_image ... 42

P

pathname

get working directory ... 46
pathname ... 42-43, 4546
pathname_type ... 42, 45-46
{PATH_MAX) ... 43,45
PCTE ... 8
POSIX.1 ... 8,17-18, 20, 38, 41
POSIXILIS ... 34
{POSIX_NO_TRUNC] ... 43,45
posix_status_type ... 42, 45-46
Procedure Descriptions ... 34
Procedures that 'Can't Fail' ... 33
Procedures ... 19, 24, 31, 38

procedures
change_current_working_directory ... 45
close_directory ... 42 '
get_current_working_directory ... 46
open_a_file ... 42
open_directory ... 42
read_a_directory_entry ... 42
rewind _directory ... 42

Properties and Operations ... 14

Provide Cross-References ... 36

PSSG ... §,21

R

read_a_directory_entry ... 42-44
definition of procedure ... 42

Record ... 18

Restricted Datatypes ... 30

rewind_directory ... 4243
definition of procedure ... 42

S

Scope and Purpose ... 3

TCOS-LIS/D4

sc21 ... 8
sc22
Set ... 18

Special Datatypes ... 30
SSIZE_MAX ... 17

State ... 17

T

target_directory_name ... 45
TCOS-SS

TEL

terminal ... 21

Terminology ... 27

Time ... 19
time_file_last_accessed ... 43
TRUE ... 14, 16, 22, 33

U

Undefined Output Parameters ... 34
Undefined vs Ignored Input Parameters

svs 33
undefined ... 16, 27-28, 33-34, 4243
unspecified ... 28, 43

UsSA
Using the Model ... 11

v

Value Names ... 19, 23, 31, 38
Value Spaces ... 13

W

WG11

WG15 ... 2,8

Working Directory ... 45
working directory

X

X400 ... 8

UNAPPROVED DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

Alphabetic Topical Index

51

TCOS-LIS/D4

X/Open ... 8
XOR ... 16 =
Z

ZERO ... 16

UNAPPROVED DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.
52 Alphabetic Topical Index

