Document Number: N4944

Date: 2023-03-19
Revises: N4928
Reply to: Thomas Koppe

Google DeepMind
cxxeditor@gmail.com

Working Draft, Standard for Programming
Language C++

Note: this is an early draft. It’s known to be incomplet and incorrekt, and it has lots of bad
fomatting.

©ISO/IEC N4944

Contents

Foreword X
1 Scope 1
2 Normative references 2
3 Terms and definitions 3
4 General principles 10
4.1 Implementation compliance L e 10
4.2 Structure of this document 11
4.3 Syntax notation 12
5 Lexical conventions 13
5.1 Separate translation L 13
5.2 Phases of translation Lo 13
5.3 Character setS o o e e e e e e e e e 14
5.4 Preprocessing tokens Lo 17
5.5 Alternative tokens 18
5.6 Tokens e e 18
5.7 Comments e e e e e e 18
5.8 Header names e e e 18
5.9 Preprocessing numbers oL Lo 19
5.10 Identifiers e e 19
5.11 Keywords oL e 20
5.12 Operators and punctuators e e e e 20
5.13 Literals e e e 21
6 Basics 32
6.1 Preamble L e e 32
6.2 Declarations and definitions Lo 33
6.3 One-definition rule e 34
6.4 SCOPE . .. e 39
6.5 Namelookup e 44
6.6 Program and linkage L 57
6.7 Memory and objects 61
6.8 Types . o o o e e 74
6.9 Program execution 82
7 Expressions 94
7.1 Preamble e e 94
7.2 Properties of expressionso 95
7.3 Standard conversions e e 98
7.4 Usual arithmetic conversions e 103
7.5 Primary expressionso 103
7.6 Compound expressions e e e e 122
7.7 Constant expressions e e e 154
8 Statements 163
8.1 Preamble e 163
8.2 Label o e 164
8.3 Expression statement L L L 164
8.4 Compound statement or block 164
8.5 Selection statements 164

Contents ii

©ISO/IEC

8.6 Iteration statements
8.7 Jump statementso oL
8.8 Declaration statement o oL
8.9 Ambiguity resolution
9 Declarations
9.1 Preamble
9.2 Specifiers
9.3 Declarators
9.4 Initializers
9.5 Function definitions
9.6 Structured binding declarations
9.7 Enumerations
9.8 Namespaces v v v v i i e e
9.9 The using declaration
9.10 The asm declaration, .
9.11 Linkage specifications
9.12 Attributes
10 Modules
10.1 Module units and purviews
10.2 Export declaration oL
10.3 Import declaration
10.4 Global module fragment L.
10.5 Private module fragment oo
10.6 Instantiation context,
10.7 Reachability
11 Classes
11.1 Preamble
11.2 Propertiesof classes
11.3 Classnames v ottt e
11.4 Classmembers i
11.5 Unions o e e
11.6 Local class declarations
11.7 Derived classes e
11.8 Member access control
11.9 Imitialization
11.10 CompariSons v v vt e e
12 Overloading
12.1 Preamble
12.2 Overload resolution
12.3 Addressof an overload set
12.4 Overloaded operators
12.5 Built-in operatorso
12.6 User-defined literals.
13 Templates
13.1 Preamble
13.2 Template parameters oL
13.3 Names of template specializations
13.4 Template arguments oL
13.5 Template constraints
13.6 Typeequivalence
13.7 Template declarations L.
13.8 Name resolution.
13.9 Template instantiation and specialization
13.10

Contents

Function template specializations

N4944

iii

©ISO/IEC N4944

14 Exception handling 452
14.1 Preamble L e 452
14.2 Throwing an exception L L e 453
14.3 Constructors and destructors 454
14.4 Handling an exception L e 455
14.5 Exception specificationso 457
14.6 Special functions 459

15 Preprocessing directives 461
15.1 Preamble o . e 461
15.2 Conditional inclusion L 463
15.3 Source file inclusion 465
15.4 Module directive L 466
15.5 Header unit importationo 467
15.6 Macro replacement oL 468
15.7 Line control L e 473
15.8 Diagnostic directives L 474
15.9 Pragma directiveo 474
15.10 Null directive o 474
15.11 Predefined macro names Lo e 474
15.12 Pragma operator L e e e 477

16 Library introduction 478
16.1 General oL 478
16.2 The C standard library 479
16.3 Method of description 479
16.4 Library-wide requirements Lo Lo 486

17 Language support library 508
17.1 General L e 508
17.2 Common definitions 508
17.3 Implementation properties 512
17.4 Arithmetic types 523
17.5 Startup and terminationo Lo 525
17.6 Dynamic memory managementot e e e e e 526
17.7 Type identification L e 533
17.8 Source location L 534
17.9 Exception handling L e 536
17.10 Imitializer lists oL e 540
17.11 CompariSOns v v vt e e e e 541
17.12 Coroutines e 549
17.13 Other runtime support L 554
17.14 Cheaders e 556

18 Concepts library 559
181 General L 559
18.2 Equality preservationo 559
18.3 Header <concepts> SYNOPSIS. v v v vt it e e e e 560
18.4 Language-related concepts e 562
18.5 Comparison Concepts v v vt it e e e e e 567
18.6 Object concepts Lo e e e 570
18.7 Callable concepts L 570

19 Diagnostics library 572
19.1 General L 572
19.2 Exception classes 572
19.3 Assertions 575
19.4 Error numberso e e e 575
19.5 System error Support L. e e 577

Contents iv

©ISO/IEC N4944

19.6 Stacktrace 585
20 Memory management library 592
20.1 General e 592
20.2 MemOTY o i e e e 592
20.3 Smart pointers oL e e e 610
20.4 MemOTY TESOUICES « v v v vt i et e et e e e e e e e e e 637
20.5 Class template scoped_allocator_adaptor i 646
21 Metaprogramming library 650
21.1 General e 650
21.2 Compile-time integer sequences Lo 650
21.3 Metaprogramming and type traits L Lo 650
21.4 Compile-time rational arithmetic L o 676
22 General utilities library 679
22.1 General e 679
22.2 Utility components L 679
223 Pairso e 686
224 Tuples e 691
22.5 Optional objects 705
22.6 Variants L oL e 718
22.7 Storage for any type 730
22.8 Expected objects L 735
22.9 Bitsets e 755
22.10 Function objects L 761
2211 Class type_index e 789
22.12 Execution policies L e 790
22.13 Primitive numeric conversions oL o Lol e e e 792
22.14 Formatting L 794
22.15 Bit manipulation 821
23 Strings library 825
23.1 General e 825
23.2 Character traits L 825
23.3 String view classes 830
23.4 String classes e 840
23.5 Null-terminated sequence utilities L L oo oL 868
24 Containers library 873
24.1 General 873
24.2 Requirements L L e 873
24.3 Sequence containerS e e e e e e 908
24.4 Associative containers e 939
24.5 Unordered associative containers 958
24.6 Container adaptors Lo e 982
247 VIEWS . . L e e 1028
25 Iterators library 1055
25.1 General e e 1055
25.2 Header <iterator> Synopsis.« . ..o e e e 1055
25.3 Iterator requirements Lo 1063
25.4 Tterator primitives L L 1084
25.5 Tterator adaptors L e 1087
25.6 Stream iterators. L. 1114
257 Range accesso e e 1119
Contents v

©ISO/IEC N4944

26 Ranges library 1122
26.1 General 1122
26.2 Header <ranges> SYNOPSIS o oot 1122
26.3 Rangeaccess 1131
26.4 Rangerequirements Lo 1135
26.5 Range utilities oL 1138
26.6 Range factories 1146
26.7 Range adaptors L L e 1159
26.8 Range generators Lo 1267

27 Algorithms library 1273
27.1 General L e 1273
27.2 Algorithms requirements 1273
27.3 Parallel algorithms 1275
27.4 Header <algorithm> SyNopsSiS v v v v v vt i vt e e e 1278
27.5 Algorithm result types 1316
27.6 Non-modifying sequence operations 1319
27.7 Mutating sequence operations Lo e e e 1334
27.8 Sorting and related operations 1351
27.9 Header <numeric> SYNOPSIS v v v i e e e e e e e e e e e e 1377
27.10 Generalized numeric operationso oL 1381
27.11 Specialized <memory> algorithms L L 1390
27.12 Clibrary algorithms 1396

28 Numerics library 1397
28.1 General e 1397
28.2 Numeric type requirements Lo e e e 1397
28.3 The floating-point environmento oL 1397
28.4 Complex numbers L 1398
28.5 Random number generation Lo oL 1405
28.6 Numeric arrays oL L e e 1447
28.7 Mathematical functions for floating-point types oL oL 1466
28.8 Numbers 1479

29 Time library 1480
29.1 General e 1480
29.2 Header <chrono> SYNOPSIS . . « « « v v v vt v et e e e e e e e 1480
29.3 Cppl7Clock requirements L 1494
29.4 Time-related traits Lo 1495
29.5 Class template duration e 1496
29.6 Class template time_point L 1503
29.7 Clocks e 1506
29.8 Thecivil calendar L 1517
29.9 Class template hh_mm_ss e e e e e e 1546
29.10 12/24 hours functions. 1548
29.11 Time ZONeS o v v i e e e e e e e 1548
29.12 Formatting e 1561
29.13 Parsing 1565
29.14 Header <ctime> SyNoOPSiS. v v v v v i e e e e e e e e e e e e 1569

30 Localization library 1571
30.1 General 1571
30.2 Header <locale> SYNOPSIS . . .« v v v v v v e e e e e e e e e 1571
30.3 Locales e e 1572
30.4 Standard locale categories e e 1578
30.5 Clibrary locales e 1610

Contents vi

©ISO/IEC

31 Input/output library

31.1 General
31.2 Jostreams requirements Lo
31.3 Forward declarationso
31.4 Standard iostream objectso oL
31.5 Jostreams base classes L oL
31.6 Stream buffers. o
31.7 Formatting and manipulators L.
31.8 String-based streams L
31.9 Span-based streams
31.10 File-based streams
31.11 Synchronized output streams
31.12 Filesystems
31.13 Clibrary files
32 Regular expressions library
32.1 General
32.2 Requirementso
32.3 Header <regex> synopsis.
32.4 Namespace std::regex_constants.
32.5 Class regex_error
32.6 Class template regex_traits
32.7 Class template basic_regex
32.8 Class template sub_match
32.9 C(Class template match_results
32.10 Regular expression algorithms
32.11 Regular expression iterators L.

32.12 Modified ECMAScript regular expression grammar

33 Concurrency support library

33.1 General
33.2 Requirementso
33.3 Stoptokens
334 Threads
33.5 Atomic operationso
33.6 Mutual exclusion Lo
33.7 Condition variables Lo
33.8 Semaphore.
33.9 Coordination types L. Lo
33.10 Futures
Annex A Grammar summary
A1 General
A2 Keywords
A3 Lexical conventions Lo
A4 Basics e
A5 EXpPressionso
A6 Statements
A7 Declarations
A8 Modules
A9 Classes . . . v v v
A10 Overloading
A1l Templates
A.12 Exception handling
A.13 Preprocessing directives L.

Annex B Implementation quantities

Contents

N4944

vii

©ISO/IEC N4944

Annex C Compatibility 1905
C.1 CHtand ISO C++ 2020 o oot e 1905
C.2 CH++and ISO C++ 2017 o e e e e 1908
C.3 CH+t+and ISO C++ 2014 o e e e 1916
C4 CH++and ISO C++ 2011 L o 1919
C.5 CH++and ISO C++ 2003 o o 1921
C.6 CHandISO C e 1926
C.7 Cstandard library e 1934

Annex D Compatibility features 1937
D1 General e 1937
D.2 Arithmetic conversion on enumerations 1937
D.3 Implicit capture of *this by reference L. 1937
D4 Array compariSonso e 1937
D.5 Deprecated volatile types o . L e 1937
D.6 Redeclaration of static constexpr data members 1938
D.7 Non-local use of TU-local entities 1938
D.8 Implicit declaration of copy functions 1939
D.9 Literal operator function declarations using an identifier 1939
D.10 template keyword before qualified names oL 1939
D.11 Requires paragrapho e 1939
D.12 has_denorm members in numeric_limits 1939
D.13 Deprecated C macros i e 1939
D.14 Relational operators L 1939
D.15 char*streams L e e 1940
D.16 Deprecated error numberso o L 1947
D.17 The default allocator o 1948
D.18 Deprecated polymorphic_allocator member function 1948
D.19 Deprecated type traits L 1948
D20 Tuple o o 1949
D.21 Variant oL e 1950
D.22 Deprecated iterator class template L oo oo 1950
D.23 Deprecated move_iterator accesso i e e e e e 1950
D.24 Deprecated shared_ptr atomic access Lo 1951
D.25 Deprecated basic_string capacity L L o 1953
D.26 Deprecated standard code conversion facets Lo 1953
D.27 Deprecated convenience conversion interfaces 0oL 1954
D.28 Deprecated locale category facets Lo L 1958
D.29 Deprecated filesystem path factory functions oo 1958
D.30 Deprecated atomic operations 1958

Annex E Conformance with UAX #31 1960
E.1 General e 1960
E.2 Rl Default identifiers e 1960
E.3 R2 Immutable identifierso 1960
E.4 R3 Pattern_ White Space and Pattern_ Syntax characters 1960
E.5 R4 Equivalent normalized identifiers oL oo o 1961
E.6 R5 Equivalent case-insensitive identifiers 1961
E.7 R6 Filtered normalized identifiers L L 1961
E.8 RYT Filtered case-insensitive identifiers oL oL 1961
E.9 R8 Hashtag identifiers 1961

Bibliography 1962

Cross references 1963

Cross references from ISO C++ 2020 1990

Index 1991

Contents

viii

©ISO/IEC N4944

Index of grammar productions 2025
Index of library headers 2031
Index of library names 2033
Index of library concepts 2115
Index of implementation-defined behavior 2119

Contents ix

©ISO/IEC N4944

Foreword

[This page is intentionally left blank.]

Foreword X

©ISO/IEC N4944

1 Scope lintro.scope]

This document specifies requirements for implementations of the C++ programming language. The first such
requirement is that they implement the language, so this document also defines C++. Other requirements
and relaxations of the first requirement appear at various places within this document.

C++ is a general purpose programming language based on the C programming language as described in
ISO/IEC 9899:2018 Programming languages — C' (hereinafter referred to as the C standard). C++ provides
many facilities beyond those provided by C, including additional data types, classes, templates, exceptions,
namespaces, operator overloading, function name overloading, references, free store management operators,
and additional library facilities.

Scope 1

(1.3)
(1.4)

(1.5)

(1.6)

(1.7)

(1.8)

(1.9)

(1.10)

2

3

©ISO/IEC N4944

2 Normative references lintro.refs]

The following documents are referred to in the text in such a way that some or all of their content constitutes
requirements of this document. For dated references, only the edition cited applies. For undated references,
the latest edition of the referenced document (including any amendments) applies.

ISO/IEC 2382, Information technology — Vocabulary

ISO 8601:2004, Data elements and interchange formats — Information interchange — Representation
of dates and times

ISO/IEC 9899:2018, Programming languages — C
ISO/IEC/IEEE 9945:2009, Information Technology — Portable Operating System Interface (POSIX')

ISO/IEC/IEEE 9945:2009/Cor 1:2013, Information Technology — Portable Operating System Interface
(POSIX), Technical Corrigendum 1

ISO/IEC/IEEE 9945:2009/Cor 2:2017, Information Technology — Portable Operating System Interface
(POSIX), Technical Corrigendum 2

ISO/IEC/IEEE 60559:2020, Information technology — Microprocessor Systems — Floating-Point
arithmetic

ISO 80000-2:2009, Quantities and units — Part 2: Mathematical signs and symbols to be used in the
natural sciences and technology

Ecma International, ECMAScript? Language Specification, Standard Ecma-262, third edition, 1999.

The Unicode Consortium. The Unicode Standard. Available from: https://www.unicode.org/
versions/latest/

The library described in ISO/IEC 9899:2018, Clause 7, is hereinafter called the C standard library.?
The operating system interface described in ISO/TEC 9945:2009 is hereinafter called POSIX.

4 The ECMAScript Language Specification described in Standard Ecma-262 is hereinafter called ECMA-262.

1) POSIX® is a registered trademark of the Institute of Electrical and Electronic Engineers, Inc. This information is given for
the convenience of users of this document and does not constitute an endorsement by ISO or IEC of this product.

2) ECMAScript® is a registered trademark of Ecma International. This information is given for the convenience of users of
this document and does not constitute an endorsement by ISO or IEC of this product.

3) With the qualifications noted in Clause 17 through Clause 33 and in C.7, the C standard library is a subset of the C++
standard library.

Normative references 2

https://www.unicode.org/versions/latest/
https://www.unicode.org/versions/latest/

2
(2.1)
(2.2)

3

©ISO/IEC N4944

3 Terms and definitions lintro.defs]

For the purposes of this document, the terms and definitions given in ISO/TEC 2382, the terms, definitions,
and symbols given in ISO 80000-2:2009, and the following apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https://www.iso.org/obp
— IEC Electropedia: available at https://www.electropedia.org/

Terms that are used only in a small portion of this document are defined where they are used and italicized
where they are defined.

3.1 [defns.access]
access
(execution-time action) read or modify the value of an object

[Note 1 to entry: Only glvalues of scalar type can be used to access objects. Reads of scalar objects are described in
7.3.2 and modifications of scalar objects are described in 7.6.19, 7.6.1.6, and 7.6.2.3. Attempts to read or modify an
object of class type typically invoke a constructor (11.4.5) or assignment operator (11.4.6); such invocations do not
themselves constitute accesses, although they may involve accesses of scalar subobjects. — end note]

3.2 [defns.arbitrary.stream)]
arbitrary-positional stream
(library) stream that can seek to any integral position within the length of the stream

[Note 1 to entry: Every arbitrary-positional stream is also a repositional stream (3.48). — end note]
3.3 [defns.argument)]
argument

(function call expression) expression in the comma-separated list bounded by the parentheses

3.4 [defns.argument.macro]
argument
(function-like macro) sequence of preprocessing tokens in the comma-separated list bounded by the parentheses

3.5 [defns.argument.throw]
argument
(throw expression) operand of throw

3.6 [defns.argument.templ]
argument

(template instantiation) constant-expression, type-id, or id-expression in the comma-separated list bounded by
the angle brackets

3.7 [defns.block]
block

(execution) wait for some condition (other than for the implementation to execute the execution steps of the
thread of execution) to be satisfied before continuing execution past the blocking operation

3.8 [defns.block.stmt]
block

(statement) compound statement

3.9 [defns.character]
character

(library) object which, when treated sequentially, can represent text

[Note 1 to entry: The term does not mean only char, char8_t, char16_t, char32_t, and wchar_t objects (6.8.2), but
any value that can be represented by a type that provides the definitions specified in Clause 23, Clause 30, Clause 31,
or Clause 32. — end note]

§3.9 3

https://www.iso.org/obp
https://www.electropedia.org/

©ISO/IEC N4944

3.10 [defns.character.container|
character container type
(library) class or a type used to represent a character

[Note 1 to entry: It is used for one of the template parameters of the string, iostream, and regular expression class
templates. — end note]

3.11 [defns.regex.collating.element)]
collating element
sequence of one or more characters within the current locale that collate as if they were a single character

3.12 [defns.component]
component
(library) group of library entities directly related as members, parameters, or return types

[Note 1 to entry: For example, the class template basic_string and the non-member function templates that operate
on strings are referred to as the string component. — end note]

3.13 [defns.cond.supp]
conditionally-supported
program construct that an implementation is not required to support

[Note 1 to entry: Each implementation documents all conditionally-supported constructs that it does not support.
— end note]

3.14 [defns.const.subexpr]
constant subexpression
expression whose evaluation as subexpression of a conditional-expression CE would not prevent CE from being
a core constant expression

3.15 [defns.deadlock]
deadlock

(library) situation wherein one or more threads are unable to continue execution because each is blocked
waiting for one or more of the others to satisfy some condition

3.16 [defns.default.behavior.impl]
default behavior

(library implementation) specific behavior provided by the implementation, within the scope of the required
behavior

3.17 [defns.diagnostic]
diagnostic message
message belonging to an implementation-defined subset of the implementation’s output messages

3.18 [defns.direct.non.list.init]
direct-non-list-initialization
direct-initialization that is not list-initialization

3.19 [defns.dynamic.type]
dynamic type
(glvalue) type of the most derived object to which the glvalue refers

[Exzample 1: If a pointer (9.3.4.2) p whose static type is “pointer to class B” is pointing to an object of class D, derived
from B (11.7), the dynamic type of the expression *p is “D”. References (9.3.4.3) are treated similarly. — end ezample]

3.20 [defns.dynamic.type.prvalue]

dynamic type
(prvalue) static type of the prvalue expression

§3.20 4

©ISO/IEC N4944

3.21 [defns.expression.equivalent]
expression-equivalent

(library) expressions that all have the same effects, either are all potentially-throwing or are all not potentially-
throwing, and either are all constant subexpressions or are all not constant subexpressions

[Ezample 1: For a value x of type int and a function f that accepts integer arguments, the expressions f(x + 2),
£(2 + x),and £(1 + x + 1) are expression-equivalent. — end example]

3.22 [defns.regex.finite.state.machine]
finite state machine

(regular expression) unspecified data structure that is used to represent a regular expression, and which
permits efficient matches against the regular expression to be obtained

3.23 [defns.regex.format.specifier]
format specifier
(regular expression) sequence of one or more characters that is to be replaced with some part of a regular
expression match

3.24 [defns.handler]
handler function
(library) non-reserved function whose definition may be provided by a C++ program

[Note 1 to entry: A C++ program may designate a handler function at various points in its execution by supplying a

pointer to the function when calling any of the library functions that install handler functions (Clause 17). — end
note)
3.25 [defns.ill.formed]

ill-formed program
program that is not well-formed (3.68)

3.26 [defns.impl.defined]
implementation-defined behavior
behavior, for a well-formed program construct and correct data, that depends on the implementation and
that each implementation documents

3.27 [defns.order.ptr]
implementation-defined strict total order over pointers

(library) implementation-defined strict total ordering over all pointer values such that the ordering is consistent
with the partial order imposed by the builtin operators <, >, <=, >= and <=>

3.28 [defns.impl.limits]
implementation limits
restrictions imposed upon programs by the implementation

3.29 [defns.iostream.templates]
iostream class templates
(library) templates that are declared in header <iosfwd> and take two template arguments

[Note 1 to entry: The arguments are named charT and traits. The argument charT is a character container class,
and the argument traits is a class which defines additional characteristics and functions of the character type
represented by charT necessary to implement the iostream class templates. — end note)

3.30 [defns.locale.specific]
locale-specific behavior

behavior that depends on local conventions of nationality, culture, and language that each implementation
documents

3.31 [defns.regex.matched]
matched

(regular expression) condition when a sequence of zero or more characters correspond to a sequence of
characters defined by the pattern

§ 3.31 5

©ISO/IEC N4944

3.32 [defns.modifier]
modifier function

(library) class member function other than a constructor, assignment operator, or destructor that alters the
state of an object of the class

3.33 [defns.move.assign]
move assignment
(library) assignment of an rvalue of some object type to a modifiable lvalue of the same type

3.34 [defns.move.constr|
move construction
(library) direct-initialization of an object of some type with an rvalue of the same type

3.35 [defns.nonconst.libcall]
non-constant library call

invocation of a library function that, as part of evaluating any expression E, prevents E from being a core
constant expression

3.36 [defns.ntcts]
NTCTS

(library) sequence of values that have character type that precede the terminating null character type value
charT()

3.37 [defns.observer]
observer function
(library) class member function that accesses the state of an object of the class but does not alter that state

[Note 1 to entry: Observer functions are specified as const member functions. — end note]

3.38 [defns.parameter]
parameter

(function or catch clause) object or reference declared as part of a function declaration or definition or in the
catch clause of an exception handler that acquires a value on entry to the function or handler

3.39 [defns.parameter.macro]
parameter

(function-like macro) identifier from the comma-separated list bounded by the parentheses immediately
following the macro name

3.40 [defns.parameter.templ]
parameter
(template) member of a template-parameter-list

3.41 [defns.regex.primary.equivalence.class]
primary equivalence class

(regular expression) set of one or more characters which share the same primary sort key: that is the sort key
weighting that depends only upon character shape, and not accents, case, or locale specific tailorings

3.42 [defns.prog.def.spec]
program-defined specialization

(library) explicit template specialization or partial specialization that is not part of the C++ standard library
and not defined by the implementation

3.43 [defns.prog.def.type]
program-defined type

(library) non-closure class type or enumeration type that is not part of the C++ standard library and not
defined by the implementation, or a closure type of a non-implementation-provided lambda expression, or an
instantiation of a program-defined specialization

[Note 1 to entry: Types defined by the implementation include extensions (4.1) and internal types used by the library.
— end note]

§ 3.43 6

©ISO/IEC N4944

3.44 [defns.projection)]
projection

(library) transformation that an algorithm applies before inspecting the values of elements

[Example 1:

std::pair<int, std::string_view> pairs[] = {{2, "foo"}, {1, "bar"}, {0, "baz"}};
std::ranges::sort(pairs, std::ranges::less{}, [](auto const& p) { return p.first; });

sorts the pairs in increasing order of their first members:
{{0, "baz"}, {1, "bar"}, {2, "foo"}}

— end ezample]

3.45 [defns.referenceable]
referenceable type

type that is either an object type, a function type that does not have cv-qualifiers or a ref-qualifier, or a
reference type

[Note 1 to entry: The term describes a type to which a reference can be created, including reference types. — end
note)
3.46 [defns.regex.regular.expression]

regular expression
pattern that selects specific strings from a set of character strings

3.47 [defns.replacement]
replacement function
(library) non-reserved function whose definition is provided by a C++ program

[Note 1 to entry: Only one definition for such a function is in effect for the duration of the program’s execution, as
the result of creating the program (5.2) and resolving the definitions of all translation units (6.6). — end note]

3.48 [defns.repositional.stream]
repositional stream
(library) stream that can seek to a position that was previously encountered

3.49 [defns.required.behavior]
required behavior

(library) description of replacement function and handler function semantics applicable to both the behavior
provided by the implementation and the behavior of any such function definition in the program

[Note 1 to entry: If such a function defined in a C++ program fails to meet the required behavior when it executes,
the behavior is undefined. — end note]

3.50 [defns.reserved.function]
reserved function
(library) function, specified as part of the C++ standard library, that is defined by the implementation

[Note 1 to entry: If a C++ program provides a definition for any reserved function, the results are undefined. — end
note)

3.51 [defns.signature]
signature
(function) name, parameter-type-list, and enclosing namespace

[Note I to entry: Signatures are used as a basis for name mangling and linking. — end note]

3.52 [defns.signature.friend]
signature

(non-template friend function with trailing requires-clause) name, parameter-type-list, enclosing class, and
trailing requires-clause

3.53 [defns.signature.templ]
signature

(function template) name, parameter-type-list, enclosing namespace, return type, signature of the template-
head, and trailing requires-clause (if any)

§3.53 7

©ISO/IEC N4944

3.54 [defns.signature.templ.friend]
signature

(friend function template with constraint involving enclosing template parameters) name, parameter-type-list,
return type, enclosing class, signature of the template-head, and trailing requires-clause (if any)

3.55 [defns.signature.spec]
signature

(function template specialization) signature of the template of which it is a specialization and its template
arguments (whether explicitly specified or deduced)

3.56 [defns.signature.member]
signature

(class member function) name, parameter-type-list, class of which the function is a member, cv-qualifiers (if
any), ref-qualifier (if any), and trailing requires-clause (if any)

3.57 [defns.signature.member.templ]
signature

(class member function template) name, parameter-type-list, class of which the function is a member, cv-
qualifiers (if any), ref-qualifier (if any), return type (if any), signature of the template-head, and trailing
requires-clause (if any)

3.58 [defns.signature.member.spec]
signature

(class member function template specialization) signature of the member function template of which it is a
specialization and its template arguments (whether explicitly specified or deduced)

3.59 [defns.signature.template.head]
signature

(template-head) template parameter list, excluding template parameter names and default arguments, and
requires-clause (if any)

3.60 [defns.stable]
stable algorithm
(library) algorithm that preserves, as appropriate to the particular algorithm, the order of elements

[Note 1 to entry: Requirements for stable algorithms are given in 16.4.6.8. — end note]

3.61 [defns.static.type]
static type
type of an expression resulting from analysis of the program without considering execution semantics

[Note 1 to entry: The static type of an expression depends only on the form of the program in which the expression
appears, and does not change while the program is executing. — end note]

3.62 [defns.regex.subexpression]
sub-expression
(regular expression) subset of a regular expression that has been marked by parentheses

3.63 [defns.traits]
traits class

(library) class that encapsulates a set of types and functions necessary for class templates and function
templates to manipulate objects of types for which they are instantiated

3.64 [defns.unblock]
unblock
satisfy a condition that one or more blocked threads of execution are waiting for

§ 3.64 8

©ISO/IEC N4944

3.65 [defns.undefined]
undefined behavior
behavior for which this document imposes no requirements

[Note 1 to entry: Undefined behavior may be expected when this document omits any explicit definition of behavior
or when a program uses an erroneous construct or erroneous data. Permissible undefined behavior ranges from
ignoring the situation completely with unpredictable results, to behaving during translation or program execution in
a documented manner characteristic of the environment (with or without the issuance of a diagnostic message), to
terminating a translation or execution (with the issuance of a diagnostic message). Many erroneous program constructs
do not engender undefined behavior; they are required to be diagnosed. Evaluation of a constant expression (7.7)
never exhibits behavior explicitly specified as undefined in Clause 4 through Clause 15. — end note]

3.66 [defns.unspecified]
unspecified behavior
behavior, for a well-formed program construct and correct data, that depends on the implementation

[Note 1 to entry: The implementation is not required to document which behavior occurs. The range of possible
behaviors is usually delineated by this document. — end note]

3.67 [defns.valid]
valid but unspecified state

(library) value of an object that is not specified except that the object’s invariants are met and operations on
the object behave as specified for its type

[Ezample 1: If an object x of type std::vector<int> is in a valid but unspecified state, x.empty() can be called
unconditionally, and x.front () can be called only if x.empty() returns false. — end example]

3.68 [defns.well.formed]
well-formed program
C++ program constructed according to the syntax and semantic rules

§ 3.68 9

(2.1)

©ISO/IEC N4944

4 General principles lintro]

4.1 Implementation compliance [intro.compliance]

4.1.1 General [intro.compliance.general]

The set of diagnosable rules consists of all syntactic and semantic rules in this document except for those
rules containing an explicit notation that “no diagnostic is required” or which are described as resulting in
“undefined behavior”.

Although this document states only requirements on C++ implementations, those requirements are often
easier to understand if they are phrased as requirements on programs, parts of programs, or execution of
programs. Such requirements have the following meaning;:

— If a program contains no violations of the rules in Clause 5 through Clause 33 and Annex D, a conforming
implementation shall, within its resource limits as described in Annex B, accept and correctly execute?
that program.

— If a program contains a violation of a rule for which no diagnostic is required, this document places no
requirement on implementations with respect to that program.

— Otherwise, if a program contains a violation of any diagnosable rule or an occurrence of a construct
described in this document as “conditionally-supported” when the implementation does not support
that construct, a conforming implementation shall issue at least one diagnostic message.

[Note 1: During template argument deduction and substitution, certain constructs that in other contexts require a
diagnostic are treated differently; see 13.10.3. — end note]

Furthermore, a conforming implementation
— shall not accept a preprocessing translation unit containing a #error preprocessing directive (15.8),

— shall issue at least one diagnostic message for each #warning or #error preprocessing directive not
following a #error preprocessing directive in a preprocessing translation unit, and

— shall not accept a translation unit with a static_assert-declaration that fails (9.1).

For classes and class templates, the library Clauses specify partial definitions. Private members (11.8) are not
specified, but each implementation shall supply them to complete the definitions according to the description
in the library Clauses.

For functions, function templates, objects, and values, the library Clauses specify declarations. Implementa-
tions shall supply definitions consistent with the descriptions in the library Clauses.

A C++ translation unit (5.2) obtains access to the names defined in the library by including the appropriate
standard library header or importing the appropriate standard library named header unit (16.4.3.2).

The templates, classes, functions, and objects in the library have external linkage (6.6). The implementation
provides definitions for standard library entities, as necessary, while combining translation units to form a
complete C++ program (5.2).

Two kinds of implementations are defined: a hosted implementation and a freestanding implementation. A
freestanding implementation is one in which execution may take place without the benefit of an operating
system. A hosted implementation supports all the facilities described in this document, while a freestanding
implementation supports the entire C++ language described in Clause 5 through Clause 15 and the subset of
the library facilities described in 16.4.2.5.

A conforming implementation may have extensions (including additional library functions), provided they
do not alter the behavior of any well-formed program. Implementations are required to diagnose programs
that use such extensions that are ill-formed according to this document. Having done so, however, they can
compile and execute such programs.

Each implementation shall include documentation that identifies all conditionally-supported constructs that
it does not support and defines all locale-specific characteristics.”

4) “Correct execution” can include undefined behavior, depending on the data being processed; see Clause 3 and 6.9.1.
5) This documentation also defines implementation-defined behavior; see 4.1.2.

§4.1.1 10

(6.1)

(6.2)

(6.3)

©ISO/IEC N4944

4.1.2 Abstract machine [intro.abstract]

The semantic descriptions in this document define a parameterized nondeterministic abstract machine. This
document places no requirement on the structure of conforming implementations. In particular, they need
not copy or emulate the structure of the abstract machine. Rather, conforming implementations are required
to emulate (only) the observable behavior of the abstract machine as explained below.%

Certain aspects and operations of the abstract machine are described in this document as implementation-
defined (for example, sizeof (int)). These constitute the parameters of the abstract machine. Each
implementation shall include documentation describing its characteristics and behavior in these respects.”
Such documentation shall define the instance of the abstract machine that corresponds to that implementation
(referred to as the “corresponding instance” below).

Certain other aspects and operations of the abstract machine are described in this document as unspecified
(for example, order of evaluation of arguments in a function call (7.6.1.3)). Where possible, this document
defines a set of allowable behaviors. These define the nondeterministic aspects of the abstract machine. An
instance of the abstract machine can thus have more than one possible execution for a given program and a
given input.

Certain other operations are described in this document as undefined (for example, the effect of attempting
to modify a const object).

Note 1: This document imposes no requirements on the behavior of programs that contain undefined behavior.
g
—end note]

A conforming implementation executing a well-formed program shall produce the same observable behavior as
one of the possible executions of the corresponding instance of the abstract machine with the same program
and the same input. However, if any such execution contains an undefined operation, this document places
no requirement on the implementation executing that program with that input (not even with regard to
operations preceding the first undefined operation).

The least requirements on a conforming implementation are:
— Accesses through volatile glvalues are evaluated strictly according to the rules of the abstract machine.

— At program termination, all data written into files shall be identical to one of the possible results that
execution of the program according to the abstract semantics would have produced.

— The input and output dynamics of interactive devices shall take place in such a fashion that prompting
output is actually delivered before a program waits for input. What constitutes an interactive device is
implementation-defined.

These collectively are referred to as the observable behavior of the program.

[Note 2: More stringent correspondences between abstract and actual semantics can be defined by each implementation.
— end note]

4.2 Structure of this document [intro.structure]

Clause 5 through Clause 15 describe the C++ programming language. That description includes detailed
syntactic specifications in a form described in 4.3. For convenience, Annex A repeats all such syntactic
specifications.

Clause 17 through Clause 33 and Annex D (the library clauses) describe the C++ standard library. That
description includes detailed descriptions of the entities and macros that constitute the library, in a form
described in Clause 16.

Annex B recommends lower bounds on the capacity of conforming implementations.

Annex C summarizes the evolution of C++ since its first published description, and explains in detail the
differences between C++ and C. Certain features of C++ exist solely for compatibility purposes; Annex D
describes those features.

6) This provision is sometimes called the “as-if” rule, because an implementation is free to disregard any requirement of this
document as long as the result is as if the requirement had been obeyed, as far as can be determined from the observable
behavior of the program. For instance, an actual implementation need not evaluate part of an expression if it can deduce that
its value is not used and that no side effects affecting the observable behavior of the program are produced.

7) This documentation also includes conditionally-supported constructs and locale-specific behavior. See 4.1.1.

§4.2 11

(2.1)
(2.2)
(2.3)

(2.4)

©ISO/IEC N4944

4.3 Syntax notation [syntax]

In the syntax notation used in this document, syntactic categories are indicated by italic type, and literal
words and characters in constant width type. Alternatives are listed on separate lines except in a few cases
where a long set of alternatives is marked by the phrase “one of”. If the text of an alternative is too long to
fit on a line, the text is continued on subsequent lines indented from the first one. An optional terminal or
non-terminal symbol is indicated by the subscript “,,;”, so

{ expressionp ¥
indicates an optional expression enclosed in braces.
Names for syntactic categories have generally been chosen according to the following rules:
— X-name is a use of an identifier in a context that determines its meaning (e.g., class-name, typedef-name).
— X-id is an identifier with no context-dependent meaning (e.g., qualified-id).
— X-seq is one or more X’s without intervening delimiters (e.g., declaration-seq is a sequence of declarations).

— X-list is one or more X’s separated by intervening commas (e.g., identifier-list is a sequence of identifiers
separated by commas).

§4.3 12

©ISO/IEC N4944

5 Lexical conventions [lex]

5.1 Separate translation [lex.separate]

1 The text of the program is kept in units called source files in this document. A source file together with all the
headers (16.4.2.3) and source files included (15.3) via the preprocessing directive #include, less any source
lines skipped by any of the conditional inclusion (15.2) preprocessing directives, is called a preprocessing
translation unit.

[Note 1: A C++ program need not all be translated at the same time. — end note]

2 [Note 2: Previously translated translation units and instantiation units can be preserved individually or in libraries.
The separate translation units of a program communicate (6.6) by (for example) calls to functions whose identifiers
have external or module linkage, manipulation of objects whose identifiers have external or module linkage, or
manipulation of data files. Translation units can be separately translated and then later linked to produce an
executable program (6.6). — end note]

5.2 Phases of translation [lex.phases]

1 The precedence among the syntax rules of translation is specified by the following phases.®

1. An implementation shall support input files that are a sequence of UTF-8 code units (UTF-8 files). It
may also support an implementation-defined set of other kinds of input files, and, if so, the kind of an
input file is determined in an implementation-defined manner that includes a means of designating
input files as UTF-8 files, independent of their content.

[Note 1: In other words, recognizing the U+FEFF BYTE ORDER MARK is not sufficient. — end note]

If an input file is determined to be a UTF-8 file, then it shall be a well-formed UTF-8 code unit sequence
and it is decoded to produce a sequence of Unicode scalar values. A sequence of translation character
set elements is then formed by mapping each Unicode scalar value to the corresponding translation
character set element. In the resulting sequence, each pair of characters in the input sequence consisting
of U+000D CARRIAGE RETURN followed by U+000A LINE FEED, as well as each U+000D CARRIAGE RETURN
not immediately followed by a U+000A LINE FEED, is replaced by a single new-line character.

For any other kind of input file supported by the implementation, characters are mapped, in an
implementation-defined manner, to a sequence of translation character set elements (5.3), representing
end-of-line indicators as new-line characters.

2. If the first translation character is U+FEFF BYTE ORDER MARK, it is deleted. Each sequence of a
backslash character (\) immediately followed by zero or more whitespace characters other than new-line
followed by a new-line character is deleted, splicing physical source lines to form logical source lines.
Only the last backslash on any physical source line shall be eligible for being part of such a splice.
Except for splices reverted in a raw string literal, if a splice results in a character sequence that matches
the syntax of a universal-character-name, the behavior is undefined. A source file that is not empty and
that does not end in a new-line character, or that ends in a splice, shall be processed as if an additional
new-line character were appended to the file.

3. The source file is decomposed into preprocessing tokens (5.4) and sequences of whitespace characters
(including comments). A source file shall not end in a partial preprocessing token or in a partial
comment.” Each comment is replaced by one space character. New-line characters are retained.
Whether each nonempty sequence of whitespace characters other than new-line is retained or replaced
by one space character is unspecified. As characters from the source file are consumed to form the
next preprocessing token (i.e., not being consumed as part of a comment or other forms of whitespace),
except when matching a c-char-sequence, s-char-sequence, r-char-sequence, h-char-sequence, or g-char-
sequence, universal-character-names are recognized and replaced by the designated element of the
translation character set. The process of dividing a source file’s characters into preprocessing tokens is
context-dependent.

8) Implementations behave as if these separate phases occur, although in practice different phases can be folded together.

9) A partial preprocessing token would arise from a source file ending in the first portion of a multi-character token that
requires a terminating sequence of characters, such as a header-name that is missing the closing " or >. A partial comment
would arise from a source file ending with an unclosed /* comment.

§5.2 13

(1.1)

(1.2)

©ISO/IEC N4944

[Example 1: See the handling of < within a #include preprocessing directive. — end example]

4. Preprocessing directives are executed, macro invocations are expanded, and _Pragma unary operator
expressions are executed. A #include preprocessing directive causes the named header or source file to
be processed from phase 1 through phase 4, recursively. All preprocessing directives are then deleted.

5. For a sequence of two or more adjacent string-literal tokens, a common encoding-prefix is determined as
specified in 5.13.5. Each such string-literal token is then considered to have that common encoding-prefix.

6. Adjacent string-literal tokens are concatenated (5.13.5).

7. Whitespace characters separating tokens are no longer significant. Each preprocessing token is converted
into a token (5.6). The resulting tokens constitute a translation unit and are syntactically and
semantically analyzed and translated.

[Note 2: The process of analyzing and translating the tokens can occasionally result in one token being replaced
by a sequence of other tokens (13.3). — end note]

It is implementation-defined whether the sources for module units and header units on which the
current translation unit has an interface dependency (10.1, 10.3) are required to be available.

[Note 8: Source files, translation units and translated translation units need not necessarily be stored as files,
nor need there be any one-to-one correspondence between these entities and any external representation. The
description is conceptual only, and does not specify any particular implementation. — end note|

8. Translated translation units and instantiation units are combined as follows:
[Note 4: Some or all of these can be supplied from a library. — end note]
FEach translated translation unit is examined to produce a list of required instantiations.
[Note 5: This can include instantiations which have been explicitly requested (13.9.3). — end note]

The definitions of the required templates are located. It is implementation-defined whether the source
of the translation units containing these definitions is required to be available.

[Note 6: An implementation can choose to encode sufficient information into the translated translation unit so
as to ensure the source is not required here. — end note]

All the required instantiations are performed to produce instantiation units.

[Note 7: These are similar to translated translation units, but contain no references to uninstantiated templates
and no template definitions. — end note]

The program is ill-formed if any instantiation fails.

9. All external entity references are resolved. Library components are linked to satisfy external references
to entities not defined in the current translation. All such translator output is collected into a program
image which contains information needed for execution in its execution environment.

5.3 Character sets [lex.charset)]
The translation character set consists of the following elements:

— each abstract character assigned a code point in the Unicode codespace, and

— a distinct character for each Unicode scalar value not assigned to an abstract character.

[Note 1: Unicode code points are integers in the range [0, 10FFFF] (hexadecimal). A surrogate code point is a value
in the range [D800, DFFF]| (hexadecimal). A Unicode scalar value is any code point that is not a surrogate code point.
— end note]

The basic character set is a subset of the translation character set, consisting of 96 characters as specified in
Table 1.

[Note 2: Unicode short names are given only as a means to identifying the character; the numerical value has no
other meaning in this context. — end note]

The universal-character-name construct provides a way to name other characters.

n-char: one of
any member of the translation character set except the U+007D RIGHT CURLY BRACKET or new-line
character

n-char-sequence:
n-char
n-char-sequence n-char

§5.3 14

©ISO/IEC

Table 1: Basic character set

[tab:lex.charset.basic]

character

glyph

U+0009
U+000B
U+000C
U+0020
U+000A
U+0021
U+0022
U+0023
U+0025
U+0026
U+0027
U+0028
U+0029
U+002A
U+002B
U+002C
U+002D
U+002E
U+002F

U+0030 ..

U+003A
U+003B
U+003C
U+003D
U+003E
U+003F

U+0041 ..

U+005B
U+005C
U+005D
U+005E
U+005F

U+0061 ..

U+007B
U+007C
U+007D
U+007E

U+0039

U+005A

U+007A

CHARACTER TABULATION
LINE TABULATION
FORM FEED

SPACE

LINE FEED
EXCLAMATION MARK
QUOTATION MARK
NUMBER SIGN
PERCENT SIGN
AMPERSAND
APOSTROPHE

LEFT PARENTHESIS
RIGHT PARENTHESIS
ASTERISK

PLUS SIGN

COMMA
HYPHEN-MINUS

FULL STOP

SOLIDUS

DIGIT ZERO .. NINE
COLON

SEMICOLON
LESS-THAN SIGN
EQUALS SIGN
GREATER-THAN SIGN
QUESTION MARK
LATIN CAPITAL LETTER A

LEFT SQUARE BRACKET
REVERSE SOLIDUS

RIGHT SQUARE BRACKET
CIRCUMFLEX ACCENT
LOW LINE

LATIN SMALL LETTER A ..

LEFT CURLY BRACKET
VERTICAL LINE

RIGHT CURLY BRACKET
TILDE

V/

Z

new-line

o

123456789

A e

g =T NIV
o w
U Q
o g
o ™
w0 T
= Q
o
< H
= o
==
=<
N =

bcdefghijklm
opgrstuvwzxyz

Y — B

R

§5.3

N4944

15

©ISO/IEC N4944

named-universal-character:
\N{ n-char-sequence }
hex-quad:
hexadecimal-digit hexadecimal-digit hexadecimal-digit hexadecimal-digit
simple-hexadecimal-digit-sequence:
hexadecimal-digit
simple-hexadecimal-digit-sequence hexadecimal-digit
universal-character-name:
\u hex-quad
\U hex-quad hex-quad
\u{ simple-hexadecimal-digit-sequence }
named-universal-character

A universal-character-name of the form \u hex-quad, \U hex-quad hex-quad, or \u{simple-hexadecimal-digit-
sequence} designates the character in the translation character set whose Unicode scalar value is the
hexadecimal number represented by the sequence of hexadecimal-digits in the universal-character-name. The
program is ill-formed if that number is not a Unicode scalar value.

A universal-character-name that is a named-universal-character designates the corresponding character in the
Unicode Standard (chapter 4.8 Name) if the n-char-sequence is equal to its character name or to one of its
character name aliases of type “control”; “correction”, or “alternate”; otherwise, the program is ill-formed.

[Note 8: These aliases are listed in the Unicode Character Database’s NameAliases.txt. None of these names or
aliases have leading or trailing spaces. — end note]

If a universal-character-name outside the c-char-sequence, s-char-sequence, or r-char-sequence of a character-
literal or string-literal (in either case, including within a user-defined-literal) corresponds to a control character
or to a character in the basic character set, the program is ill-formed.

[Note 4: A sequence of characters resembling a universal-character-name in an r-char-sequence (5.13.5) does not form a
universal-character-name. — end note]

The basic literal character set consists of all characters of the basic character set, plus the control characters
specified in Table 2.

Table 2: Additional control characters in the basic literal character set [tab:lex.charset.literal]

’ character ‘

U+0000 NULL

U+0007 ALERT

U+0008 BACKSPACE
U+000D CARRIAGE RETURN

A code unit is an integer value of character type (6.8.2). Characters in a character-literal other than a
multicharacter or non-encodable character literal or in a string-literal are encoded as a sequence of one or
more code units, as determined by the encoding-prefix (5.13.3, 5.13.5); this is termed the respective literal
encoding. The ordinary literal encoding is the encoding applied to an ordinary character or string literal. The
wide literal encoding is the encoding applied to a wide character or string literal.

A literal encoding or a locale-specific encoding of one of the execution character sets (16.3.3.3.4) encodes
each element of the basic literal character set as a single code unit with non-negative value, distinct from the
code unit for any other such element.

[Note 5: A character not in the basic literal character set can be encoded with more than one code unit; the value of
such a code unit can be the same as that of a code unit for an element of the basic literal character set. — end note]

The U+0000 NULL character is encoded as the value 0. No other element of the translation character set is
encoded with a code unit of value 0. The code unit value of each decimal digit character after the digit
0 (U+0030) shall be one greater than the value of the previous. The ordinary and wide literal encodings
are otherwise implementation-defined. For a UTF-8, UTF-16, or UTF-32 literal, the Unicode scalar value
corresponding to each character of the translation character set is encoded as specified in the Unicode
Standard for the respective Unicode encoding form.

§5.3 16

1

(3.1)

(3.2)

(3.3)

(3.3.1)

(3.3.2)

©ISO/IEC N4944

5.4 Preprocessing tokens [lex.pptoken]
preprocessing-token:

header-name

import-keyword

module-keyword

export-keyword

identifier

pp-number

character-literal

user-defined-character-literal

string-literal

user-defined-string-literal

preprocessing-op-or-punc

each non-whitespace character that cannot be one of the above
Each preprocessing token that is converted to a token (5.6) shall have the lexical form of a keyword, an
identifier, a literal, or an operator or punctuator.

A preprocessing token is the minimal lexical element of the language in translation phases 3 through 6. In this
document, glyphs are used to identify elements of the basic character set (5.3). The categories of preprocessing
token are: header names, placeholder tokens produced by preprocessing import and module directives (import-
keyword, module-keyword, and export-keyword), identifiers, preprocessing numbers, character literals (including
user-defined character literals), string literals (including user-defined string literals), preprocessing operators
and punctuators, and single non-whitespace characters that do not lexically match the other preprocessing
token categories. If a U+0027 APOSTROPHE or a U+0022 QUOTATION MARK character matches the last category,
the behavior is undefined. If any character not in the basic character set matches the last category, the
program is ill-formed. Preprocessing tokens can be separated by whitespace; this consists of comments (5.7), or
whitespace characters (U+0020 SPACE, U+0009 CHARACTER TABULATION, new-line, U+000B LINE TABULATION,
and U+000C FORM FEED), or both. As described in Clause 15, in certain circumstances during translation
phase 4, whitespace (or the absence thereof) serves as more than preprocessing token separation. Whitespace
can appear within a preprocessing token only as part of a header name or between the quotation characters
in a character literal or string literal.

If the input stream has been parsed into preprocessing tokens up to a given character:

— If the next character begins a sequence of characters that could be the prefix and initial double quote of
a raw string literal, such as R", the next preprocessing token shall be a raw string literal. Between the
initial and final double quote characters of the raw string, any transformations performed in phase 2
(line splicing) are reverted; this reversion shall apply before any d-char, r-char, or delimiting parenthesis
is identified. The raw string literal is defined as the shortest sequence of characters that matches the
raw-string pattern

encoding-prefixops R raw-string

— Otherwise, if the next three characters are <:: and the subsequent character is neither : nor >, the <
is treated as a preprocessing token by itself and not as the first character of the alternative token <:.

— Otherwise, the next preprocessing token is the longest sequence of characters that could constitute
a preprocessing token, even if that would cause further lexical analysis to fail, except that a header-
name (5.8) is only formed

— after the include or import preprocessing token in an #include (15.3) or import (15.5) directive,
or

— within a has-include-expression.
[Example 1:

#define R "x"
const char* s = R"y"; // ill-formed raw string, not "x" "y"

— end ezample]

The import-keyword is produced by processing an import directive (15.5), the module-keyword is produced by
preprocessing a module directive (15.4), and the export-keyword is produced by preprocessing either of the
previous two directives.

[Note 1: None has any observable spelling. — end note]

§5.4 17

©ISO/IEC N4944

[Ezample 2: The program fragment Oxe+foo is parsed as a preprocessing number token (one that is not a valid
integer-literal or floating-point-literal token), even though a parse as three preprocessing tokens Oxe, +, and foo can
produce a valid expression (for example, if foo is a macro defined as 1). Similarly, the program fragment 1E1 is parsed
as a preprocessing number (one that is a valid floating-point-literal token), whether or not E is a macro name. — end
example]

[Ezample 8: The program fragment x+++++y is parsed as x ++ ++ + y, which, if x and y have integral types, violates

a constraint on increment operators, even though the parse x ++ + ++ y can yield a correct expression. — end
ezample]
5.5 Alternative tokens [lex.digraph]

Alternative token representations are provided for some operators and punctuators.®

In all respects of the language, each alternative token behaves the same, respectively, as its primary token,
except for its spelling.!! The set of alternative tokens is defined in Table 3.

Table 3: Alternative tokens [tab:lex.digraph]

’ Alternative Primary \ Alternative Primary \ Alternative Primary ‘

<h { and && and_eq &=
%> } bitor | or_eq |=
<: [or I xor_eq ~=
>] xor - not !
% # compl ~ not_eq I=
hith: ## bitand &
5.6 Tokens [lex.token]
token:

identifier

keyword

literal

operator-or-punctuator

There are five kinds of tokens: identifiers, keywords, literals,'? operators, and other separators. Blanks,
horizontal and vertical tabs, newlines, formfeeds, and comments (collectively, “whitespace”), as described
below, are ignored except as they serve to separate tokens.

[Note 1: Some whitespace is required to separate otherwise adjacent identifiers, keywords, numeric literals, and
alternative tokens containing alphabetic characters. — end note]

5.7 Comments [lex.comment]

The characters /* start a comment, which terminates with the characters */. These comments do not nest.
The characters // start a comment, which terminates immediately before the next new-line character. If
there is a form-feed or a vertical-tab character in such a comment, only whitespace characters shall appear
between it and the new-line that terminates the comment; no diagnostic is required.

[Note 1: The comment characters //, /*, and */ have no special meaning within a // comment and are treated just

like other characters. Similarly, the comment characters // and /* have no special meaning within a /* comment.
— end note]

5.8 Header names [lex.header]

header-name:
< h-char-sequence >
" g-char-sequence "

10) These include “digraphs” and additional reserved words. The term “digraph” (token consisting of two characters) is not
perfectly descriptive, since one of the alternative preprocessing-tokens is %:%: and of course several primary tokens contain two
characters. Nonetheless, those alternative tokens that aren’t lexical keywords are colloquially known as “digraphs”.

11) Thus the “stringized” values (15.6.3) of [and <: will be different, maintaining the source spelling, but the tokens can
otherwise be freely interchanged.

12) Literals include strings and character and numeric literals.

§5.8 18

1

©ISO/IEC N4944

h-char-sequence:
h-char
h-char-sequence h-char

h-char:
any member of the translation character set except new-line and U+003E GREATER-THAN SIGN

g-char-sequence:
g-char
g-char-sequence q-char

g-char:
any member of the translation character set except new-line and U+0022 QUOTATION MARK

[Note 1: Header name preprocessing tokens only appear within a #include preprocessing directive, a __has_include
preprocessing expression, or after certain occurrences of an import token (see 5.4). — end note]

The sequences in both forms of header-names are mapped in an implementation-defined manner to headers or
to external source file names as specified in 15.3.

The appearance of either of the characters > or \ or of either of the character sequences /* or // in a
g-char-sequence or an h-char-sequence is conditionally-supported with implementation-defined semantics, as is

the appearance of the character " in an h-char-sequence.'3
5.9 Preprocessing numbers [lex.ppnumber]
pp-number:
digit
. digit

pp-number identifier-continue
pp-number ° digit
pp-number ’> nondigit
pp-number e sign

pp-number E sign

pp-number p sign

pp-number P sign

pp-number .

Preprocessing number tokens lexically include all integer-literal tokens (5.13.2) and all floating-point-literal
tokens (5.13.4).

A preprocessing number does not have a type or a value; it acquires both after a successful conversion to an
integer-literal token or a floating-point-literal token.

5.10 Identifiers [lex.name]

identifier:
identifier-start
identifier identifier-continue

identifier-start:
nondigit
an element of the translation character set with the Unicode property XID_ Start

identifier-continue:
digit
nondigit
an element of the translation character set with the Unicode property XID__ Continue

nondigit: one of
abcdefghijklm
nopgqrstuvwzxyz
ABCDEFGHIJKLM
NOPQRSTUVWIXYZ _

digit: one of
0123456789

13) Thus, a sequence of characters that resembles an escape sequence can result in an error, be interpreted as the character
corresponding to the escape sequence, or have a completely different meaning, depending on the implementation.

§5.10 19

(3.1)

(3.2)

©ISO/IEC N4944

[Note 1: The character properties XID_ Start and XID_ Continue are Derived Core Properties as described by
UAX #44 of the Unicode Standard.'* — end note]

The program is ill-formed if an identifier does not conform to Normalization Form C as specified in the
Unicode Standard.

[Note 2: Identifiers are case-sensitive. — end note]

[Note 3: In translation phase 4, identifier also includes those preprocessing-tokens (5.4) differentiated as keywords (5.11)
in the later translation phase 7 (5.6). — end note]

The identifiers in Table 4 have a special meaning when appearing in a certain context. When referred to
in the grammar, these identifiers are used explicitly rather than using the identifier grammar production.
Unless otherwise specified, any ambiguity as to whether a given identifier has a special meaning is resolved to
interpret the token as a regular identifier.

Table 4: Identifiers with special meaning [tab:lex.name.special]

] final import module override ‘

In addition, some identifiers appearing as a token or preprocessing-token are reserved for use by C++ imple-
mentations and shall not be used otherwise; no diagnostic is required.

— Each identifier that contains a double underscore __ or begins with an underscore followed by an
uppercase letter is reserved to the implementation for any use.

— Each identifier that begins with an underscore is reserved to the implementation for use as a name in
the global namespace.

5.11 Keywords [lex.key]

keyword:
any identifier listed in Table 5
import-keyword
module-keyword
export-keyword

The identifiers shown in Table 5 are reserved for use as keywords (that is, they are unconditionally treated as
keywords in phase 7) except in an attribute-token (9.12.1).

[Note 1: The register keyword is unused but is reserved for future use. — end note]

Furthermore, the alternative representations shown in Table 6 for certain operators and punctuators (5.5)
are reserved and shall not be used otherwise.

5.12 Operators and punctuators [lex.operators]

The lexical representation of C++ programs includes a number of preprocessing tokens that are used in the
syntax of the preprocessor or are converted into tokens for operators and punctuators:
preprocessing-op-or-punc:
preprocessing-operator
operator-or-punctuator

preprocessing-operator: one of
#i# % St

14) On systems in which linkers cannot accept extended characters, an encoding of the universal-character-name can be used
in forming valid external identifiers. For example, some otherwise unused character or sequence of characters can be used to
encode the \u in a universal-character-name. Extended characters can produce a long external identifier, but C++ does not place
a translation limit on significant characters for external identifiers.

§5.12 20

©ISO/IEC

Table 5: Keywords [tab:lex.key]
alignas constinit false public true
alignof const_cast float register try
asm continue for reinterpret_cast typedef
auto co_await friend requires typeid
bool co_return goto return typename
break co_yield if short union
case decltype inline signed unsigned
catch default int sizeof using
char delete long static virtual
char8_t do mutable static_assert void
charl6_t double namespace static_cast volatile
char32_t dynamic_cast new struct wchar_t
class else noexcept switch while
concept enum nullptr template
const explicit operator this
consteval export private thread_local
constexpr extern protected throw

Table 6: Alternative representations

operator-or-punctuator: one of

{ }
<: >
? H
! +
+=
== 1=
<< >>
and or
and_eq or_

eq

and and_eq bitand bitor compl not
not_eq or or_eq Xor Xor_eq

L] ()

<h %> ; :

Lk -> —>* ~

- * /) -

-= *= /= %= "=

< > <= >= <=>

<<= >>= ++ - s

xor not bitand Dbitor compl

xor_eq not_eq

[tab:lex.key.digraph]

Each operator-or-punctuator is converted to a single token in translation phase 7 (5.2).

5.13 Literals
5.13.1 Kinds of literals

There are several kinds of literals.!?

literal:

integer-literal
character-literal
floating-point-literal
string-literal
boolean-literal
pointer-literal
user-defined-literal

N4944

[lex.literal]

[lex.literal.kinds]

[Note 1: When appearing as an expression, a literal has a type and a value category (7.5.1). — end note]

5.13.2 Integer literals

integer-literal:
binary-literal integer-suffixopt
octal-literal integer-suffixopt
decimal-literal integer-suffixop:
hexadecimal-literal integer-suffixop:

[lex.icon]

15) The term “literal” generally designates, in this document, those tokens that are called “constants” in ISO C.

§5.13.2

21

©ISO/IEC N4944

binary-literal:
Ob binary-digit
OB binary-digit
binary-literal ’ opy binary-digit

octal-literal:
0
octal-literal ’ ¢ octal-digit

decimal-literal:
nonzero-digit
decimal-literal ’ o digit

hexadecimal-literal:
hexadecimal-prefix hexadecimal-digit-sequence

binary-digit: one of
01

octal-digit: one of
01234567

nonzero-digit: one of
123456789

hexadecimal-prefix: one of
0x 0X

hexadecimal-digit-sequence:
hexadecimal-digit
hexadecimal-digit-sequence ’ ,,: hexadecimal-digit

hexadecimal-digit: one of
0123456789
abcdef
ABCDEF

integer-suffix:
unsigned-suffix long-suffix,p:
unsigned-suffix long-long-suffixopt
unsigned-suffix size-suffix,pt
long-suffix unsigned-suffix,p:
long-long-suffix unsigned-suffixop:
size-suffix unsigned-suffixopt

unsigned-suffix: one of
ul

long-suffix: one of
1L

long-long-suffix: one of
11 LL

size-suffix: one of
z Z

1 In an integer-literal, the sequence of binary-digits, octal-digits, digits, or hexadecimal-digits is interpreted as
a base N integer as shown in table Table 7; the lexically first digit of the sequence of digits is the most
significant.

[Note 1: The prefix and any optional separating single quotes are ignored when determining the value. — end note]

Table 7: Base of integer-literals [tab:lex.icon.base]

| Kind of integer-literal base N |

binary-literal 2
octal-literal 8
decimal-literal 10
hexadecimal-literal 16

2 The hexadecimal-digits a through £ and A through F have decimal values ten through fifteen.

§5.13.2 22

©ISO/IEC N4944

[Ezample 1: The number twelve can be written 12, 014, 0XC, or 0b1100. The integer-literals 1048576, 1°048°576,
0X100000, 0x10’0000, and 0°004°000°000 all have the same value. — end ezample]

3 The type of an integer-literal is the first type in the list in Table 8 corresponding to its optional integer-suffix
in which its value can be represented.

Table 8: Types of integer-literals [tab:lex.icon.type]

integer-suffix decimal-literal integer-literal other than decimal-literal
none int int

long int unsigned int

long long int long int

unsigned long int
long long int
unsigned long long int

uorU unsigned int unsigned int
unsigned long int unsigned long int
unsigned long long int unsigned long long int
lorl long int long int
long long int unsigned long int

long long int
unsigned long long int

Bothuoru unsigned long int unsigned long int

and 1 or L unsigned long long int unsigned long long int

11 or LL long long int long long int
unsigned long long int

Bothuoru unsigned long long int unsigned long long int

and 11 or LL

zorZ the signed integer type corresponding | the signed integer type

to std::size_t (17.2.4) corresponding to std::size_t

std::size_t

BothuorU std::size_t std::size_t

and z or Z

4 If an integer-literal cannot be represented by any type in its list and an extended integer type (6.8.2) can
represent its value, it may have that extended integer type. If all of the types in the list for the integer-literal
are signed, the extended integer type shall be signed. If all of the types in the list for the integer-literal are
unsigned, the extended integer type shall be unsigned. If the list contains both signed and unsigned types,
the extended integer type may be signed or unsigned. A program is ill-formed if one of its translation units
contains an integer-literal that cannot be represented by any of the allowed types.

5.13.3 Character literals [lex.ccon)]

character-literal:
encoding-prefixop: ’ c-char-sequence ’

encoding-prefix: one of
u¢ u U L

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
basic-c-char
escape-sequence
universal-character-name

basic-c-char:
any member of the translation character set except the U+0027 APOSTROPHE,
U+005C REVERSE SOLIDUS, or new-line character

§5.13.3 23

©ISO/IEC N4944

escape-sequence:
simple-escape-sequence
numeric-escape-sequence
conditional-escape-sequence

simple-escape-sequence:
\ simple-escape-sequence-char

simple-escape-sequence-char: one of
>"?\Nabfnrtv

numeric-escape-sequence:
octal-escape-sequence
hexadecimal-escape-sequence
simple-octal-digit-sequence:
octal-digit
simple-octal-digit-sequence octal-digit
octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit
\o{ simple-octal-digit-sequence }

hexadecimal-escape-sequence:
\x simple-hexadecimal-digit-sequence
\x{ simple-hexadecimal-digit-sequence }
conditional-escape-sequence:
\ conditional-escape-sequence-char

conditional-escape-sequence-char:
any member of the basic character set that is not an octal-digit, a simple-escape-sequence-char, or the
characters N, o, u, U, or x

1 A non-encodable character literal is a character-literal whose c-char-sequence consists of a single c-char that is
not a numeric-escape-sequence and that specifies a character that either lacks representation in the literal’s
associated character encoding or that cannot be encoded as a single code unit. A multicharacter literal is a
character-literal whose c-char-sequence consists of more than one c-char. The encoding-prefix of a non-encodable
character literal or a multicharacter literal shall be absent. Such character-literals are conditionally-supported.

2 The kind of a character-literal, its type, and its associated character encoding (5.3) are determined by its
encoding-prefix and its c-char-sequence as defined by Table 9. The special cases for non-encodable character
literals and multicharacter literals take precedence over the base kind.

[Note 1: The associated character encoding for ordinary character literals determines encodability, but does not
determine the value of non-encodable ordinary character literals or ordinary multicharacter literals. The examples in
Table 9 for non-encodable ordinary character literals assume that the specified character lacks representation in the
ordinary literal encoding or that encoding the character would require more than one code unit. — end note]

Table 9: Character literals [tab:lex.ccon.literal]

Encoding | Kind Type Associated char- | Example

prefix acter encoding

none ordinary character literal char ordinary Ty
non-encodable ordinary character literal | int literal >\UO001F525°
ordinary multicharacter literal int encoding ’abed’

L wide character literal wchar_t wide literal Lw’

encoding

u8 UTF-8 character literal char8_t UTF-8 u8’x’

u UTF-16 character literal char16_t | UTF-16 u’y’

U UTF-32 character literal char32_t | UTF-32 Uz’

3 In translation phase 4, the value of a character-literal is determined using the range of representable values of
the character-literal’s type in translation phase 7. A non-encodable character literal or a multicharacter literal
has an implementation-defined value. The value of any other kind of character-literal is determined as follows:

§5.13.3 24

(3.1)

(3.2.2)

(3.2.3)

©ISO/IEC N4944

— A character-literal with a c-char-sequence consisting of a single basic-c-char, simple-escape-sequence, or
universal-character-name is the code unit value of the specified character as encoded in the literal’s
associated character encoding.

[Note 2: If the specified character lacks representation in the literal’s associated character encoding or if it
cannot be encoded as a single code unit, then the literal is a non-encodable character literal. — end note]

— A character-literal with a c-char-sequence consisting of a single numeric-escape-sequence has a value as
follows:

Let v be the integer value represented by the octal number comprising the sequence of octal-
digits in an octal-escape-sequence or by the hexadecimal number comprising the sequence of
hexadecimal-digits in a hexadecimal-escape-sequence.

If v does not exceed the range of representable values of the character-literal’s type, then the value
is v.

Otherwise, if the character-literal’s encoding-prefix is absent or L, and v does not exceed the
range of representable values of the corresponding unsigned type for the underlying type of the
character-literal’s type, then the value is the unique value of the character-literal’s type T that is
congruent to v modulo 2V, where N is the width of T.

— Otherwise, the character-literal is ill-formed.

— A character-literal with a c-char-sequence consisting of a single conditional-escape-sequence is conditionally-
supported and has an implementation-defined value.

4 The character specified by a simple-escape-sequence is specified in Table 10.

[Note 3: Using an escape sequence for a question mark is supported for compatibility with ISO C++ 2014 and ISO C.

— end note]
Table 10: Simple escape sequences [tab:lex.ccon.esc]
character simple-escape-sequence \
U+000A LINE FEED \n
U+0009 CHARACTER TABULATION \t
U+000B LINE TABULATION \v
U+0008 BACKSPACE \b
U+000D CARRIAGE RETURN \r
U+000C FORM FEED \f
U+0007 ALERT \a
U+005C REVERSE SOLIDUS A\
U+003F QUESTION MARK \7?
U+0027 APOSTROPHE \’
U+0022 QUOTATION MARK \"
5.13.4 Floating-point literals [lex.fcon]

floating-point-literal:

decimal-floating-point-literal
hexadecimal-floating-point-literal

decimal-floating-point-literal:

fractional-constant exponent-part,y; floating-point-suffixp:
digit-sequence exponent-part floating-point-suffixop:

hexadecimal-floating-point-literal:

hexadecimal-prefix hexadecimal-fractional-constant binary-exponent-part floating-point-suffix,p:
hexadecimal-prefix hexadecimal-digit-sequence binary-exponent-part floating-point-suffix,p;

fractional-constant:

digit-sequence,y; . digit-sequence
digit-sequence .

hexadecimal-fractional-constant:

§5.13.4

hexadecimal-digit-sequence,,: . hexadecimal-digit-sequence
hexadecimal-digit-sequence .

25

©ISO/IEC N4944

exponent-part:

e signop: digit-sequence

E signop: digit-sequence
binary-exponent-part:

p Signop: digit-sequence

P signop: digit-sequence
sign: one of

+ -
digit-sequence:

digit

digit-sequence ’ ,p; digit
floating-point-suffix: one of

f 1 £f16 £32 f64 £128 bfl16 F L F16 F32 F64 F128 BF16

L The type of a floating-point-literal (6.8.2, 6.8.3) is determined by its floating-point-suffix as specified in Table 11.

[Note 1: The floating-point suffixes £16, £32, £64, £128, bf16, F16, F32, F64, F128, and BF16 are conditionally-
supported. See 6.8.3. — end note]

Table 11: Types of floating-point-literals [tab:lex.fcon.type]

| floating-point-suffix type \
none double
forF float
lorl long double
f16 or F16 std::floatl6_t
£32 or F32 std::float32_t
£64 or F64 std::float64_t
£128 or F128 std::floatl128_t
bf16 or BF16 std::bfloatl6_t

2 The significand of a floating-point-literal is the fractional-constant or digit-sequence of a decimal-floating-point-
literal or the hexadecimal-fractional-constant or hexadecimal-digit-sequence of a hexadecimal-floating-point-literal.
In the significand, the sequence of digits or hexadecimal-digits and optional period are interpreted as a base N
real number s, where N is 10 for a decimal-floating-point-literal and 16 for a hexadecimal-floating-point-literal.

[Note 2: Any optional separating single quotes are ignored when determining the value. — end note]

If an exponent-part or binary-exponent-part is present, the exponent e of the floating-point-literal is the
result of interpreting the sequence of an optional sign and the digits as a base 10 integer. Otherwise, the
exponent e is 0. The scaled value of the literal is s x 10¢ for a decimal-floating-point-literal and s x 2¢ for a
hexadecimal-floating-point-literal.

[Ezample 1: The floating-point-literals 49.625 and 0xC.68p+2 have the same value. The floating-point-literals
1.602°176°565e-19 and 1.602176565e-19 have the same value. — end ezample]

3 If the scaled value is not in the range of representable values for its type, the program is ill-formed. Otherwise,
the value of a floating-point-literal is the scaled value if representable, else the larger or smaller representable
value nearest the scaled value, chosen in an implementation-defined manner.

5.13.5 String literals [lex.string]

string-literal:
encoding-prefixop: " s-char-sequenceyp; "
encoding-prefixop: R raw-string

s-char-sequence:
s-char
s-char-sequence s-char
s-char:
basic-s-char
escape-sequence
universal-character-name

§5.13.5 26

©ISO/IEC N4944

basic-s-char:
any member of the translation character set except the U+0022 QUOTATION MARK,
U+005C REVERSE SOLIDUS, or new-line character
raw-string:
" d-char-sequence,p: (r-char-sequenceoy:) d-char-sequenceop: "
r-char-sequence:
r-char
r-char-sequence r-char

r-char:
any member of the translation character set, except a U+0029 RIGHT PARENTHESIS followed by
the initial d-char-sequence (which may be empty) followed by a U+0022 QUOTATION MARK

d-char-sequence:
d-char
d-char-sequence d-char
d-char:
any member of the basic character set except:

U+0020 SPACE, U+0028 LEFT PARENTHESIS, U+0029 RIGHT PARENTHESIS, U+005C REVERSE SOLIDUS,
U+0009 CHARACTER TABULATION, U+000B LINE TABULATION, U+000C FORM FEED, and new-line

L The kind of a string-literal, its type, and its associated character encoding (5.3) are determined by its encoding
prefix and sequence of s-chars or r-chars as defined by Table 12 where n is the number of encoded code units
as described below.

Table 12: String literals [tab:lex.string.literal]

Encoding Kind Type Associated Examples
prefix character
encoding

none ordinary string literal —array of n ordinary literal "ordinary string"

const char encoding R"(ordinary raw string)"
L wide string literal array of n wide literal L"wide string"

const wchar_t encoding LR"w(wide raw string)w"
u8 UTF-8 string literal array of n UTF-8 u8"UTF-8 string"

const char8_t u8R"x (UTF-8 raw string)x"
u UTF-16 string literal array of n UTF-16 u"UTF-16 string"

const charl6_t uR"y(UTF-16 raw string)y"
U UTF-32 string literal — array of n UTF-32 U"UTF-32 string"

const char32_t UR"z(UTF-32 raw string)z"

2 A string-literal that has an R in the prefix is a raw string literal. The d-char-sequence serves as a delimiter. The
terminating d-char-sequence of a raw-string is the same sequence of characters as the initial d-char-sequence.
A d-char-sequence shall consist of at most 16 characters.

3 [Note 1: The characters ’(’> and ’)’ are permitted in a raw-string. Thus, R"delimiter((alb))delimiter" is
equivalent to "(alb)". — end note]

[Note 2: A source-file new-line in a raw string literal results in a new-line in the resulting execution string literal.

Assuming no whitespace at the beginning of lines in the following example, the assert will succeed:

const char* p = R"(a\
b
c)'";
assert(std::strcmp(p, "a\\\nb\nc") == 0);
— end note]
5 [Ezample 1: The raw string

Rlla(
N

a"
)an

§5.13.5 27

10

(10.1)

(10.2)

(10.2.1)

(10.2.2)

©ISO/IEC N4944

is equivalent to "\n)\\\na\"\n". The raw string
R"(x = "\"y\"")"
is equivalent to "x = \"\\\"y\\\"\"". — end ezample]
Ordinary string literals and UTF-8 string literals are also referred to as narrow string literals.

The common encoding-prefix for a sequence of adjacent string-literals is determined pairwise as follows: If
two string-literals have the same encoding-prefix, the common encoding-prefix is that encoding-prefix. If one
string-literal has no encoding-prefix, the common encoding-prefix is that of the other string-literal. Any other
combinations are ill-formed.

[Note 3: A string-literal’s rawness has no effect on the determination of the common encoding-prefix. — end note]

In translation phase 6 (5.2), adjacent string-literals are concatenated. The lexical structure and grouping of
the contents of the individual string-literals is retained.

[Ezample 2:
"\XA" np"

represents the code unit ’\xA’ and the character ’B’ after concatenation (and not the single code unit >\xAB’).
Similarly,

R" (\uoo) nongqn

represents six characters, starting with a backslash and ending with the digit 1 (and not the single character ’A’
specified by a universal-character-name).

Table 13 has some examples of valid concatenations. — end example]

Table 13: String literal concatenations [tab:lex.string.concat]

Source Means Source Means Source Means
ullaII ullbll ullabll Ullall Ullbll Ullabll Lllall LlIbIl LlIabll
ullall llbll ullabll Ullall llbll Ullabll Lllall ||bl| Lllabll
llall u"bll u"ab“ ||all Ullbll Ullabll ||a|| Lllbll Lllabll

Evaluating a string-literal results in a string literal object with static storage duration (6.7.5). Whether all
string-literals are distinct (that is, are stored in nonoverlapping objects) and whether successive evaluations of
a string-literal yield the same or a different object is unspecified.

[Note 4: The effect of attempting to modify a string literal object is undefined. — end note]

String literal objects are initialized with the sequence of code unit values corresponding to the string-literal’s
sequence of s-chars (originally from non-raw string literals) and r-chars (originally from raw string literals),
plus a terminating U+0000 NULL character, in order as follows:

— The sequence of characters denoted by each contiguous sequence of basic-s-chars, r-chars, simple-escape-
sequences (5.13.3), and universal-character-names (5.3) is encoded to a code unit sequence using the
string-literal’s associated character encoding. If a character lacks representation in the associated
character encoding, then the string-literal is conditionally-supported and an implementation-defined
code unit sequence is encoded.

[Note 5: No character lacks representation in any Unicode encoding form. — end note]

When encoding a stateful character encoding, implementations should encode the first such sequence
beginning with the initial encoding state and encode subsequent sequences beginning with the final
encoding state of the prior sequence.

[Note 6: The encoded code unit sequence can differ from the sequence of code units that would be obtained by
encoding each character independently. — end note]

— Each numeric-escape-sequence (5.13.3) contributes a single code unit with a value as follows:

— Let v be the integer value represented by the octal number comprising the sequence of octal-
digits in an octal-escape-sequence or by the hexadecimal number comprising the sequence of
hexadecimal-digits in a hexadecimal-escape-sequence.

— If v does not exceed the range of representable values of the string-literal’s array element type,
then the value is v.

§5.13.5 28

(10.2.3)

(10.2.4)

(10.3)

©ISO/IEC N4944

— Otherwise, if the string-literal’s encoding-prefix is absent or L, and v does not exceed the range of
representable values of the corresponding unsigned type for the underlying type of the string-literal’s
array element type, then the value is the unique value of the string-literal’s array element type T
that is congruent to v modulo 2V, where N is the width of T.

— Otherwise, the string-literal is ill-formed.
When encoding a stateful character encoding, these sequences should have no effect on encoding state.

— Each conditional-escape-sequence (5.13.3) contributes an implementation-defined code unit sequence.
When encoding a stateful character encoding, it is implementation-defined what effect these sequences
have on encoding state.

5.13.6 Boolean literals [lex.bool]
boolean-literal:
false
true

The Boolean literals are the keywords false and true. Such literals have type bool.

5.13.7 Pointer literals [lex.nullptr|
pointer-literal:
nullptr

The pointer literal is the keyword nullptr. It has type std: :nullptr_t.

[Note 1: std::nullptr_t is a distinct type that is neither a pointer type nor a pointer-to-member type; rather, a
prvalue of this type is a null pointer constant and can be converted to a null pointer value or null member pointer
value. See 7.3.12 and 7.3.13. — end note]

5.13.8 User-defined literals [lex.ext]

user-defined-literal:
user-defined-integer-literal
user-defined-floating-point-literal
user-defined-string-literal
user-defined-character-literal

user-defined-integer-literal:
decimal-literal ud-suffix
octal-literal ud-suffix
hexadecimal-literal ud-suffix
binary-literal ud-suffix

user-defined-floating-point-literal:
fractional-constant exponent-part,p; ud-suffix
digit-sequence exponent-part ud-suffix
hexadecimal-prefix hexadecimal-fractional-constant binary-exponent-part ud-suffix
hexadecimal-prefix hexadecimal-digit-sequence binary-exponent-part ud-suffix

user-defined-string-literal:
string-literal ud-suffix

user-defined-character-literal:
character-literal ud-suffix

ud-suffix:
identifier

1 If a token matches both user-defined-literal and another literal kind, it is treated as the latter.

[Example 1: 123_knm is a user-defined-literal, but 12LL is an integer-literal. — end ezample]

The syntactic non-terminal preceding the ud-suffix in a user-defined-literal is taken to be the longest sequence
of characters that could match that non-terminal.

A user-defined-literal is treated as a call to a literal operator or literal operator template (12.6). To determine
the form of this call for a given user-defined-literal L with ud-suffix X, first let S be the set of declarations
found by unqualified lookup for the literal-operator-id whose literal suffix identifier is X (6.5.3). S shall not
be empty.

§5.13.8 29

©ISO/IEC N4944

If L is a user-defined-integer-literal, let n be the literal without its ud-suffix. If S contains a literal operator
with parameter type unsigned long long, the literal L is treated as a call of the form

operator ""X (nULL)

Otherwise, S shall contain a raw literal operator or a numeric literal operator template (12.6) but not both.
If S contains a raw literal operator, the literal L is treated as a call of the form

operator ""X("n")

Otherwise (S contains a numeric literal operator template), L is treated as a call of the form
operator ""X<'c1', 'ca', ... '¢cx'>0

where n is the source character sequence cics...cx.

[Note 1: The sequence cicz...ck can only contain characters from the basic character set. — end note]

If L is a user-defined-floating-point-literal, let f be the literal without its ud-suffix. If S contains a literal
operator with parameter type long double, the literal L is treated as a call of the form

operator ""X(fL)

Otherwise, S shall contain a raw literal operator or a numeric literal operator template (12.6) but not both.
If S contains a raw literal operator, the literal L is treated as a call of the form

operator ""X("f")

Otherwise (S contains a numeric literal operator template), L is treated as a call of the form
operator ""X<'ci', 'c2', ... 'cx'>0

where f is the source character sequence cjcso...c.

[Note 2: The sequence cjcs...c, can only contain characters from the basic character set. — end note]

If L is a user-defined-string-literal, let str be the literal without its ud-suffix and let len be the number of
code units in str (i.e., its length excluding the terminating null character). If S contains a literal operator
template with a non-type template parameter for which str is a well-formed template-argument, the literal L
is treated as a call of the form

operator ""X<str>()
Otherwise, the literal L is treated as a call of the form
operator ""X(str, len)

If L is a user-defined-character-literal, let ch be the literal without its ud-suffix. S shall contain a literal
operator (12.6) whose only parameter has the type of ch and the literal L is treated as a call of the form

operator ""X(ch)

[Ezample 2:
long double operator ""_w(long double);
std::string operator ""_w(const charl6_t*, std::size_t);
unsigned operator ""_w(const char*);
int main() {
1.2 _w; // calls operator ""_w(1.2L)
u"one"_w; // calls operator ""_w(u"one", 3)
12_w; // calls operator ""_w("12")
"two"_w; // error: no applicable literal operator
}

— end example]

In translation phase 6 (5.2), adjacent string-literals are concatenated and user-defined-string-literals are
considered string-literals for that purpose. During concatenation, ud-suffixes are removed and ignored and the
concatenation process occurs as described in 5.13.5. At the end of phase 6, if a string-literal is the result of a
concatenation involving at least one user-defined-string-literal, all the participating user-defined-string-literals
shall have the same ud-suffix and that suffix is applied to the result of the concatenation.

[Ezample 3:

int main() {

L"A" "B" "C"_x; // OK, same as L"ABC" _x

"P"_x "Q" "R"_y; // error: two different ud-suffixes
}

§5.13.8 30

©ISO/IEC N4944

— end ezample]

§5.13.8 31

(5.10)
(5.11)
(5.12)
(5.13)

(5.14)

(9.1)
(9.2)
(9.3)

(9.4)

©ISO/IEC N4944

6 Basics [basic]

6.1 Preamble [basic.pre]

[Note 1: This Clause presents the basic concepts of the C++ language. It explains the difference between an object
and a name and how they relate to the value categories for expressions. It introduces the concepts of a declaration
and a definition and presents C++’s notion of type, scope, linkage, and storage duration. The mechanisms for starting
and terminating a program are discussed. Finally, this Clause presents the fundamental types of the language and
lists the ways of constructing compound types from these. — end note]

[Note 2: This Clause does not cover concepts that affect only a single part of the language. Such concepts are
discussed in the relevant Clauses. — end note]

An entity is a value, object, reference, structured binding, function, enumerator, type, class member, bit-field,
template, template specialization, namespace, or pack.

A name is an identifier (5.10), operator-function-id (12.4), literal-operator-id (12.6), or conversion-function-
id (11.4.8.3).

Every name is introduced by a declaration, which is a
— name-declaration, block-declaration, or member-declaration (9.1, 11.4),
— init-declarator (9.3),
— identifier in a structured binding declaration (9.6),
— init-capture (7.5.5.3),
— condition with a declarator (8.1),
— member-declarator (11.4),
— using-declarator (9.9),
— parameter-declaration (9.3.4.6),
— type-parameter (13.2),
— elaborated-type-specifier that introduces a name (9.2.9.4),
— class-specifier (11.1),
— enum-specifier or enumerator-definition (9.7.1),
— exception-declaration (14.1), or
— implicit declaration of an injected-class-name (11.1).
[Note 3: The interpretation of a for-range-declaration produces one or more of the above (8.6.5). — end note|

An entity E is denoted by the name (if any) that is introduced by a declaration of E or by a typedef-name
introduced by a declaration specifying E.

A wariable is introduced by the declaration of a reference other than a non-static data member or of an
object. The variable’s name, if any, denotes the reference or object.

A local entity is a variable with automatic storage duration (6.7.5.4), a structured binding (9.6) whose
corresponding variable is such an entity, or the *this object (7.5.2).

Some names denote types or templates. In general, whenever a name is encountered it is necessary to
determine whether that name denotes one of these entities before continuing to parse the program that
contains it. The process that determines this is called name lookup (6.5).

Two names are the same if
— they are identifiers composed of the same character sequence, or
— they are operator-function-ids formed with the same operator, or
— they are conversion-function-ids formed with equivalent (13.7.7.2) types, or

— they are literal-operator-ids (12.6) formed with the same literal suffix identifier.

§6.1 32

10

(2.3)

(2.4)

(2.5)
(2.6)
2.7)

(2.8)

(2.9)
(2.10)
(2.11)
(2.12)
(2.13)
(2.14)
(2.15)
(2.16)
(2.17)

(2.18)

(2.19)

(2.20)

©ISO/IEC N4944

A name used in more than one translation unit can potentially refer to the same entity in these translation
units depending on the linkage (6.6) of the name specified in each translation unit.

6.2 Declarations and definitions [basic.def]

A declaration (Clause 9) may (re)introduce one or more names and/or entities into a translation unit. If
so, the declaration specifies the interpretation and semantic properties of these names. A declaration of an
entity or typedef-name X is a redeclaration of X if another declaration of X is reachable from it (10.7). A
declaration may also have effects including:

— a static assertion (9.1),
— controlling template instantiation (13.9.3),
— guiding template argument deduction for constructors (13.7.2.3),
— use of attributes (9.12), and
— nothing (in the case of an empty-declaration).
Each entity declared by a declaration is also defined by that declaration unless:
— it declares a function without specifying the function’s body (9.5),

— it contains the extern specifier (9.2.2) or a linkage-specification'® (9.11) and neither an initializer nor a
function-body,

— it declares a non-inline static data member in a class definition (11.4, 11.4.9),

— it declares a static data member outside a class definition and the variable was defined within the class
with the constexpr specifier (this usage is deprecated; see D.6),

— it is an elaborated-type-specifier (11.3),
— it is an opaque-enum-declaration (9.7.1),
— it is a template-parameter (13.2),

— it is a parameter-declaration (9.3.4.6) in a function declarator that is not the declarator of a function-
definition,

— it is a typedef declaration (9.2.4),
— it is an alias-declaration (9.2.4),

— it is a using-declaration (9.9),

— it is a deduction-guide (13.7.2.3),

— it is a static_assert-declaration (9.1),
— it is an attribute-declaration (9.1),
— it is an empty-declaration (9.1),

— it is a using-directive (9.8.4),

— it is a using-enum-declaration (9.7.2),

— it is a template-declaration (13.1) whose template-head is not followed by either a concept-definition or a
declaration that defines a function, a class, a variable, or a static data member.

— it is an explicit instantiation declaration (13.9.3), or
— it is an explicit specialization (13.9.4) whose declaration is not a definition.
A declaration is said to be a definition of each entity that it defines.

[Ezample 1: All but one of the following are definitions:

int a; // defines a
extern const int ¢ = 1; // defines c
int £(int x) { return x+a; } // defines £ and defines x
struct S { int a; int b; }; // defines S, S::a, and S::b
struct X { // defines X
int x; // defines non-static data member x

16) Appearing inside the brace-enclosed declaration-seq in a linkage-specification does not affect whether a declaration is a
definition.

§6.2 33

3

(1.3)

©ISO/IEC

static int y;

XO: x) {2
}
int X::y = 1;
enum { up, down };
namespace N { int d; }
namespace N1 = N;
X anX;

whereas these are just declarations:

extern int a;
extern const int c;
int f£(int);

struct S;

typedef int Int;
extern X anotherX;
using N::d;

— end example]

// declares static data member y
// defines a constructor of X

// defines X::y
// defines up and down
// defines N and N: :d

// defines N1
// defines anX

// declares a

// declares ¢

// declares £

// declares S

// declares Int

// declares anotherX
// declares d

N4944

[Note 1: In some circumstances, C++ implementations implicitly define the default constructor (11.4.5.2), copy
constructor, move constructor (11.4.5.3), copy assignment operator, move assignment operator (11.4.6), or destructor
(11.4.7) member functions. — end note]

[Ezample 2: Given

#include <string>

struct C {
std::string s; // std::string is the standard library class (23.4)
};
int main() {
C a;
Cb=a;
b = a;
}
the implementation will implicitly define functions to make the definition of C equivalent to
struct C {
std::string s;
cO :sO {1}

};

C(const C& x): s(x.s) {}

C(C&& x): s(static_cast<std::string&&>(x.s)) { }
// : s(std::move(x.s)) {2}

C& operator=(const C& x) { s = x.s; return *this; }

C& operator=(C&& x) { s = static_cast<std::string&&>(x.s); return *this; }
// { s = std::move(x.s); return *this; }

~cO {12

— end ezample]

[Note 2: A class name can also be implicitly declared by an elaborated-type-specifier (9.2.9.4). — end note]

In the definition of an object, the type of that object shall not be an incomplete type (6.8.1), an abstract
class type (11.7.4), or a (possibly multi-dimensional) array thereof.

6.3

One-definition rule [basic.def.odr]

Each of the following is termed a definable item:

— a class type (Clause 11),

— an enumeration type (9.7.1),
— a function (9.3.4.6),

— a variable (6.1),

— a templated entity (13.1),

§6.3 34

©ISO/IEC N4944

(1.6) — a default argument for a parameter (for a function in a given scope) (9.3.4.7), or
(L7 — a default template argument (13.2).
2 No translation unit shall contain more than one definition of any definable item.

3 An expression or conversion is potentially evaluated unless it is an unevaluated operand (7.2.3), a subexpression
thereof, or a conversion in an initialization or conversion sequence in such a context. The set of potential
results of an expression F is defined as follows:

(31) — If E is an id-expression (7.5.4), the set contains only F.

(3:2) — If E is a subscripting operation (7.6.1.2) with an array operand, the set contains the potential results
of that operand.

(3.3) — If E is a class member access expression (7.6.1.5) of the form F; . template,,; E» naming a non-static
data member, the set contains the potential results of ;.

(3.4) — If F is a class member access expression naming a static data member, the set contains the id-expression
designating the data member.

(35) — If F is a pointer-to-member expression (7.6.4) of the form Fy .* Ej, the set contains the potential
results of Fj.

(3.6) — If E has the form (FE7), the set contains the potential results of Ej.

37 — If F is a glvalue conditional expression (7.6.16), the set is the union of the sets of potential results of
the second and third operands.

(3.8) — If F is a comma expression (7.6.20), the set contains the potential results of the right operand.

(3.9) — Otherwise, the set is empty.

[Note 1: This set is a (possibly-empty) set of id-expressions, each of which is either E or a subexpression of E.

[Ezample 1: In the following example, the set of potential results of the initializer of n contains the first S::x
subexpression, but not the second S: :x subexpression.

struct S { static const int x = 0; };
const int &f(const int &r);
int n =b ? (1, S::x) // S::x is not odr-used here
: £(8::x); // S::x is odr-used here, so a definition is required

— end ezample]
— end note]
4 A function is named by an expression or conversion as follows:

(1) — A function is named by an expression or conversion if it is the selected member of an overload set (6.5,
12.2, 12.3) in an overload resolution performed as part of forming that expression or conversion, unless
it is a pure virtual function and either the expression is not an id-expression naming the function with
an explicitly qualified name or the expression forms a pointer to member (7.6.2.2).

[Note 2: This covers taking the address of functions (7.3.4, 7.6.2.2), calls to named functions (7.6.1.3), operator
overloading (Clause 12), user-defined conversions (11.4.8.3), allocation functions for new-expressions (7.6.2.8), as
well as non-default initialization (9.4). A constructor selected to copy or move an object of class type is considered

to be named by an expression or conversion even if the call is actually elided by the implementation (11.9.6).
— end note]

(4.2) — A deallocation function for a class is named by a new-expression if it is the single matching deallocation
function for the allocation function selected by overload resolution, as specified in 7.6.2.8.

(43) — A deallocation function for a class is named by a delete-expression if it is the selected usual deallocation
function as specified in 7.6.2.9 and 11.4.11.

5 A variable is named by an expression if the expression is an id-expression that denotes it. A variable x that is
named by a potentially-evaluated expression F is odr-used by E unless

(51) — x is a reference that is usable in constant expressions (7.7), or

(5.2) — x is a variable of non-reference type that is usable in constant expressions and has no mutable subobjects,
and F is an element of the set of potential results of an expression of non-volatile-qualified non-class
type to which the lvalue-to-rvalue conversion (7.3.2) is applied, or

§6.3 35

(5.3)

=

0

(10.1)

(10.2)

(10.2.1)

(10.2.2)

11

©ISO/IEC N4944

— x is a variable of non-reference type, and E is an element of the set of potential results of a discarded-value
expression (7.2.3) to which the lvalue-to-rvalue conversion is not applied.

A structured binding is odr-used if it appears as a potentially-evaluated expression.

*this is odr-used if this appears as a potentially-evaluated expression (including as the result of the implicit
transformation in the body of a non-static member function (11.4.3)).

A virtual member function is odr-used if it is not pure. A function is odr-used if it is named by a potentially-
evaluated expression or conversion. A non-placement allocation or deallocation function for a class is odr-used
by the definition of a constructor of that class. A non-placement deallocation function for a class is odr-used
by the definition of the destructor of that class, or by being selected by the lookup at the point of definition
of a virtual destructor (11.4.7).17

An assignment operator function in a class is odr-used by an implicitly-defined copy-assignment or move-
assignment function for another class as specified in 11.4.6. A constructor for a class is odr-used as specified
in 9.4. A destructor for a class is odr-used if it is potentially invoked (11.4.7).

A local entity (6.1) is odr-usable in a scope (6.4.1) if:

— either the local entity is not *this, or an enclosing class or non-lambda function parameter scope exists
and, if the innermost such scope is a function parameter scope, it corresponds to a non-static member
function, and

— for each intervening scope (6.4.1) between the point at which the entity is introduced and the scope
(where *this is considered to be introduced within the innermost enclosing class or non-lambda function
definition scope), either:

— the intervening scope is a block scope, or

— the intervening scope is the function parameter scope of a lambda-expression that has a simple-
capture naming the entity or has a capture-default, and the block scope of the lambda-expression is
also an intervening scope.

If a local entity is odr-used in a scope in which it is not odr-usable, the program is ill-formed.

[Ezample 2:
void f(int n) {
[T {n=1;13%; // error: n is not odr-usable due to intervening lambda-expression
struct A {
void £f() { n =2; } // error: n is not odr-usable due to intervening function definition scope
};
void g(int = n); // error: n is not odr-usable due to intervening function parameter scope
[=1(int k = n) {}; // error: n is not odr-usable due to being

// outside the block scope of the lambda-expression
[&] { [n]{ return n; }; 3}; // OK
}

— end ezample]

Every program shall contain at least one definition of every function or variable that is odr-used in that
program outside of a discarded statement (8.5.2); no diagnostic required. The definition can appear explicitly
in the program, it can be found in the standard or a user-defined library, or (when appropriate) it is implicitly
defined (see 11.4.5.2, 11.4.5.3, 11.4.7, and 11.4.6).

[Ezample 3:

auto £f() {
struct A {};
return A{};
}
decltype(f()) g();
auto x = g();

A program containing this translation unit is ill-formed because g is odr-used but not defined, and cannot be defined
in any other translation unit because the local class A cannot be named outside this translation unit. — end ezample]

17) An implementation is not required to call allocation and deallocation functions from constructors or destructors; however,
this is a permissible implementation technique.

§6.3 36

12

13

(13.1)
(13.2)
(13.3)
(13.4)
(13.5)

)

(13.6

(13.7)
(13.8)
(13.9)
(13.10)
(13.11)
(13.12)

(13.13)

14
(14.1)

(14.2)

(14.3)

(14.4)

(14.5)

(14.5.1)
(14.5.1.1)
(14.5.1.2)
(14.5.1.3)

(14.5.1.4)

(14.5.2)

©ISO/IEC N4944

A definition domain is a private-module-fragment or the portion of a translation unit excluding its private-
module-fragment (if any). A definition of an inline function or variable shall be reachable from the end of
every definition domain in which it is odr-used outside of a discarded statement.

A definition of a class shall be reachable in every context in which the class is used in a way that requires the
class type to be complete.

[Ezample 4: The following complete translation unit is well-formed, even though it never defines X:

struct X; // declare X as a struct type
struct X* x1; // use X in pointer formation
X* x2; // use X in pointer formation

— end ezample]

[Note 3: The rules for declarations and expressions describe in which contexts complete class types are required. A
class type T must be complete if:

— an object of type T is defined (6.2), or

— a non-static class data member of type T is declared (11.4), or

— T is used as the allocated type or array element type in a new-expression (7.6.2.8), or

— an lvalue-to-rvalue conversion is applied to a glvalue referring to an object of type T (7.3.2), or

— an expression is converted (either implicitly or explicitly) to type T (7.3, 7.6.1.4, 7.6.1.7, 7.6.1.9, 7.6.3), or

— an expression that is not a null pointer constant, and has type other than cv voidx, is converted to the type pointer
to T or reference to T using a standard conversion (7.3), a dynamic_cast (7.6.1.7) or a static_cast (7.6.1.9), or

— a class member access operator is applied to an expression of type T (7.6.1.5), or
— the typeid operator (7.6.1.8) or the sizeof operator (7.6.2.5) is applied to an operand of type T, or
— a function with a return type or argument type of type T is defined (6.2) or called (7.6.1.3), or
— a class with a base class of type T is defined (11.7), or
— an lvalue of type T is assigned to (7.6.19), or
— the type T is the subject of an alignof expression (7.6.2.6), or
— an exception-declaration has type T, reference to T, or pointer to T (14.4).
— end note]
For any definable item D with definitions in multiple translation units,
— if D is a non-inline non-templated function or variable, or
— if the definitions in different translation units do not satisfy the following requirements,

the program is ill-formed; a diagnostic is required only if the definable item is attached to a named module
and a prior definition is reachable at the point where a later definition occurs. Given such an item, for all
definitions of D, or, if D is an unnamed enumeration, for all definitions of D that are reachable at any given
program point, the following requirements shall be satisfied.

— Each such definition shall not be attached to a named module (10.1).

— Each such definition shall consist of the same sequence of tokens, where the definition of a closure type
is considered to consist of the sequence of tokens of the corresponding lambda-expression.

— In each such definition, corresponding names, looked up according to 6.5, shall refer to the same entity,
after overload resolution (12.2) and after matching of partial template specialization (13.10.4), except
that a name can refer to

— a non-volatile const object with internal or no linkage if the object
— has the same literal type in all definitions of D,
— is initialized with a constant expression (7.7),
— is not odr-used in any definition of D, and
— has the same value in all definitions of D,
or

— a reference with internal or no linkage initialized with a constant expression such that the reference
refers to the same entity in all definitions of D.

§6.3 37

(14.6)

(14.7)

(14.8)

(14.9)

(14.10)

(14.11)

(14.12)

(14.13)

15

16

©ISO/IEC N4944

— In each such definition, except within the default arguments and default template arguments of D,
corresponding lambda-expressions shall have the same closure type (see below).

— In each such definition, corresponding entities shall have the same language linkage.

— In each such definition, const objects with static or thread storage duration shall be constant-initialized
if the object is constant-initialized in any such definition.

— In each such definition, corresponding manifestly constant-evaluated expressions that are not value-
dependent shall have the same value (7.7, 13.8.3.4).

— In each such definition, the overloaded operators referred to, the implicit calls to conversion functions,
constructors, operator new functions and operator delete functions, shall refer to the same function.

— In each such definition, a default argument used by an (implicit or explicit) function call or a default
template argument used by an (implicit or explicit) template-id or simple-template-id is treated as if its
token sequence were present in the definition of D; that is, the default argument or default template
argument is subject to the requirements described in this paragraph (recursively).

— If D is a class with an implicitly-declared constructor (11.4.5.2, 11.4.5.3), it is as if the constructor was
implicitly defined in every translation unit where it is odr-used, and the implicit definition in every
translation unit shall call the same constructor for a subobject of D.

[Ezample 5:

// translation unit 1:
struct X {

X(int, int);

X(int, int, int);
};
X::X(int, int = 0) { }
class D {

X x=0;

D di; // X(int, int) called by DQ)

// translation unit 2:
struct X {
X(int, int);
X(int, int, int);
};
X::X(int, int = 0, int =0) { }
class D {
X x =0;

D d2; // X(int, int, int) called by DQO);
// DO ’s implicit definition violates the ODR

— end ezample]

— If D is a class with a defaulted three-way comparison operator function (11.10.3), it is as if the operator
was implicitly defined in every translation unit where it is odr-used, and the implicit definition in every
translation unit shall call the same comparison operators for each subobject of D.

If D is a template and is defined in more than one translation unit, then the preceding requirements shall apply
both to names from the template’s enclosing scope used in the template definition, and also to dependent
names at the point of instantiation (13.8.3). These requirements also apply to corresponding entities defined
within each definition of D (including the closure types of lambda-expressions, but excluding entities defined
within default arguments or default template arguments of either D or an entity not defined within D). For
each such entity and for D itself, the behavior is as if there is a single entity with a single definition, including
in the application of these requirements to other entities.

[Note 4: The entity is still declared in multiple translation units, and 6.6 still applies to these declarations. In
particular, lambda-expressions (7.5.5) appearing in the type of D can result in the different declarations having distinct
types, and lambda-expressions appearing in a default argument of D might still denote different types in different
translation units. — end note]

[Ezample 6:

§6.3 38

17

(2.6)
(2.7)
(2.8)

(2.9)

(2.10)
(2.11)
(2.12)

(2.13)

3

(3.1)

(3.2)

©ISO/IEC N4944

inline void f(bool cond, void (*p)()) {
if (cond) f(false, [1{});
}
inline void g(bool cond, void (*p) () = [1{}) {
if (cond) g(false);
}
struct X {
void h(bool cond, void (xp)() = [1{}) {
if (cond) h(false);
}
};
If the definition of £ appears in multiple translation units, the behavior of the program is as if there is only one
definition of f£. If the definition of g appears in multiple translation units, the program is ill-formed (no diagnostic
required) because each such definition uses a default argument that refers to a distinct lambda-expression closure type.
The definition of X can appear in multiple translation units of a valid program; the lambda-expressions defined within
the default argument of X::h within the definition of X denote the same closure type in each translation unit. — end
ezample]

If, at any point in the program, there is more than one reachable unnamed enumeration definition in the same
scope that have the same first enumerator name and do not have typedef names for linkage purposes (9.7.1),
those unnamed enumeration types shall be the same; no diagnostic required.

6.4 Scope [basic.scope]
6.4.1 General [basic.scope.scope]

The declarations in a program appear in a number of scopes that are in general discontiguous. The global scope
contains the entire program; every other scope S is introduced by a declaration, parameter-declaration-clause,
statement, or handler (as described in the following subclauses of 6.4) appearing in another scope which
thereby contains S. An enclosing scope at a program point is any scope that contains it; the smallest such
scope is said to be the immediate scope at that point. A scope intervenes between a program point P and a
scope S (that does not contain P) if it is or contains S but does not contain P.

Unless otherwise specified:

— The smallest scope that contains a scope S is the parent scope of S.

— No two declarations (re)introduce the same entity.

— A declaration inhabits the immediate scope at its locus (6.4.2).

— A declaration’s target scope is the scope it inhabits.

— Any names (re)introduced by a declaration are bound to it in its target scope.
An entity belongs to a scope S if S is the target scope of a declaration of the entity.
[Note 1: Special cases include that:

— Template parameter scopes are parents only to other template parameter scopes (6.4.9).

— Corresponding declarations with appropriate linkage declare the same entity (6.6).

— The declaration in a template-declaration inhabits the same scope as the template-declaration.

— Friend declarations and declarations of qualified names and template specializations do not bind names (9.3.4);
those with qualified names target a specified scope, and other friend declarations and certain elaborated-type-
specifiers (9.2.9.4) target a larger enclosing scope.

— Block-scope extern declarations target a larger enclosing scope but bind a name in their immediate scope.
— The names of unscoped enumerators are bound in the two innermost enclosing scopes (9.7.1).
— A class’s name is also bound in its own scope (11.1).
— The names of the members of an anonymous union are bound in the union’s parent scope (11.5.2).
— end note]
Two non-static member functions have corresponding object parameters if:

— exactly one is an implicit object member function with no ref-qualifier and the types of their object
parameters (9.3.4.6), after removing top-level references, are the same, or

— their object parameters have the same type.

§6.4.1 39

(3.3)

(3.4)

(4.3.1)

(4.3.2)

5

©ISO/IEC N4944

Two non-static member function templates have corresponding object parameters if:

— exactly one is an implicit object member function with no ref-qualifier and the types of their object
parameters, after removing any references, are equivalent, or

— the types of their object parameters are equivalent.

Two function templates have corresponding signatures if their template-parameter-lists have the same length,
their corresponding template-parameters are equivalent, they have equivalent non-object-parameter-type-lists
and return types (if any), and, if both are non-static members, they have corresponding object parameters.

Two declarations correspond if they (re)introduce the same name, both declare constructors, or both declare
destructors, unless

— either is a using-declarator, or

— one declares a type (not a typedef-name) and the other declares a variable, non-static data member
other than of an anonymous union (11.5.2), enumerator, function, or function template, or

— each declares a function or function template, except when
— both declare functions with the same non-object-parameter-type-list,'® equivalent (13.7.7.2) trailing

requires-clauses (if any, except as specified in 13.7.5), and, if both are non-static members, they
have corresponding object parameters, or

— both declare function templates with corresponding signatures and equivalent template-heads and
trailing requires-clauses (if any).
[Note 2: Declarations can correspond even if neither binds a name.
[Ezample 1:

struct A {
friend void £(); /) #1
};
struct B {
friend void £() {} // corresponds to, and defines, #1
};
— end example]
— end note]
[Ezample 2:

typedef int Int;
enum E : int { a };

void f(int); /) #1
void f(Int) {} // defines #1
void £(E) {} // OK, another overload
struct X {
static void £();
void f£() const; // error: redeclaration
void g();
void g() const; // OK
void g() &; // error: redeclaration

void h(this X&, int);

void h(int) &&; // OK, another overload

void j(this const X&);

void j() const &; // error: redeclaration

void k();

void k(this X&) ; // error: redeclaration
};

— end example]

Two declarations potentially conflict if they correspond and cause their shared name to denote different
entities (6.6). The program is ill-formed if, in any scope, a name is bound to two declarations that potentially
conflict and one precedes the other (6.5).

18) An implicit object parameter (12.2.2) is not part of the parameter-type-list.

§6.4.1 40

©ISO/IEC N4944

[Note 8: Overload resolution can consider potentially conflicting declarations found in multiple scopes (e.g., via

using-directives or for operator functions), in which case it is often ambiguous. — end note]
[Ezample 3:
void £() {
int x,y;
void x(O); // error: different entity for x
int y; // error: redefinition
}
enum { f }; // error: different entity for ::f
namespace A {}
namespace B = A;
namespace B = A; // OK, no effect
namespace B = B; // OK, no effect
namespace A = B; // OK, no effect
namespace B {} // error: different entity for B

— end ezample]

A declaration is nominable in a class, class template, or namespace E at a point P if it precedes P, it does
not inhabit a block scope, and its target scope is the scope associated with E or, if F is a namespace, any
element of the inline namespace set of E (9.8.2).

[Ezample 4:

namespace A {
void £() {void g(O;}
inline namespace B {
struct S {
friend void h();
static int i;
1
}
}

At the end of this example, the declarations of £, B, S, and h are nominable in A, but those of g and i are not. —end
example]

When instantiating a templated entity (13.1), any scope S introduced by any part of the template definition
is considered to be introduced by the instantiated entity and to contain the instantiations of any declarations
that inhabit S.

6.4.2 Point of declaration [basic.scope.pdecl]
The locus of a declaration (6.1) that is a declarator is immediately after the complete declarator (9.3).
[Ezample 1:

unsigned char x = 12;
{ unsigned char x = x; }

Here, the initialization of the second x has undefined behavior, because the initializer accesses the second x outside its
lifetime (6.7.3). — end ezample]

[Note 1: A name from an outer scope remains visible up to the locus of the declaration that hides it.
[Example 2:

const int i = 2;

{ int i[il; }
declares a block-scope array of two integers. — end ezample]

— end note]

The locus of a class-specifier is immediately after the identifier or simple-template-id (if any) in its class-
head (11.1). The locus of an enum-specifier is immediately after its enum-head; the locus of an opaque-enum-
declaration is immediately after it (9.7.1). The locus of an alias-declaration is immediately after it.

The locus of a using-declarator that does not name a constructor is immediately after the using-declarator (9.9).
The locus of an enumerator-definition is immediately after it.

[Ezample 3:

§6.4.2 41

10

11

12

13

14

15

16

©ISO/IEC N4944

const int x = 12;
{enum {x=x13}; }

Here, the enumerator x is initialized with the value of the constant x, namely 12. — end example]

[Note 2: After the declaration of a class member, the member name can be found in the scope of its class even if the
class is an incomplete class.

[Example 4:

struct X {

enum E { z = 16 };

int b[X::z]; // OK
};

— end ezample]
— end note]
The locus of an elaborated-type-specifier that is a declaration (9.2.9.4) is immediately after it.

The locus of an injected-class-name declaration (11.1) is immediately following the opening brace of the class
definition.

The locus of the implicit declaration of a function-local predefined variable (9.5.1) is immediately before the
function-body of its function’s definition.

The locus of the declaration of a structured binding (9.6) is immediately after the identifier-list of the
structured binding declaration.

The locus of a for-range-declaration of a range-based for statement (8.6.5) is immediately after the for-range-
initializer.

The locus of a template-parameter is immediately after it.

[Ezample 5:

typedef unsigned char T;
template<class T
=T // lookup finds the typedef-name
, T // lookup finds the template parameter
N = 0> struct A { };

— end example]

The locus of a concept-definition is immediately after its concept-name (13.7.9).

[Note 3: The constraint-expression cannot use the concept-name. — end note]

The locus of a namespace-definition with an identifier is immediately after the identifier.
[Note 4: An identifier is invented for an unnamed-namespace-definition (9.8.2.2). — end note]

[Note 5: Friend declarations can introduce functions or classes that belong to the nearest enclosing namespace or block
scope, but they do not bind names anywhere (11.8.4). Function declarations at block scope and variable declarations
with the extern specifier at block scope declare entities that belong to the nearest enclosing namespace, but they do
not bind names in it. — end note]

[Note 6: For point of instantiation of a template, see 13.8.4.1. — end note]
6.4.3 Block scope [basic.scope.block]
Each

— selection or iteration statement (8.5, 8.6),
— substatement of such a statement,
— handler (14.1), or
— compound statement (8.4) that is not the compound-statement of a handler
introduces a block scope that includes that statement or handler.
[Note 1: A substatement that is also a block has only one scope. — end note]
A variable that belongs to a block scope is a block variable.
[Example 1:

int i = 42;

§6.4.3 42

(2.1)
(2.2)

(2.3)

(1.1)

(1.2)

(1.3)

(1.4)

©ISO/IEC N4944

int a[10];

for (int i = 0; i < 10; i++)
alil = i;
int j = i; /)3 = 42
— end ezample]
If a declaration whose target scope is the block scope S of a
— compound-statement of a lambda-expression, function-body, or function-try-block,
— substatement of a selection or iteration statement that is not itself a selection or iteration statement, or
— handler of a function-try-block

potentially conflicts with a declaration whose target scope is the parent scope of S, the program is ill-formed.

[Example 2:
if (int x = £0) {
int x; // error: redeclaration of x
}
else {
int x; // error: redeclaration of x
}
— end ezample]
6.4.4 Function parameter scope [basic.scope.param]
A parameter-declaration-clause P introduces a function parameter scope that includes P.
[Note 1: A function parameter cannot be used for its value within the parameter-declaration-clause (9.3.4.7). —end
note|

If P is associated with a declarator and is preceded by a (possibly-parenthesized) noptr-declarator of the
form declarator-id attribute-specifier-seq,pt, its scope extends to the end of the nearest enclosing init-
declarator, member-declarator, declarator of a parameter-declaration or a nodeclspec-function-declaration,
or function-definition, but does not include the locus of the associated declarator.

[Note 2: In this case, P declares the parameters of a function (or a function or template parameter declared
with function type). A member function’s parameter scope is nested within its class’s scope. — end note]

If P is associated with a lambda-declarator, its scope extends to the end of the compound-statement in
the lambda-expression.

If P is associated with a requirement-parameter-list, its scope extends to the end of the requirement-body
of the requires-expression.

If P is associated with a deduction-guide, its scope extends to the end of the deduction-guide.

6.4.5 Lambda scope [basic.scope.lambda]

A lambda-expression E introduces a lambda scope that starts immediately after the lambda-introducer of E
and extends to the end of the compound-statement of E.

6.4.6 Namespace scope [basic.scope.namespace]

Any namespace-definition for a namespace N introduces a namespace scope that includes the namespace-body
for every namespace-definition for N. For each non-friend redeclaration or specialization whose target scope is
or is contained by the scope, the portion after the declarator-id, class-head-name, or enum-head-name is also
included in the scope. The global scope is the namespace scope of the global namespace (9.8).

[Ezample 1:

namespace Q {
namespace V { void £(); }
void V::£() { // in the scope of V
void h(); // declares Q::V::h
}
}

— end ezample]

§ 6.4.6 43

©ISO/IEC N4944

6.4.7 Class scope [basic.scope.class]

Any declaration of a class or class template C' introduces a class scope that includes the member-specification
of the class-specifier for C' (if any). For each non-friend redeclaration or specialization whose target scope is
or is contained by the scope, the portion after the declarator-id, class-head-name, or enum-head-name is also
included in the scope.

[Note 1: Lookup from a program point before the class-specifier of a class will find no bindings in the class scope.
[Ezample 1:

template<class D>
struct B {

D::type x; /) #1
+;

struct A { using type = int; };
struct C : A, B<C> {}; //error at #1: C::type not found
— end ezample]

— end note]

6.4.8 Enumeration scope [basic.scope.enum]

Any declaration of an enumeration F introduces an enumeration scope that includes the enumerator-list of
the enum-specifier for E (if any).

6.4.9 Template parameter scope [basic.scope.temp]

Each template template-parameter introduces a template parameter scope that includes the template-head of
the template-parameter.

Each template-declaration D introduces a template parameter scope that extends from the beginning of its
template-parameter-list to the end of the template-declaration. Any declaration outside the template-parameter-
list that would inhabit that scope instead inhabits the same scope as D. The parent scope of any scope S
that is not a template parameter scope is the smallest scope that contains .S and is not a template parameter
scope.

[Note 1: Therefore, only template parameters belong to a template parameter scope, and only template parameter

scopes have a template parameter scope as a parent scope. — end note]
6.5 Name lookup [basic.lookup]
6.5.1 General [basic.lookup.general]

The name lookup rules apply uniformly to all names (including typedef-names (9.2.4), namespace-names (9.8),
and class-names (11.3)) wherever the grammar allows such names in the context discussed by a particular rule.
Name lookup associates the use of a name with a set of declarations (6.2) of that name. Unless otherwise
specified, the program is ill-formed if no declarations are found. If the declarations found by name lookup
all denote functions or function templates, the declarations are said to form an overload set. Otherwise,
if the declarations found by name lookup do not all denote the same entity, they are ambiguous and the
program is ill-formed. Overload resolution (12.2, 12.3) takes place after name lookup has succeeded. The
access rules (11.8) are considered only once name lookup and function overload resolution (if applicable) have
succeeded. Only after name lookup, function overload resolution (if applicable) and access checking have
succeeded are the semantic properties introduced by the declarations used in further processing.

A program point P is said to follow any declaration in the same translation unit whose locus (6.4.2) is before
P.

[Note 1: The declaration might appear in a scope that does not contain P. — end note]

A declaration X precedes a program point P in a translation unit L if P follows X, X inhabits a class scope
and is reachable from P, or else X appears in a translation unit D and

— P follows a module-import-declaration or module-declaration that imports D (directly or indirectly), and

— X appears after the module-declaration in D (if any) and before the private-module-fragment in D (if
any), and

— either X is exported or else D and L are part of the same module and X does not inhabit a namespace
with internal linkage or declare a name with internal linkage.

§6.5.1 44

4

(5.1)

(5.2)

©ISO/IEC N4944

[Note 2: Names declared by a using-declaration have no linkage. — end note]

[Note 3: A module-import-declaration imports both the named translation unit(s) and any modules named by exported
module-import-declarations within them, recursively.

[Ezample 1:

Translation unit #1:

export module Q;
export int sq(int i) { return i*i; }

Translation unit #2:

export module R;
export import Q;

Translation unit #3:
import R;
int main() { return sq(9); } // OK, sq from module Q

— end ezample]
— end note]

A single search in a scope S for a name N from a program point P finds all declarations that precede P
to which any name that is the same as N (6.1) is bound in S. If any such declaration is a using-declarator
whose terminal name (7.5.4.2) is not dependent (13.8.3.2), it is replaced by the declarations named by the
using-declarator (9.9).

In certain contexts, only certain kinds of declarations are included. After any such restriction, any declarations
of classes or enumerations are discarded if any other declarations are found.

[Note 4: A type (but not a typedef-name or template) is therefore hidden by any other entity in its scope. — end note]

However, if a lookup is type-only, only declarations of types and templates whose specializations are types
are considered; furthermore, if declarations of a typedef-name and of the type to which it refers are found,
the declaration of the typedef-name is discarded instead of the type declaration.

6.5.2 Member name lookup [class.member.lookup]

A search in a scope X for a name M from a program point P is a single search in X for M from P unless X
is the scope of a class or class template T, in which case the following steps define the result of the search.

[Note 1: The result differs only if M is a conversion-function-id or if the single search would find nothing. — end note]

The lookup set for a name N in a class or class template C, called S(N, C), consists of two component sets:
the declaration set, a set of members named IN; and the subobject set, a set of subobjects where declarations
of these members were found (possibly via using-declarations). In the declaration set, type declarations
(including injected-class-names) are replaced by the types they designate. S(V,C) is calculated as follows:

The declaration set is the result of a single search in the scope of C' for N from immediately after the
class-specifier of C' if P is in a complete-class context of C' or from P otherwise. If the resulting declaration
set is not empty, the subobject set contains C itself, and calculation is complete.

Otherwise (i.e., C' does not contain a declaration of N or the resulting declaration set is empty), S(NV,C) is
initially empty. Calculate the lookup set for N in each direct non-dependent (13.8.3.2) base class subobject
Bi;, and merge each such lookup set S(N, B;) in turn into S(N, C).

[Note 2: If C is incomplete, only base classes whose base-specifier appears before P are considered. If C is an
instantiated class, its base classes are not dependent. — end note]

The following steps define the result of merging lookup set S(N, B;) into the intermediate S(N, C):

— If each of the subobject members of S(N, B;) is a base class subobject of at least one of the subobject
members of S(N,C), or if S(N,B;) is empty, S(N,C) is unchanged and the merge is complete.
Conversely, if each of the subobject members of S(INV,C) is a base class subobject of at least one of the
subobject members of S(N, B;), or if S(N,C) is empty, the new S(N, C) is a copy of S(N, B;).

— Otherwise, if the declaration sets of S(N, B;) and S(N, () differ, the merge is ambiguous: the new
S(N, C) is a lookup set with an invalid declaration set and the union of the subobject sets. In subsequent
merges, an invalid declaration set is considered different from any other.

§6.5.2 45

(5.3)

©ISO/IEC N4944

— Otherwise, the new S(N, C) is a lookup set with the shared set of declarations and the union of the
subobject sets.

The result of the search is the declaration set of S(M,T). If it is an invalid set, the program is ill-formed.
If it differs from the result of a search in T for M in a complete-class context (11.4) of T, the program is
ill-formed, no diagnostic required.

[Ezample 1:

struct A { int x; }; J/S(@A) ={{A:x}, {A}}
struct B { float x; }; //S(xB)={{Bi:x },{B}}
struct C: public A, public B { }; // S(z,C) = { invalid, { Ain C,BinC } }
struct D: public virtual C { }; // S(z,D) = S(z,C)
struct E: public virtual C { char x; }; //S(xE)={{E::x },{E}}
struct F: public D, public E { }; // S(x,F) = S(z,E)
int main() {

F £f;

f.x = 0; // OK, lookup finds E: :x
}

S(x,F) is unambiguous because the A and B base class subobjects of D are also base class subobjects of E, so S(x,D) is
discarded in the first merge step. — end example]

If M is a non-dependent conversion-function-id, conversion function templates that are members of T are
considered. For each such template F', the lookup set S(¢,T) is constructed, considering a function template
declaration to have the name ¢ only if it corresponds to a declaration of F (6.4.1). The members of the
declaration set of each such lookup set, which shall not be an invalid set, are included in the result.

[Note 3: Overload resolution will discard those that cannot convert to the type specified by N (13.10.4). — end note]

[Note 4: A static member, a nested type or an enumerator defined in a base class T can unambiguously be found even
if an object has more than one base class subobject of type T. Two base class subobjects share the non-static member
subobjects of their common virtual base classes. — end note]

[Ezample 2:

struct V {
int v;
};
struct A {
int a;
static int s;
enum { e };
};
struct B : A, virtual V { };
struct C : A, virtual V { };
struct D : B, C { };

void £(D* pd) {

pd->v++; // OK, only one v (virtual)

pd—>s++; // OK, only one s (static)

int i = pd->e; // OK, only one e (enumerator)

pd->at++; // error: ambiguous: two as in D
}

— end example]

[Note 5: When virtual base classes are used, a hidden declaration can be reached along a path through the subobject
lattice that does not pass through the hiding declaration. This is not an ambiguity. The identical use with non-virtual
base classes is an ambiguity; in that case there is no unique instance of the name that hides all the others. — end
note)

[Ezample 3:

struct V { int £(); int x; };
struct W { int g(); int y; };
struct B : virtual V, W {

int £(); int x;

int g(O; int y;

};
struct C : virtual V, W { };

§6.5.2 46

©ISO/IEC N4944

struct D : B, C { void glorp(); };

Figure 1: Name lookup [fig:class.lookup]

As illustrated in Figure 1, the names declared in V and the left-hand instance of W are hidden by those in B, but the
names declared in the right-hand instance of W are not hidden at all.

void D::glorp() {

xt++; // OK, B::x hides V::x

£0O; // OK, B::£() hides V::£()

yt+; // error: B::y and C's W::y

g0; // error: B::g() and C’s W::g()
}

— end example]

10 An explicit or implicit conversion from a pointer to or an expression designating an object of a derived class
to a pointer or reference to one of its base classes shall unambiguously refer to a unique object representing
the base class.

[Example 4:

struct
struct
struct
struct
struct

Com A

(ool it

, virtual V { };
, virtual V { };
, C{}

oaQwe=<

void g() {
D d;
B* pb = &d;
Ax pa = &d; // error: ambiguous: C’s A or B’s A?
Vx pv = &d; // OK, only one V subobject
}

— end ezample]

11 [Note 6: Even if the result of name lookup is unambiguous, use of a name found in multiple subobjects might still be
ambiguous (7.3.13, 7.6.1.5, 11.8.3). — end note]

[Ezample 5:

struct Bl {
void f();
static void f(int);
int i;
};
struct B2 {
void f(double);
};
struct I1: Bl { };
struct I2: Bl { };

struct D: I1, I2, B2 {

using Bl::f;

using B2::f;

void g() {
£0O; // Ambiguous conversion of this
£(0); // Unambiguous (static)

§6.5.2 47

6

©ISO/IEC N4944

£(0.0); // Unambiguous (only one B2)
int Bl::* mpBl = &D::i; // Unambiguous
int D::* mpD = &D::i; // Ambiguous conversion
}
};

— end example]

6.5.3 Unqualified name lookup [basic.lookup.unqual]

A using-directive is active in a scope S at a program point P if it precedes P and inhabits either S or the
scope of a namespace nominated by a using-directive that is active in S at P.

An unqualified search in a scope S from a program point P includes the results of searches from P in
— S, and

— for any scope U that contains P and is or is contained by S, each namespace contained by S that is
nominated by a using-directive that is active in U at P.

If no declarations are found, the results of the unqualified search are the results of an unqualified search in
the parent scope of S, if any, from P.

[Note 1: When a class scope is searched, the scopes of its base classes are also searched (6.5.2). If it inherits from a
single base, it is as if the scope of the base immediately contains the scope of the derived class. Template parameter
scopes that are associated with one scope in the chain of parents are also considered (13.8.2). — end note]

Unqualified name lookup from a program point performs an unqualified search in its immediate scope.

An unqualified name is a name that does not immediately follow a nested-name-specifier or the . or ->in a
class member access expression (7.6.1.5), possibly after a template keyword or ~. Unless otherwise specified,
such a name undergoes unqualified name lookup from the point where it appears.

An unqualified name that is a component name (7.5.4.2) of a type-specifier or ptr-operator of a conversion-
type-id is looked up in the same fashion as the conversion-function-id in which it appears. If that lookup finds
nothing, it undergoes unqualified name lookup; in each case, only names that denote types or templates
whose specializations are types are considered.

[Example 1:

struct T1 { struct U { int i; }; };
struct T2 { };
struct Ul {};
struct U2 {3};

struct B {
using T = T1;
using U = Ul;
operator Ul T1::x();
operator Ul T2::x();
operator U2 T1::x();
operator U2 T2::x();
};

template<class X, class T>
int gO {
using U = U2;
X() .operator U T::%x(); // #1, searches for T in the scope of X first
X() .operator U decltype(T())::*x(); /) #2
return O;

}
int x = g<B, T2>(); // #1 calls B: :operator Ul T1::*
// #2 calls B: :operator Ul T2::%*

— end ezample]

In a friend declaration declarator whose declarator-id is a qualified-id whose lookup context (6.5.5) is a class or
namespace S, lookup for an unqualified name that appears after the declarator-id performs a search in the
scope associated with S. If that lookup finds nothing, it undergoes unqualified name lookup.

[Ezample 2:

§6.5.3 48

©ISO/IEC N4944

using I = int;
using D = double;
namespace A {
inline namespace N {using C = char; }
using F = float;
void f(I);
void £(D);
void £(C);
void f(F);
}
struct X0 {using F = float; };
struct W {
using D = void;
struct X : X0 {
void g(I);
void g(::D);
void g(F);
};
};
namespace B {
typedef short I, F;
class Y {

friend void A::f(I); // error: no void A::f(short)
friend void A::£(D); // OK
friend void A::£(C); // error: A::N::C not found
friend void A::f(F); // OK
friend void W::X::g(I); // error: no void X::g(short)
friend void W::X::g(D); // OK
friend void W::X::g(F); // OK
}
}
— end ezample]
6.5.4 Argument-dependent name lookup [basic.lookup.argdep]

When the postfix-expression in a function call (7.6.1.3) is an unqualified-id, and unqualified lookup (6.5.3) for
the name in the unqualified-id does not find any

— declaration of a class member, or
— function declaration inhabiting a block scope, or
— declaration not of a function or function template

then lookup for the name also includes the result of argument-dependent lookup in a set of associated
namespaces that depends on the types of the arguments (and for template template arguments, the namespace
of the template argument), as specified below.

[Ezample 1:

namespace N {
struct S { };

void £(8);
}
void g() {

N::S s;

f(s); // OK, calls N: : £

(£) (s); // error: N::f not considered; parentheses prevent argument-dependent lookup
}

— end example]

[Note 1: For purposes of determining (during parsing) whether an expression is a postfix-expression for a function call,
the usual name lookup rules apply. In some cases a name followed by < is treated as a template-name even though
name lookup did not find a template-name (see 13.3). For example,

int h;

void g();

§6.5.4 49

(3.3)
(3.4)

(3.5)

(3.6)

(3.7)

©ISO/IEC N4944

namespace N {
struct A {};
template <class T> int f(T);
template <class T> int g(T);
template <class T> int h(T);

}

int x = f<N::A>(N::AQ); // OK, lookup of £ finds nothing, £ treated as template name
int y = g<N::A>(N::AQ); // OK, lookup of g finds a function, g treated as template name
int z = h<N::A>(N::AQ)); // error: h< does not begin a template-id

The rules have no effect on the syntactic interpretation of an expression. For example,

typedef int f;
namespace N {
struct A {
friend void f(A &);
operator int();
void g(A a) {
int i = f(a); // £ is the typedef, not the friend function: equivalent to int(a)
}
};
}
Because the expression is not a function call, argument-dependent name lookup does not apply and the friend function
£ is not found. — end note]

For each argument type T in the function call, there is a set of zero or more associated entities to be considered.
The set of entities is determined entirely by the types of the function arguments (and any template template
arguments). Any typedef-names and using-declarations used to specify the types do not contribute to this set.
The set of entities is determined in the following way:

— If T is a fundamental type, its associated set of entities is empty.

— If T is a class type (including unions), its associated entities are: the class itself; the class of which
it is a member, if any; and its direct and indirect base classes. Furthermore, if T is a class template
specialization, its associated entities also include: the entities associated with the types of the template
arguments provided for template type parameters; the templates used as template template arguments;
and the classes of which any member templates used as template template arguments are members.

[Note 2: Non-type template arguments do not contribute to the set of associated entities. — end note]
— If T is an enumeration type, its associated entities are T and, if it is a class member, the member’s class.
— If T is a pointer to U or an array of U, its associated entities are those associated with U.

— If T is a function type, its associated entities are those associated with the function parameter types
and those associated with the return type.

— If T is a pointer to a member function of a class X, its associated entities are those associated with the
function parameter types and return type, together with those associated with X.

— If T is a pointer to a data member of class X, its associated entities are those associated with the
member type together with those associated with X.

In addition, if the argument is an overload set or the address of such a set, its associated entities are the union
of those associated with each of the members of the set, i.e., the entities associated with its parameter types
and return type. Additionally, if the aforementioned overload set is named with a template-id, its associated
entities also include its template template-arguments and those associated with its type template-arguments.

The associated namespaces for a call are the innermost enclosing non-inline namespaces for its associated
entities as well as every element of the inline namespace set (9.8.2) of those namespaces. Argument-dependent
lookup finds all declarations of functions and function templates that

— are found by a search of any associated namespace, or

— are declared as a friend (11.8.4) of any class with a reachable definition in the set of associated entities,
or

§6.5.4 50

©ISO/IEC N4944

(4.3) — are exported, are attached to a named module M (10.2), do not appear in the translation unit containing
the point of the lookup, and have the same innermost enclosing non-inline namespace scope as a
declaration of an associated entity attached to M (6.6).

If the lookup is for a dependent name (13.8.3, 13.8.4.2), the above lookup is also performed from each point in
the instantiation context (10.6) of the lookup, additionally ignoring any declaration that appears in another
translation unit, is attached to the global module, and is either discarded (10.4) or has internal linkage.

5 [Ezample 2:

Translation unit #1:

export module M;
namespace R {
export struct X {};
export void £(X);
}
namespace S {
export void f(R::X, R::X);
}

Translation unit #2:

export module N;

import M;

export R::X make();

namespace R { static int g(X); }

export template<typename T, typename U> void apply(T t, U u) {
f(t, w;
g(t);

}

Translation unit #3:
module Q;
import N;
namespace S {
struct Z { template<typename T> operator T(); };

}
void test() {
auto x = make(); // OK, decltype(x) is R::X in module M
R::f(x); // error: R and R::f are not visible here
£(x); // OK, calls R: : £ from interface of M
f(x, S::20); // error: S::f in module M not considered
// even though S is an associated namespace
apply(x, S::20); // error: S::f is visible in instantiation context, but
// R::g has internal linkage and cannot be used outside TU #2
}
— end ezample]
6 [Note 8: The associated namespace can include namespaces already considered by ordinary unqualified lookup. — end
note)
[Ezample 3:
namespace NS {
class T { };
void f(T);
void g(T, int);
}
NS::T parm;

void g(NS::T, float);
int main() {

f (parm) ; // OK, calls NS: : £
extern void g(NS::T, float);
g(parm, 1); // OK, calls g(NS::T, float)

}

— end example]

§6.5.4 51

©ISO/IEC N4944

6.5.5 Qualified name lookup [basic.lookup.qual]
6.5.5.1 General [basic.lookup.qual.general]
Lookup of an identifier followed by a :: scope resolution operator considers only namespaces, types, and
templates whose specializations are types. If a name, template-id, or decltype-specifier is followed by a : :, it
shall designate a namespace, class, enumeration, or dependent type, and the :: is never interpreted as a
complete nested-name-specifier.
[Ezample 1:
class A {
public:
static int n;
};
int main() {
int A;
A::n = 42; // OK
A b; // error: A does not name a type
}

template<int> struct B : A {};
namespace N {
template<int> void BQ);
int £O) {
return B<0>::n; // error: N: :B<O0> is not a type
}
}

— end ezample]

2 A member-qualified name is the (unique) component name (7.5.4.2), if any, of

(2.1)

(2.2)

(2.3)

(2.4)
(2.4.1)
(2.4.2)
(2.4.3)
(2.4.4)

(2.4.5)

— an unqualified-id or
— a nested-name-specifier of the form type-name :: or namespace-name : :
in the id-expression of a class member access expression (7.6.1.5). A qualified name is
— a member-qualified name or
— the terminal name of
— a qualified-id,
— a using-declarator,
— a typename-specifier,
— a qualified-namespace-specifier, or

— a nested-name-specifier, elaborated-type-specifier, or class-or-decltype that has a nested-name-
specifier (7.5.4.3).
The lookup context of a member-qualified name is the type of its associated object expression (considered
dependent if the object expression is type-dependent). The lookup context of any other qualified name is the
type, template, or namespace nominated by the preceding nested-name-specifier.

[Note 1: When parsing a class member access, the name following the -> or . is a qualified name even though it is
not yet known of which kind. — end note]

[Ezample 2: In
N::C::m.Base::f()
Base is a member-qualified name; the other qualified names are C, m, and £. — end ezample]

Qualified name lookup in a class, namespace, or enumeration performs a search of the scope associated with
it (6.5.2) except as specified below. Unless otherwise specified, a qualified name undergoes qualified name
lookup in its lookup context from the point where it appears unless the lookup context either is dependent
and is not the current instantiation (13.8.3.2) or is not a class or class template. If nothing is found by
qualified lookup for a member-qualified name that is the terminal name (7.5.4.2) of a nested-name-specifier
and is not dependent, it undergoes unqualified lookup.

[Note 2: During lookup for a template specialization, no names are dependent. — end note]

§ 6.5.5.1 52

©ISO/IEC N4944

[Ezample 3:

int £Q);

struct A {
int B, C;
template<int> using D = void;
using T = void;

void £();

I

using B = A;

template<int> using C = A;

template<int> using D = A;

template<int> using X = A;

template<class T>

void g(T *p) { // as instantiated for g<A>:
p—>X<0>::£(); // error: A::X not found in ((p=>X) < 0) > ::£(0)
p->template X<0>::£(); // OK, ::X found in definition context
p->B::fQ); // OK, non-type A::B ignored
p->template C<0>::£(); // error: A::C is not a template
p->template D<0>::f(); // error: A::D<0> is not a class type
p—>T::£0; // error: A::T is not a class type

}
template void g(A*);

— end ezample]
4 If a qualified name @ follows a ~:
(4.1) — If @ is a member-qualified name, it undergoes unqualified lookup as well as qualified lookup.

(4.2) — Otherwise, its nested-name-specifier N shall nominate a type. If N has another nested-name-specifier S,
@ is looked up as if its lookup context were that nominated by S.

(4.3) — Otherwise, if the terminal name of N is a member-qualified name M, @ is looked up as if ~@ appeared
in place of M (as above).

(4.4) — Otherwise,) undergoes unqualified lookup.
(45) — Each lookup for @) considers only types (if @ is not followed by a <) and templates whose specializations
are types. If it finds nothing or is ambiguous, it is discarded.
(46) — The type-name that is or contains @ shall refer to its (original) lookup context (ignoring cv-qualification)
under the interpretation established by at least one (successful) lookup performed.
[Ezample 4:
struct C {

typedef int I;
};
typedef int I1, I2;
extern int* p;
extern intx* q;

void £() {
p—>C::I::~I0); // I is looked up in the scope of C
q—>I1::~120); // 12 is found by unqualified lookup
}
struct A {
~A0);
};

typedef A AB;
int main() {

AB* p;

p->AB::~ABQ); // explicitly calls the destructor for A
}

— end ezample]

§6.5.5.1 53

©ISO/IEC N4944

6.5.5.2 Class members [class.qual]

In a lookup for a qualified name N whose lookup context is a class C' in which function names are not
ignored,!?

— if the search finds the injected-class-name of C (11.1), or
— if N is dependent and is the terminal name of a using-declarator (9.9) that names a constructor,

N is instead considered to name the constructor of class C. Such a constructor name shall be used only in the
declarator-id of a (friend) declaration of a constructor or in a using-declaration.
[Example 1:

struct A { AQ; 3};
struct B: public A { BO; };

A::a0 {3}

B::BO { }

B::A ba; // object of type A

A::A a; // error: A::A is not a type name
struct A::A a2; // object of type A

— end ezample]

6.5.5.3 Namespace members [namespace.qual]

Qualified name lookup in a namespace N additionally searches every element of the inline namespace set
of N (9.8.2). If nothing is found, the results of the lookup are the results of qualified name lookup in each
namespace nominated by a using-directive that precedes the point of the lookup and inhabits NV or an element
of N’s inline namespace set.

[Note 1: If a using-directive refers to a namespace that has already been considered, it does not affect the result.
— end note]
[Example 1:
int x;
namespace Y {
void f(float);
void h(int);
}

namespace Z {
void h(double);
}

namespace A {
using namespace Y;
void f(int);
void g(int);
int i;

}

namespace B {
using namespace Z;
void f(char);
int i;

}

namespace AB {
using namespace A;
using namespace B;
void g();

}

19) Lookups in which function names are ignored include names appearing in a nested-name-specifier, an elaborated-type-specifier,
or a base-specifier.

§6.5.5.3 54

©ISO/IEC N4944

void h()
{
AB::g(); // g is declared directly in AB, therefore S is {AB::g()} and AB::g() is chosen
AB::f(1); // £ is not declared directly in AB so the rules are applied recursively to A and B;
// namespace Y is not searched and Y: :£(float) is not considered;
// S is {A::£(int),B: :f(char) } and overload resolution chooses A::f(int)
AB::f('c'); // as above but resolution chooses B: : £ (char)
AB: :x++; // x is not declared directly in AB, and is not declared in A or B, so the rules
// are applied recursively to Y and Z, S is {} so the program is ill-formed
AB: :i++; // i is not declared directly in AB so the rules are applied recursively to A and B,
// 8 is {A::1,B::i} so the use is ambiguous and the program is ill-formed
AB::h(16.8); // h is not declared directly in AB and not declared directly in A or B so the rules
// are applied recursively to Y and Z, S is {Y::h(int),Z: :h(double)} and
// overload resolution chooses Z: :h(double)
}

— end ezample]
2 [Note 2: The same declaration found more than once is not an ambiguity (because it is still a unique declaration).
[Ezample 2:

namespace A {
int a;

}

namespace B {
using namespace A;

}

namespace C {
using namespace A;

}

namespace BC {
using namespace B;
using namespace C;

}
void £()
{
BC::a++; // OK, 8 is {A::a,A::a}
}

namespace D {
using A::a;

}

namespace BD {
using namespace B;
using namespace D;

}
void g()
{
BD::a++; // OK, 8 is {A::a,A::a}
¥

— end example]

— end note]

§6.5.5.3 55

©ISO/IEC N4944

3 [Example 3: Because each referenced namespace is searched at most once, the following is well-defined:

namespace B {
int b;
}

namespace A {
using namespace B;
int a;

}

namespace B {
using namespace A;

}
void £()
{
A:zat+; // OK, a declared directly in A, S is {A::a}
B::at+; // OK, both A and B searched (once), S is {A::a}
A: b+ // OK, both A and B searched (once), S is {B::b}
B::bt+; // OK, b declared directly in B, S is {B::b}
}
— end ezample]
4 [Note 8: Class and enumeration declarations are not discarded because of other declarations found in other searches.
— end note]
[Ezample 4:

namespace A {
struct x { };
int x;
int y;

}

namespace B {
struct y { };
}

namespace C {
using namespace A;
using namespace B;
int i = C::x; // OK, A::x (of type int)
int j = C::y; // ambiguous, A::y or B::y
}

— end ezample]

6.5.6 Elaborated type specifiers [basic.lookup.elab]

1 If the class-key or enum keyword in an elaborated-type-specifier is followed by an identifier that is not followed
by ::, lookup for the identifier is type-only (6.5.1).

[Note 1: In general, the recognition of an elaborated-type-specifier depends on the following tokens. If the identifier is
followed by ::, see 6.5.5. — end note]

2 If the terminal name of the elaborated-type-specifier is a qualified name, lookup for it is type-only. If the
name lookup does not find a previously declared type-name, the elaborated-type-specifier is ill-formed.

3 [Ezample 1:

struct Node {
struct Nodex Next; // OK, refers to injected-class-name Node
struct Datax Data; // OK, declares type Data at global scope and member Data

};

struct Data {
struct Node* Node; // OK, refers to Node at global scope
friend struct ::Glob; // error: Glob is not declared, cannot introduce a qualified type (9.2.9.4)

§ 6.5.6 56

©ISO/IEC N4944

friend struct Glob; // OK, refers to (as yet) undeclared Glob at global scope.
VAR ¥
};
struct Base {
struct Data; // OK, declares nested Data
struct ::Datax thatData; // OK, refers to ::Data
struct Base::Datax thisData; // OK, refers to nested Data
friend class ::Data; // OK, global Data is a friend
friend class Data; // OK, nested Data is a friend
struct Data { /* ... */ }; // Defines nested Data
};
struct Data; // OK, redeclares Data at global scope
struct ::Data; // error: cannot introduce a qualified type (9.2.9.4)
struct Base::Data; // error: cannot introduce a qualified type (9.2.9.4)
struct Base::Datum; // error: Datum undefined
struct Base::Data* pBase; // OK, refers to nested Data

— end example]

6.5.7 Using-directives and namespace aliases [basic.lookup.udir]

1 In a using-directive or namespace-alias-definition, during the lookup for a namespace-name or for a name in a
nested-name-specifier only namespace names are considered.

6.6 Program and linkage [basic.link]

LA program consists of one or more translation units (5.1) linked together. A translation unit consists of a
sequence of declarations.

translation-unit:
declaration-seqop¢
global-module-fragment,,; module-declaration declaration-seq.p: private-module-fragment,p;

2 A name is said to have linkage when it can denote the same object, reference, function, type, template,
namespace or value as a name introduced by a declaration in another scope:

(21) — When a name has external linkage, the entity it denotes can be referred to by names from scopes of
other translation units or from other scopes of the same translation unit.

(2.2) — When a name has module linkage, the entity it denotes can be referred to by names from other scopes
of the same module unit (10.1) or from scopes of other module units of that same module.

(2.3) — When a name has internal linkage, the entity it denotes can be referred to by names from other scopes
in the same translation unit.

(2.4) — When a name has no linkage, the entity it denotes cannot be referred to by names from other scopes.

3 The name of an entity that belongs to a namespace scope (6.4.6) has internal linkage if it is the name of

(3.1) — a variable, variable template, function, or function template that is explicitly declared static; or
(3.2) — a non-template variable of non-volatile const-qualified type, unless

(3.2.1) — it is declared in the purview of a module interface unit (outside the private-module-fragment, if

any) or module partition, or

(3.2.2) — it is explicitly declared extern, or

(3.2.3) — it is inline, or

(3.2.4) — it was previously declared and the prior declaration did not have internal linkage; or
(3.3) — a data member of an anonymous union.

[Note 1: An instantiated variable template that has const-qualified type can have external or module linkage, even if
not declared extern. — end note]

4 An unnamed namespace or a namespace declared directly or indirectly within an unnamed namespace has
internal linkage. All other namespaces have external linkage. The name of an entity that belongs to a
namespace scope that has not been given internal linkage above and that is the name of

(4.1) — a variable; or

§ 6.6 57

(4.2)

(4.3)

(4.4)

10

©ISO/IEC N4944

— a function; or

— a named class (11.1), or an unnamed class defined in a typedef declaration in which the class has the
typedef name for linkage purposes (9.2.4); or

— a named enumeration (9.7.1), or an unnamed enumeration defined in a typedef declaration in which
the enumeration has the typedef name for linkage purposes (9.2.4); or

— an unnamed enumeration that has an enumerator as a name for linkage purposes (9.7.1); or
— a template

has its linkage determined as follows:
— if the enclosing namespace has internal linkage, the name has internal linkage;

— otherwise, if the declaration of the name is attached to a named module (10.1) and is not exported (10.2),
the name has module linkage;

— otherwise, the name has external linkage.

In addition, a member function, a static data member, a named class or enumeration that inhabits a class
scope, or an unnamed class or enumeration defined in a typedef declaration that inhabits a class scope such
that the class or enumeration has the typedef name for linkage purposes (9.2.4), has the same linkage, if any,
as the name of the class of which it is a member.

[Ezample 1:

static void £();
extern "C" void h(Q);

static int i = 0; /) #1
void q() {
extern void £(); // internal linkage
extern void g(); // i:g, external linkage
extern void h(Q); // C language linkage
int i; // #2: i has no linkage
{
extern void £(); // internal linkage
extern int i; // #3: internal linkage
}
}

Even though the declaration at line #2 hides the declaration at line #1, the declaration at line #3 still redeclares #1
and receives internal linkage. — end example]

Names not covered by these rules have no linkage. Moreover, except as noted, a name declared at block
scope (6.4.3) has no linkage.

Two declarations of entities declare the same entity if, considering declarations of unnamed types to introduce
their names for linkage purposes, if any (9.2.4, 9.7.1), they correspond (6.4.1), have the same target scope
that is not a function or template parameter scope, and either

— they appear in the same translation unit, or
— they both declare names with module linkage and are attached to the same module, or
— they both declare names with external linkage.
[Note 2: There are other circumstances in which declarations declare the same entity (9.11, 13.6, 13.7.6). — end note]

If a declaration H that declares a name with internal linkage precedes a declaration D in another translation
unit U and would declare the same entity as D if it appeared in U, the program is ill-formed.

[Note 3: Such an H can appear only in a header unit. — end note]

If two declarations of an entity are attached to different modules, the program is ill-formed; no diagnostic is
required if neither is reachable from the other.

[Ezample 2:

"decls.h":
int £O; // #1, attached to the global module
int g(O; // #2, attached to the global module

§ 6.6 58

11
(11.1)
(11.2)
(11.3)
(11.4)

(11.5)

(11.6)

(11.7)

(11.8)

12
13
(13.1)

(13.2)

(13.3)

14

©ISO/IEC N4944

Module interface of M:

module;

#include "decls.h"

export module M;

export using ::f; // OK, does not declare an entity, exports #1

int gQ); // error: matches #2, but attached to M
export int h(); /) #3
export int k(Q); /) #4
Other translation unit:
import M;
static int hQ); // error: matches #3
int kQ); // error: matches #4

— end example]

As a consequence of these rules, all declarations of an entity are attached to the same module; the entity is
said to be attached to that module.

For any two declarations of an entity E:
— If one declares E to be a variable or function, the other shall declare E as one of the same type.
— If one declares E to be an enumerator, the other shall do so.
— If one declares E to be a namespace, the other shall do so.
— If one declares E to be a type, the other shall declare E to be a type of the same kind (9.2.9.4).

— If one declares E to be a class template, the other shall do so with the same kind and an equivalent
template-head (13.7.7.2).

[Note 4: The declarations can supply different default template arguments. — end note]

— If one declares E to be a function template or a (partial specialization of a) variable template, the other
shall declare E to be one with an equivalent template-head and type.

— If one declares E to be an alias template, the other shall declare FE to be one with an equivalent
template-head and defining-type-id.

— If one declares E to be a concept, the other shall do so.

Types are compared after all adjustments of types (during which typedefs (9.2.4) are replaced by their
definitions); declarations for an array object can specify array types that differ by the presence or absence of
a major array bound (9.3.4.5). No diagnostic is required if neither declaration is reachable from the other.

[Ezample 3:
int f(int x, int x); // error: different entities for x
void g(Q); /) #1
void g(int); // OK, different entity from #1
int gQ; // error: same entity as #1 with different type
void hQ); /) #2
namespace h {} // error: same entity as #2, but not a function

— end example]
[Note 5: Linkage to non-C++ declarations can be achieved using a linkage-specification (9.11). — end note]
A declaration D names an entity E if

— D contains a lambda-expression whose closure type is F,

— F is not a function or function template and D contains an id-expression, type-specifier, nested-name-
specifier, template-name, or concept-name denoting E, or

— F is a function or function template and D contains an expression that names E (6.3) or an id-expression
that refers to a set of overloads that contains E.

[Note 6: Non-dependent names in an instantiated declaration do not refer to a set of overloads (13.8). — end
note]

A declaration is an ezxposure if it either names a TU-local entity (defined below), ignoring

§ 6.6 59

(14.1)

(14.2)
(14.3)

(14.4)

15
(15.1)
(15.1.1)

(15.1.2)

(15.2)

(15.3)
(15.4)

(15.5)

(16.1)

(16.2)

17

18

19

©ISO/IEC

N4944

— the function-body for a non-inline function or function template (but not the deduced return type for
a (possibly instantiated) definition of a function with a declared return type that uses a placeholder

type (9.2.9.6)),

— the initializer for a variable or variable template (but not the variable’s type),

— friend declarations in a class definition, and

— any reference to a non-volatile const object or reference with internal or no linkage initialized with a
constant expression that is not an odr-use (6.3),

or defines a constexpr variable initialized to a TU-local value (defined below).

[Note 7: An inline function template can be an exposure even though certain explicit specializations of it would be
usable in other translation units. — end note]

An entity is TU-local if it is

— a type, function, variable, or template that

— has a name with internal linkage, or

— does not have a name with linkage and is declared, or introduced by a lambda-expression, within
the definition of a TU-local entity,

— a type with no name that is defined outside a class-specifier, function body, or initializer or is introduced
by a defining-type-specifier that is used to declare only TU-local entities,

— a specialization of a TU-local template,

— a specialization of a template with any TU-local template argument, or

— a specialization of a template whose (possibly instantiated) declaration is an exposure.

[Note 8: A specialization can be produced by implicit or explicit instantiation. — end note]

A value or object is T'U-local if either

— it is, or is a pointer to, a TU-local function or the object associated with a TU-local variable, or

— it is an object of class or array type and any of its subobjects or any of the objects or functions to which
its non-static data members of reference type refer is TU-local and is usable in constant expressions.

If a (possibly instantiated) declaration of, or a deduction guide for, a non-TU-local entity in a module
interface unit (outside the private-module-fragment, if any) or module partition (10.1) is an exposure, the
program is ill-formed. Such a declaration in any other context is deprecated (D.7).

If a declaration that appears in one translation unit names a TU-local entity declared in another translation
unit that is not a header unit, the program is ill-formed. A declaration instantiated for a template
specialization (13.9) appears at the point of instantiation of the specialization (13.8.4.1).

[Example 4:

Translation unit #1:

export module A;
static void £() {}
inline void it() { £O; }

static inline void its() { £Q; }
template<int> void g() { its(); }

template void g<0>();

decltype(f) *fp;

auto &fr = f;

constexpr auto &fr2 = fr;
constexpr static auto fp2

struct S { void (&ref)();
constexpr extern struct W

static auto x = [1{f();};
auto x2 = X;

int y = ([J{£0;30,0);
int y2 = (x,0);

§ 6.6

fr;

s{f};
S &s; }

// error:
// OK
// OK

// error:
// OK
// error:
// OK

wrap{s};

// OK
// error:
// error:
// OK

is an exposure of f

£ (though not its type) is TU-local

is an exposure of £

// OK, value is TU-local
// OK, value is not TU-local

the closure type is TU-local
the closure type is not TU-local

60

©ISO/IEC N4944

namespace N {
struct A {};
void adl(A);
static void adl(int);

}
void adl(double);

inline void h(auto x) { adl(x); } // OK, but certain specializations are exposures

Translation unit #2:

module A;
void other() {
g<0>0); // OK, specialization is explicitly instantiated
g<1>0); // error: instantiation uses TU-local its
h(N::A{}); // error: overload set contains TU-local N: :adl(int)
h(0); // OK, calls adl(double)
adl(N::A{}); // OK; N::adl(int) not found, calls N::adl(N::A)
frQ; // OK, calls £
constexpr auto ptr = fr; // error: fr is not usable in constant expressions here
}
— end ezample]
6.7 Memory and objects [basic.memobj]
6.7.1 Memory model [intro.memory]

The fundamental storage unit in the C++ memory model is the byte. A byte is at least large enough to
contain the ordinary literal encoding of any element of the basic literal character set (5.3) and the eight-bit
code units of the Unicode?® UTF-8 encoding form and is composed of a contiguous sequence of bits,?! the
number of which is implementation-defined. The least significant bit is called the low-order bit; the most
significant bit is called the high-order bit. The memory available to a C++ program consists of one or more
sequences of contiguous bytes. Every byte has a unique address.

[Note 1: The representation of types is described in 6.8.1. — end note]

A memory location is either an object of scalar type that is not a bit-field or a maximal sequence of adjacent
bit-fields all having nonzero width.

[Note 2: Various features of the language, such as references and virtual functions, might involve additional memory
locations that are not accessible to programs but are managed by the implementation. — end note]

Two or more threads of execution (6.9.2) can access separate memory locations without interfering with each
other.

[Note 3: Thus a bit-field and an adjacent non-bit-field are in separate memory locations, and therefore can be
concurrently updated by two threads of execution without interference. The same applies to two bit-fields, if one is
declared inside a nested struct declaration and the other is not, or if the two are separated by a zero-length bit-field
declaration, or if they are separated by a non-bit-field declaration. It is not safe to concurrently update two bit-fields
in the same struct if all fields between them are also bit-fields of nonzero width. — end note]

[Ezample 1: A class declared as

struct {
char a;
int b:5,
c:11,
:0,
d:8;
struct {int ee:8;} e;

};

contains four separate memory locations: The member a and bit-fields d and e.ee are each separate memory locations,
and can be modified concurrently without interfering with each other. The bit-fields b and ¢ together constitute the
fourth memory location. The bit-fields b and ¢ cannot be concurrently modified, but b and a, for example, can be.
— end ezample]

20) Unicode® is a registered trademark of Unicode, Inc. This information is given for the convenience of users of this document
and does not constitute an endorsement by ISO or IEC of this product.
21) The number of bits in a byte is reported by the macro CHAR_BIT in the header <climits> (17.3.6).

§6.7.1 61

(3.1)
(3.2)

(3.3)

©ISO/IEC N4944

6.7.2 Object model [intro.object]

The constructs in a C++ program create, destroy, refer to, access, and manipulate objects. An object is
created by a definition (6.2), by a new-expression (7.6.2.8), by an operation that implicitly creates objects
(see below), when implicitly changing the active member of a union (11.5), or when a temporary object is
created (7.3.5, 6.7.7). An object occupies a region of storage in its period of construction (11.9.5), throughout
its lifetime (6.7.3), and in its period of destruction (11.9.5).

[Note 1: A function is not an object, regardless of whether or not it occupies storage in the way that objects do.
— end note]

The properties of an object are determined when the object is created. An object can have a name (6.1). An
object has a storage duration (6.7.5) which influences its lifetime (6.7.3). An object has a type (6.8).

[Note 2: Some objects are polymorphic (11.7.3); the implementation generates information associated with each such
object that makes it possible to determine that object’s type during program execution. — end note]

Objects can contain other objects, called subobjects. A subobject can be a member subobject (11.4), a base
class subobject (11.7), or an array element. An object that is not a subobject of any other object is called a
complete object. If an object is created in storage associated with a member subobject or array element e
(which may or may not be within its lifetime), the created object is a subobject of e’s containing object if:

— the lifetime of e’s containing object has begun and not ended, and
— the storage for the new object exactly overlays the storage location associated with e, and
— the new object is of the same type as e (ignoring cv-qualification).

If a complete object is created (7.6.2.8) in storage associated with another object e of type “array of N
unsigned char” or of type “array of N std::byte” (17.2.1), that array provides storage for the created
object if:

— the lifetime of e has begun and not ended, and

— the storage for the new object fits entirely within e, and

— there is no array object that satisfies these constraints nested within e.

[Note &: If that portion of the array previously provided storage for another object, the lifetime of that object ends
because its storage was reused (6.7.3). — end note]

[Example 1:

template<typename ...T>
struct AlignedUnion {
alignas(T...) unsigned char data[max(sizeof(T)...)];

}
int £ {
AlignedUnion<int, char> au;
int *p = new (au.data) int; // OK, au.data provides storage
char *c = new (au.data) char(); // OK, ends lifetime of *p
char *d = new (au.data + 1) char();
return *c + *d; // OK
}

struct A { unsigned char a[32]; };
struct B { unsigned char b[16]; };

A a;
B *b = new (a.a + 8) B; // a.a provides storage for xb
int *p = new (b->b + 4) int; // b=>b provides storage for *p

// a.a does not provide storage for *p (directly),
// but *p is nested within a (see below)

— end ezample]

4 An object a is nested within another object b if:

(4.1)
(4.2)

(4.3)

— a is a subobject of b, or
— b provides storage for a, or

— there exists an object ¢ where a is nested within ¢, and ¢ is nested within b.

5 For every object x, there is some object called the complete object of x, determined as follows:

§6.7.2 62

10

11

12

©ISO/IEC N4944

— If x is a complete object, then the complete object of x is itself.
— Otherwise, the complete object of x is the complete object of the (unique) object that contains x.

If a complete object, a member subobject, or an array element is of class type, its type is considered the most
derived class, to distinguish it from the class type of any base class subobject; an object of a most derived
class type or of a non-class type is called a most derived object.

A potentially-overlapping subobject is either:

— a base class subobject, or

— a non-static data member declared with the no_unique_address attribute (9.12.11).
An object has nonzero size if it

— is not a potentially-overlapping subobject, or

— is not of class type, or

— is of a class type with virtual member functions or virtual base classes, or

— has subobjects of nonzero size or unnamed bit-fields of nonzero length.

Otherwise, if the object is a base class subobject of a standard-layout class type with no non-static data mem-
bers, it has zero size. Otherwise, the circumstances under which the object has zero size are implementation-
defined. Unless it is a bit-field (11.4.10), an object with nonzero size shall occupy one or more bytes of
storage, including every byte that is occupied in full or in part by any of its subobjects. An object of trivially
copyable or standard-layout type (6.8.1) shall occupy contiguous bytes of storage.

Unless an object is a bit-field or a subobject of zero size, the address of that object is the address of the first
byte it occupies. Two objects with overlapping lifetimes that are not bit-fields may have the same address if
one is nested within the other, or if at least one is a subobject of zero size and they are of different types;
otherwise, they have distinct addresses and occupy disjoint bytes of storage.??

[Ezample 2:
static const char testl = 'x';
static const char test2 = 'x';
const bool b = &testl != &test2; // always true

— end ezample]

The address of a non-bit-field subobject of zero size is the address of an unspecified byte of storage occupied
by the complete object of that subobject.

Some operations are described as implicitly creating objects within a specified region of storage. For each
operation that is specified as implicitly creating objects, that operation implicitly creates and starts the
lifetime of zero or more objects of implicit-lifetime types (6.8.1) in its specified region of storage if doing
so would result in the program having defined behavior. If no such set of objects would give the program
defined behavior, the behavior of the program is undefined. If multiple such sets of objects would give the
program defined behavior, it is unspecified which such set of objects is created.

[Note 4: Such operations do not start the lifetimes of subobjects of such objects that are not themselves of implicit-
lifetime types. — end note]

Further, after implicitly creating objects within a specified region of storage, some operations are described as
producing a pointer to a suitable created object. These operations select one of the implicitly-created objects
whose address is the address of the start of the region of storage, and produce a pointer value that points
to that object, if that value would result in the program having defined behavior. If no such pointer value
would give the program defined behavior, the behavior of the program is undefined. If multiple such pointer
values would give the program defined behavior, it is unspecified which such pointer value is produced.

[Ezample 3:

#include <cstdlib>

struct X { int a, b; };

X *make_x() {
// The call to std: :malloc implicitly creates an object of type X
// and its subobjects a and b, and returns a pointer to that X object
// (or an object that is pointer-interconvertible (6.8.4) with it),

22) Under the “as-if” rule an implementation is allowed to store two objects at the same machine address or not store an object
at all if the program cannot observe the difference (6.9.1).

§6.7.2 63

13

©ISO/IEC N4944

// in order to give the subsequent class member access operations
// defined behavior.
X *p = (Xx)std::malloc(sizeof (struct X));

p—>a = 1;

p~>b = 2;

return p;
}

— end ezample]

An operation that begins the lifetime of an array of unsigned char or std: :byte implicitly creates objects
within the region of storage occupied by the array.

[Note 5: The array object provides storage for these objects. — end note]

Any implicit or explicit invocation of a function named operator new or operator new[] implicitly creates
objects in the returned region of storage and returns a pointer to a suitable created object.

[Note 6: Some functions in the C++ standard library implicitly create objects (20.2.6, 20.2.9.3, 20.2.12, 23.5.3, 22.15.3).
— end note]

6.7.3 Lifetime [basic.life]

The lifetime of an object or reference is a runtime property of the object or reference. A variable is said to
have vacuous initialization if it is default-initialized and, if it is of class type or a (possibly multi-dimensional)
array thereof, that class type has a trivial default constructor. The lifetime of an object of type T begins
when:

— storage with the proper alignment and size for type T is obtained, and
— its initialization (if any) is complete (including vacuous initialization) (9.4),

except that if the object is a union member or subobject thereof, its lifetime only begins if that union member
is the initialized member in the union (9.4.2, 11.9.3), or as described in 11.5, 11.4.5.3, and 11.4.6, and except
as described in 20.2.10.2. The lifetime of an object o of type T ends when:

— if T is a non-class type, the object is destroyed, or
— if T is a class type, the destructor call starts, or
— the storage which the object occupies is released, or is reused by an object that is not nested within
0 (6.7.2).
The lifetime of a reference begins when its initialization is complete. The lifetime of a reference ends as if it
were a scalar object requiring storage.

[Note 1: 11.9.3 describes the lifetime of base and member subobjects. — end note]

The properties ascribed to objects and references throughout this document apply for a given object or
reference only during its lifetime.

[Note 2: In particular, before the lifetime of an object starts and after its lifetime ends there are significant restrictions
on the use of the object, as described below, in 11.9.3, and in 11.9.5. Also, the behavior of an object under construction
and destruction can differ from the behavior of an object whose lifetime has started and not ended. 11.9.3 and 11.9.5
describe the behavior of an object during its periods of construction and destruction. — end note]

A program may end the lifetime of an object of class type without invoking the destructor, by reusing or
releasing the storage as described above.

[Note 3: A delete-expression (7.6.2.9) invokes the destructor prior to releasing the storage. — end note]
In this case, the destructor is not implicitly invoked.

[Note 4: The correct behavior of a program often depends on the destructor being invoked for each object of class
type. — end note]

Before the lifetime of an object has started but after the storage which the object will occupy has been
allocated?? or, after the lifetime of an object has ended and before the storage which the object occupied
is reused or released, any pointer that represents the address of the storage location where the object will
be or was located may be used but only in limited ways. For an object under construction or destruction,
see 11.9.5. Otherwise, such a pointer refers to allocated storage (6.7.5.5.2), and using the pointer as if the

23) For example, before the dynamic initialization of an object with static storage duration (6.9.3.3).

§6.7.3 64

(8.1)

(8.2)

©ISO/IEC N4944

pointer were of type void* is well-defined. Indirection through such a pointer is permitted but the resulting
Ivalue may only be used in limited ways, as described below. The program has undefined behavior if:

— the pointer is used as the operand of a delete-expression,

— the pointer is used to access a non-static data member or call a non-static member function of the
object, or
— the pointer is implicitly converted (7.3.12) to a pointer to a virtual base class, or

— the pointer is used as the operand of a static_cast (7.6.1.9), except when the conversion is to pointer
to cv void, or to pointer to cv void and subsequently to pointer to cv char, cv unsigned char, or
cv std: :byte (17.2.1), or

— the pointer is used as the operand of a dynamic_cast (7.6.1.7).
[Ezample 1:

#include <cstdlib>

struct B {
virtual void f();
void mutate();
virtual ~BQ);

};

struct D1 : B { void £Q0); };
struct D2 : B { void £(); };

void B::mutate() {

new (this) D2; // reuses storage — ends the lifetime of *this
£O; // undefined behavior
. = this; // OK, this points to valid memory
}
void g() {

void* p = std::malloc(sizeof(D1) + sizeof(D2));
B* pb = new (p) Di;
pb—>mutate();

*pb; // OK, pb points to valid memory
void* q = pb; // OK, pb points to valid memory
pb—>£(); // undefined behavior: lifetime of *pb has ended

}
— end example]

Similarly, before the lifetime of an object has started but after the storage which the object will occupy has
been allocated or, after the lifetime of an object has ended and before the storage which the object occupied
is reused or released, any glvalue that refers to the original object may be used but only in limited ways.
For an object under construction or destruction, see 11.9.5. Otherwise, such a glvalue refers to allocated
storage (6.7.5.5.2), and using the properties of the glvalue that do not depend on its value is well-defined.
The program has undefined behavior if:

— the glvalue is used to access the object, or

— the glvalue is used to call a non-static member function of the object, or

— the glvalue is bound to a reference to a virtual base class (9.4.4), or

— the glvalue is used as the operand of a dynamic_cast (7.6.1.7) or as the operand of typeid.

If, after the lifetime of an object has ended and before the storage which the object occupied is reused or
released, a new object is created at the storage location which the original object occupied, a pointer that
pointed to the original object, a reference that referred to the original object, or the name of the original
object will automatically refer to the new object and, once the lifetime of the new object has started, can be
used to manipulate the new object, if the original object is transparently replaceable (see below) by the new
object. An object 07 is transparently replaceable by an object o if:

— the storage that oy occupies exactly overlays the storage that o; occupied, and

— o1 and oy are of the same type (ignoring the top-level cv-qualifiers), and

§6.7.3 65

(8.3)
(8.4)

(8.5)

10

©ISO/IEC N4944

— 01 is not a const, complete object, and
— neither o1 nor oy is a potentially-overlapping subobject (6.7.2), and

— either o; and o3 are both complete objects, or 01 and o2 are direct subobjects of objects p; and po,
respectively, and p; is transparently replaceable by ps.

[Ezample 2:

struct C {
int i;
void £();
const C& operator=(const C&);

};

const C& C::operator=(const C& other) {
if (this != &other) {

this->~C(); // lifetime of *this ends
new (this) C(other); // nmew object of type C created
£0; // well-defined
}
return *this;
}
C ci;
C c2;
cl = c2; // well-defined
cl.£0); // well-defined; c1 refers to a new object of type C

— end ezxample]
[Note 5: If these conditions are not met, a pointer to the new object can be obtained from a pointer that represents
the address of its storage by calling std: :launder (17.6.5). — end note]

If a program ends the lifetime of an object of type T with static (6.7.5.2), thread (6.7.5.3), or automatic (6.7.5.4)
storage duration and if T has a non-trivial destructor,?* and another object of the original type does not
occupy that same storage location when the implicit destructor call takes place, the behavior of the program
is undefined. This is true even if the block is exited with an exception.

[Ezample 3:

class T { };

struct B {
~BQ);

};

void h() {
B b;
new (&b) T;
} // undefined behavior at block exit

— end ezample]

Creating a new object within the storage that a const, complete object with static, thread, or automatic
storage duration occupies, or within the storage that such a const object used to occupy before its lifetime
ended, results in undefined behavior.

[Ezample 4:

struct B {
BO;
~BQ);

};

const B b;

24) That is, an object for which a destructor will be called implicitly—upon exit from the block for an object with automatic
storage duration, upon exit from the thread for an object with thread storage duration, or upon exit from the program for an
object with static storage duration.

§6.7.3 66

11

(2.1)

(2.1.1)
(2.1.2)

(2.1.3)

(2.1.4)

(2.2)

(2.3)

(2.4)

(1.1)
(1.2)
(1.3)

(1.4)

©ISO/IEC N4944

void h() {

b.~BO);

new (const_cast<B*>(&b)) const B; // undefined behavior
}

— end ezample]
In this subclause, “before” and “after” refer to the “happens before” relation (6.9.2).

[Note 6: Therefore, undefined behavior results if an object that is being constructed in one thread is referenced from
another thread without adequate synchronization. — end note]

6.7.4 Indeterminate values [basic.indet]

When storage for an object with automatic or dynamic storage duration is obtained, the object has an
indeterminate value, and if no initialization is performed for the object, that object retains an indeterminate
value until that value is replaced (7.6.19).

[Note 1: Objects with static or thread storage duration are zero-initialized, see 6.9.3.2. — end note]

If an indeterminate value is produced by an evaluation, the behavior is undefined except in the following
cases:

— If an indeterminate value of unsigned ordinary character type (6.8.2) or std: :byte type (17.2.1) is
produced by the evaluation of:

— the second or third operand of a conditional expression (7.6.16),
— the right operand of a comma expression (7.6.20),

— the operand of a cast or conversion (7.3.9, 7.6.1.4, 7.6.1.9, 7.6.3) to an unsigned ordinary character
type or std: :byte type (17.2.1), or

— a discarded-value expression (7.2.3),
then the result of the operation is an indeterminate value.

— If an indeterminate value of unsigned ordinary character type or std: :byte type is produced by the
evaluation of the right operand of a simple assignment operator (7.6.19) whose first operand is an lvalue
of unsigned ordinary character type or std: :byte type, an indeterminate value replaces the value of
the object referred to by the left operand.

— If an indeterminate value of unsigned ordinary character type is produced by the evaluation of the
initialization expression when initializing an object of unsigned ordinary character type, that object is
initialized to an indeterminate value.

— If an indeterminate value of unsigned ordinary character type or std: :byte type is produced by the
evaluation of the initialization expression when initializing an object of std: :byte type, that object is
initialized to an indeterminate value.

[Example 1:

int f(bool b) {
unsigned char c;

unsigned char d = c; // OK, d has an indeterminate value
int e = 4; // undefined behavior
return b ? d : 0; // undefined behavior if b is true
}
— end ezample]
6.7.5 Storage duration [basic.stc]
6.7.5.1 General [basic.stc.general]

The storage duration is the property of an object that defines the minimum potential lifetime of the storage
containing the object. The storage duration is determined by the construct used to create the object and is
one of the following:

— static storage duration
— thread storage duration
— automatic storage duration

— dynamic storage duration

§6.7.5.1 67

(1.1)

(1.2)

©ISO/IEC N4944

Static, thread, and automatic storage durations are associated with objects introduced by declarations (6.2)
and implicitly created by the implementation (6.7.7). The dynamic storage duration is associated with
objects created by a new-expression (7.6.2.8).

The storage duration categories apply to references as well.

When the end of the duration of a region of storage is reached, the values of all pointers representing the
address of any part of that region of storage become invalid pointer values (6.8.4). Indirection through an
invalid pointer value and passing an invalid pointer value to a deallocation function have undefined behavior.
Any other use of an invalid pointer value has implementation-defined behavior.??

6.7.5.2 Static storage duration [basic.stc.static]
All variables which

— do not have thread storage duration and

— belong to a namespace scope (6.4.6) or are first declared with the static or extern keywords (9.2.2)

have static storage duration. The storage for these entities lasts for the duration of the program (6.9.3.2,
6.9.3.4).

If a variable with static storage duration has initialization or a destructor with side effects, it shall not be
eliminated even if it appears to be unused, except that a class object or its copy/move may be eliminated as
specified in 11.9.6.

[Note 1: The keyword static can be used to declare a block variable (6.4.3) with static storage duration; 8.8 and
6.9.3.4 describe the initialization and destruction of such variables. The keyword static applied to a class data
member in a class definition gives the data member static storage duration (11.4.9.3). — end note]

6.7.5.3 Thread storage duration [basic.stc.thread]

All variables declared with the thread_local keyword have thread storage duration. The storage for these
entities lasts for the duration of the thread in which they are created. There is a distinct object or reference
per thread, and use of the declared name refers to the entity associated with the current thread.

[Note 1: A variable with thread storage duration is initialized as specified in 6.9.3.2, 6.9.3.3, and 8.8 and, if constructed,
is destroyed on thread exit (6.9.3.4). — end note]

6.7.5.4 Automatic storage duration [basic.stc.auto]

Variables that belong to a block or parameter scope and are not explicitly declared static, thread_local,
or extern have automatic storage duration. The storage for these entities lasts until the block in which they
are created exits.

[Note 1: These variables are initialized and destroyed as described in 8.8. — end note]

If a variable with automatic storage duration has initialization or a destructor with side effects, an implemen-
tation shall not destroy it before the end of its block nor eliminate it as an optimization, even if it appears to
be unused, except that a class object or its copy/move may be eliminated as specified in 11.9.6.

6.7.5.5 Dynamic storage duration [basic.stc.dynamic]
6.7.5.5.1 General [basic.stc.dynamic.general]

Objects can be created dynamically during program execution (6.9.1), using new-expressions (7.6.2.8), and
destroyed using delete-expressions (7.6.2.9). A C++ implementation provides access to, and management
of, dynamic storage via the global allocation functions operator new and operator newl[] and the global
deallocation functions operator delete and operator deletel[].

[Note 1: The non-allocating forms described in 17.6.3.4 do not perform allocation or deallocation. — end note]

The library provides default definitions for the global allocation and deallocation functions. Some global
allocation and deallocation functions are replaceable (17.6.3); these are attached to the global module (10.1).
A C++ program shall provide at most one definition of a replaceable allocation or deallocation function.
Any such function definition replaces the default version provided in the library (16.4.5.6). The following
allocation and deallocation functions (17.6) are implicitly declared in global scope in each translation unit of
a program.

[[nodiscard]] void* operator new(std::size_t);

[[nodiscard]] void* operator new(std::size_t, std::align_val_t);

25) Some implementations might define that copying an invalid pointer value causes a system-generated runtime fault.

§6.7.5.5.1 68

©ISO/IEC N4944

void operator delete(void*) noexcept;

void operator delete(void*, std::size_t) noexcept;

void operator delete(void#*, std::align_val_t) noexcept;

void operator delete(void*, std::size_t, std::align_val_t) noexcept;

[[nodiscard]] void* operator new[] (std::size_t);
[[nodiscard]] void* operator new[] (std::size_t, std::align_val_t);

void operator delete[] (void*) noexcept;

void operator delete[] (void*, std::size_t) noexcept;

void operator delete[](void#*, std::align_val_t) noexcept;

void operator delete[](void*, std::size_t, std::align_val_t) noexcept;

These implicit declarations introduce only the function names operator new, operator new[], operator
delete, and operator deletel].

[Note 2: The implicit declarations do not introduce the names std, std: :size_t, std::align_val_t, or any other
names that the library uses to declare these names. Thus, a new-expression, delete-expression, or function call that
refers to one of these functions without importing or including the header <new> (17.6.2) or importing a C++ library
module (16.4.2.4) is well-formed. However, referring to std or std::size_t or std::align_val_t is ill-formed unless
a standard library declaration (17.2.1, 17.6.2, 16.4.2.4) of that name precedes (6.5.1) the use of that name. — end
note|

Allocation and/or deallocation functions may also be declared and defined for any class (11.4.11).

If the behavior of an allocation or deallocation function does not satisfy the semantic constraints specified
in 6.7.5.5.2 and 6.7.5.5.3, the behavior is undefined.

6.7.5.5.2 Allocation functions [basic.stc.dynamic.allocation]

An allocation function that is not a class member function shall belong to the global scope and not have a
name with internal linkage. The return type shall be void*. The first parameter shall have type std: :size_-
t (17.2). The first parameter shall not have an associated default argument (9.3.4.7). The value of the first
parameter is interpreted as the requested size of the allocation. An allocation function can be a function
template. Such a template shall declare its return type and first parameter as specified above (that is,
template parameter types shall not be used in the return type and first parameter type). Allocation function
templates shall have two or more parameters.

An allocation function attempts to allocate the requested amount of storage. If it is successful, it returns
the address of the start of a block of storage whose length in bytes is at least as large as the requested size.
The order, contiguity, and initial value of storage allocated by successive calls to an allocation function are
unspecified. Even if the size of the space requested is zero, the request can fail. If the request succeeds, the
value returned by a replaceable allocation function is a non-null pointer value (6.8.4) p0 different from any
previously returned value p1, unless that value p1 was subsequently passed to a replaceable deallocation
function. Furthermore, for the library allocation functions in 17.6.3.2 and 17.6.3.3, p0O represents the address
of a block of storage disjoint from the storage for any other object accessible to the caller. The effect of
indirecting through a pointer returned from a request for zero size is undefined.?%

For an allocation function other than a reserved placement allocation function (17.6.3.4), the pointer returned
on a successful call shall represent the address of storage that is aligned as follows:

— If the allocation function takes an argument of type std::align_val_t, the storage will have the
alignment specified by the value of this argument.

— Otherwise, if the allocation function is named operator newl[], the storage is aligned for any object
that does not have new-extended alignment (6.7.6) and is no larger than the requested size.

— Otherwise, the storage is aligned for any object that does not have new-extended alignment and is of
the requested size.

An allocation function that fails to allocate storage can invoke the currently installed new-handler function
(17.6.4.3), if any.

[Note 1: A program-supplied allocation function can obtain the address of the currently installed new_handler using
the std::get_new_handler function (17.6.4.5). — end note|

26) The intent is to have operator new() implementable by calling std: :malloc() or std::calloc(), so the rules are substan-
tially the same. C++ differs from C in requiring a zero request to return a non-null pointer.

§6.7.5.5.2 69

(3.1)
(3.2)

(3.3)

©ISO/IEC N4944

An allocation function that has a non-throwing exception specification (14.5) indicates failure by returning a
null pointer value. Any other allocation function never returns a null pointer value and indicates failure only by
throwing an exception (14.2) of a type that would match a handler (14.4) of type std: :bad_alloc (17.6.4.1).

A global allocation function is only called as the result of a new expression (7.6.2.8), or called directly using
the function call syntax (7.6.1.3), or called indirectly to allocate storage for a coroutine state (9.5.4), or called
indirectly through calls to the functions in the C++ standard library.

[Note 2: In particular, a global allocation function is not called to allocate storage for objects with static storage
duration (6.7.5.2), for objects or references with thread storage duration (6.7.5.3), for objects of type std::type_-
info (7.6.1.8), or for an exception object (14.2). — end note]

6.7.5.5.3 Deallocation functions [basic.stc.dynamic.deallocation)]

A deallocation function that is not a class member function shall belong to the global scope and not have a
name with internal linkage.

A deallocation function is a destroying operator delete if it has at least two parameters and its second
parameter is of type std::destroying_delete_t. A destroying operator delete shall be a class member
function named operator delete.

[Note 1: Array deletion cannot use a destroying operator delete. — end note]

Each deallocation function shall return void. If the function is a destroying operator delete declared in class
type C, the type of its first parameter shall be C#; otherwise, the type of its first parameter shall be void*. A
deallocation function may have more than one parameter. A wusual deallocation function is a deallocation
function whose parameters after the first are

— optionally, a parameter of type std: :destroying_delete_t, then
— optionally, a parameter of type std: :size_t,?” then
— optionally, a parameter of type std::align_val_t.

A destroying operator delete shall be a usual deallocation function. A deallocation function may be an
instance of a function template. Neither the first parameter nor the return type shall depend on a template
parameter. A deallocation function template shall have two or more function parameters. A template instance
is never a usual deallocation function, regardless of its signature.

If a deallocation function terminates by throwing an exception, the behavior is undefined. The value of the
first argument supplied to a deallocation function may be a null pointer value; if so, and if the deallocation
function is one supplied in the standard library, the call has no effect.

If the argument given to a deallocation function in the standard library is a pointer that is not the null
pointer value (6.8.4), the deallocation function shall deallocate the storage referenced by the pointer, ending
the duration of the region of storage.

6.7.5.6 Duration of subobjects [basic.stc.inherit]

The storage duration of subobjects and reference members is that of their complete object (6.7.2).

6.7.6 Alignment [basic.align)]

Object types have alignment requirements (6.8.2, 6.8.4) which place restrictions on the addresses at which an
object of that type may be allocated. An alignment is an implementation-defined integer value representing
the number of bytes between successive addresses at which a given object can be allocated. An object type
imposes an alignment requirement on every object of that type; stricter alignment can be requested using the
alignment specifier (9.12.2).

A fundamental alignment is represented by an alignment less than or equal to the greatest alignment supported
by the implementation in all contexts, which is equal to alignof (std: :max_align_t) (17.2). The alignment
required for a type may be different when it is used as the type of a complete object and when it is used as
the type of a subobject.

[Ezample 1:

struct B { long double d; 1};
struct D : virtual B { char c; };

27) The global operator delete(void*, std::size_t) precludes use of an allocation function void operator new(std::size_-
t, std::size_t) as a placement allocation function (C.4.3).

§6.7.6 70

(7.1)
(7.2)

(7.3)

(1.1)

(1.2)

(1.3)

(2.1)
(2.2)
(2.3)
(2.4)

(2.5)

©ISO/IEC N4944

When D is the type of a complete object, it will have a subobject of type B, so it must be aligned appropriately for a
long double. If D appears as a subobject of another object that also has B as a virtual base class, the B subobject
might be part of a different subobject, reducing the alignment requirements on the D subobject. — end ezample]

The result of the alignof operator reflects the alignment requirement of the type in the complete-object case.

An extended alignment is represented by an alignment greater than alignof (std::max_align_t). It is
implementation-defined whether any extended alignments are supported and the contexts in which they are
supported (9.12.2). A type having an extended alignment requirement is an over-aligned type.

[Note 1: Every over-aligned type is or contains a class type to which extended alignment applies (possibly through a
non-static data member). — end note]

A new-extended alignment is represented by an alignment greater than __STDCPP_DEFAULT_NEW_ALIGNMENT_ _
(15.11).

Alignments are represented as values of the type std: :size_t. Valid alignments include only those values
returned by an alignof expression for the fundamental types plus an additional implementation-defined set
of values, which may be empty. Every alignment value shall be a non-negative integral power of two.

Alignments have an order from weaker to stronger or stricter alignments. Stricter alignments have larger
alignment values. An address that satisfies an alignment requirement also satisfies any weaker valid alignment
requirement.

The alignment requirement of a complete type can be queried using an alignof expression (7.6.2.6).
Furthermore, the narrow character types (6.8.2) shall have the weakest alignment requirement.

[Note 2: This enables the ordinary character types to be used as the underlying type for an aligned memory
area (9.12.2). — end note]

Comparing alignments is meaningful and provides the obvious results:
— Two alignments are equal when their numeric values are equal.
— Two alignments are different when their numeric values are not equal.
— When an alignment is larger than another it represents a stricter alignment.

[Note 3: The runtime pointer alignment function (20.2.5) can be used to obtain an aligned pointer within a buffer; an
alignment-specifier (9.12.2) can be used to align storage explicitly. — end note]

If a request for a specific extended alignment in a specific context is not supported by an implementation,
the program is ill-formed.

6.7.7 Temporary objects [class.temporary]
Temporary objects are created
— when a prvalue is converted to an xvalue (7.3.5),

— when needed by the implementation to pass or return an object of trivially copyable type (see below),
and

— when throwing an exception (14.2).
[Note 1: The lifetime of exception objects is described in 14.2. — end note]

Even when the creation of the temporary object is unevaluated (7.2.3), all the semantic restrictions shall be
respected as if the temporary object had been created and later destroyed.

[Note 2: This includes accessibility (11.8) and whether it is deleted, for the constructor selected and for the destructor.
However, in the special case of the operand of a decltype-specifier (9.2.9.5), no temporary is introduced, so the foregoing
does not apply to such a prvalue. — end note]

The materialization of a temporary object is generally delayed as long as possible in order to avoid creating
unnecessary temporary objects.

[Note 3: Temporary objects are materialized:
— when binding a reference to a prvalue (9.4.4, 7.6.1.4, 7.6.1.7, 7.6.1.9, 7.6.1.11, 7.6.3),
— when performing member access on a class prvalue (7.6.1.5, 7.6.4),
— when performing an array-to-pointer conversion or subscripting on an array prvalue (7.3.3, 7.6.1.2),
— when initializing an object of type std::initializer_list<T> from a braced-init-list (9.4.5),

— for certain unevaluated operands (7.6.1.8, 7.6.2.5), and

§6.7.7 71

(2.6)

©ISO/IEC N4944

— when a prvalue that has type other than cv void appears as a discarded-value expression (7.2.3).
— end note]
[Ezample 1: Consider the following code:

class X {

public:

X(int);

X(const X&);

X& operator=(const X&) ;
~X0;

I

class Y {
public:
Y(int);
Y(Y&&) ;
~Y();
};

X £(X);
Y g(Y);

void h() {

X a(l);
= £(X(2));
= g(Y(3));
f(a);

o o

X
Y
a
b

X(2) is constructed in the space used to hold £ ()’s argument and Y(3) is constructed in the space used to hold g()’s
argument. Likewise, f()’s result is constructed directly in b and g()’s result is constructed directly in c. On the
other hand, the expression a = f(a) requires a temporary for the result of f(a), which is materialized so that the
reference parameter of X::operator=(const X&) can bind to it. — end ezample]

When an object of class type X is passed to or returned from a function, if X has at least one eligible copy
or move constructor (11.4.4), each such constructor is trivial, and the destructor of X is either trivial or
deleted, implementations are permitted to create a temporary object to hold the function parameter or result
object. The temporary object is constructed from the function argument or return value, respectively, and
the function’s parameter or return object is initialized as if by using the eligible trivial constructor to copy
the temporary (even if that constructor is inaccessible or would not be selected by overload resolution to
perform a copy or move of the object).

[Note 4: This latitude is granted to allow objects of class type to be passed to or returned from functions in registers.
— end note]

4 When an implementation introduces a temporary object of a class that has a non-trivial constructor (11.4.5.2,

11.4.5.3), it shall ensure that a constructor is called for the temporary object. Similarly, the destructor
shall be called for a temporary with a non-trivial destructor (11.4.7). Temporary objects are destroyed as
the last step in evaluating the full-expression (6.9.1) that (lexically) contains the point where they were
created. This is true even if that evaluation ends in throwing an exception. The value computations and side
effects of destroying a temporary object are associated only with the full-expression, not with any specific
subexpression.

There are four contexts in which temporaries are destroyed at a different point than the end of the full-
expression. The first context is when a default constructor is called to initialize an element of an array with
no corresponding initializer (9.4). The second context is when a copy constructor is called to copy an element
of an array while the entire array is copied (7.5.5.3, 11.4.5.3). In either case, if the constructor has one or
more default arguments, the destruction of every temporary created in a default argument is sequenced
before the construction of the next array element, if any.

The third context is when a reference binds to a temporary object.?® The temporary object to which the
reference is bound or the temporary object that is the complete object of a subobject to which the reference

28) The same rules apply to initialization of an initializer_list object (9.4.5) with its underlying temporary array.

§6.7.7 72

(6.7)

(6.8)

(6.9)

(6.10)

©ISO/IEC N4944

is bound persists for the lifetime of the reference if the glvalue to which the reference is bound was obtained
through one of the following;:

— a temporary materialization conversion (7.3.5),
— (expression), where expression is one of these expressions,
— subscripting (7.6.1.2) of an array operand, where that operand is one of these expressions,

— a class member access (7.6.1.5) using the . operator where the left operand is one of these expressions
and the right operand designates a non-static data member of non-reference type,

— a pointer-to-member operation (7.6.4) using the .* operator where the left operand is one of these
expressions and the right operand is a pointer to data member of non-reference type,

—a
— const_cast (7.6.1.11),
— static_cast (7.6.1.9),
— dynamic_cast (7.6.1.7), or
— reinterpret_cast (7.6.1.10)

converting, without a user-defined conversion, a glvalue operand that is one of these expressions to a
glvalue that refers to the object designated by the operand, or to its complete object or a subobject
thereof,

— a conditional expression (7.6.16) that is a glvalue where the second or third operand is one of these
expressions, or

— a comma expression (7.6.20) that is a glvalue where the right operand is one of these expressions.
[Ezample 2:

template<typename T> using id = T;

int i = 1;

int&& a = id<int[3]>{1, 2, 3}[il; // temporary array has same lifetime as a

const int& b = static_cast<const int&>(0); // temporary int has same lifetime as b

int&& c = cond ? id<int[3]>{1, 2, 3}[i] : static_cast<int&&>(0);
// exactly one of the two temporaries is lifetime-extended

— end ezample]
[Note 5: An explicit type conversion (7.6.1.4, 7.6.3) is interpreted as a sequence of elementary casts, covered above.
[Ezample 3:
const int& x = (const int&)1; // temporary for value 1 has same lifetime as x
— end ezample]
— end note]

[Note 6: If a temporary object has a reference member initialized by another temporary object, lifetime extension
applies recursively to such a member’s initializer.

[Ezample 4:
struct S {
const int& m;
I
const S& s = S{1}; // both S and int temporaries have lifetime of s

— end ezample]
— end note]
The exceptions to this lifetime rule are:

— A temporary object bound to a reference parameter in a function call (7.6.1.3) persists until the
completion of the full-expression containing the call.

— A temporary object bound to a reference element of an aggregate of class type initialized from a
parenthesized expression-list (9.4) persists until the completion of the full-expression containing the
expression-list.

§ 6.7.7 73

(6.11)

(6.12)

©ISO/IEC N4944

— The lifetime of a temporary bound to the returned value in a function return statement (8.7.4) is not
extended; the temporary is destroyed at the end of the full-expression in the return statement.

— A temporary bound to a reference in a new-initializer (7.6.2.8) persists until the completion of the
full-expression containing the new-initializer.

[Note 7: This might introduce a dangling reference. — end note]
[Ezample 5:

struct S { int mi; const std::pair<int,int>& mp; };
Sa{1, {2,31 };
S* p = new S{ 1, {2,3} }; // creates dangling reference

— end example]

The fourth context is when a temporary object other than a function parameter object is created in the
for-range-initializer of a range-based for statement. If such a temporary object would otherwise be destroyed
at the end of the for-range-initializer full-expression, the object persists for the lifetime of the reference
initialized by the for-range-initializer.

The destruction of a temporary whose lifetime is not extended beyond the full-expression in which it was
created is sequenced before the destruction of every temporary which is constructed earlier in the same
full-expression. If the lifetime of two or more temporaries with lifetimes extending beyond the full-expressions
in which they were created ends at the same point, these temporaries are destroyed at that point in the reverse
order of the completion of their construction. In addition, the destruction of such temporaries shall take into
account the ordering of destruction of objects with static, thread, or automatic storage duration (6.7.5.2,
6.7.5.3, 6.7.5.4); that is, if obj1 is an object with the same storage duration as the temporary and created
before the temporary is created the temporary shall be destroyed before obj1 is destroyed; if obj2 is an
object with the same storage duration as the temporary and created after the temporary is created the
temporary shall be destroyed after obj2 is destroyed.

[Ezample 6:

struct S {
SO;
S(int);
friend S operator+(const S&, const S&);
~S0;
};
S obji;
const S& cr = S(16)+S(23);
S obj2;
The expression S(16) + S(23) creates three temporaries: a first temporary T1 to hold the result of the expression
S(16), a second temporary T2 to hold the result of the expression S(23), and a third temporary T3 to hold the result
of the addition of these two expressions. The temporary T3 is then bound to the reference cr. It is unspecified whether
T1 or T2 is created first. On an implementation where T1 is created before T2, T2 shall be destroyed before T1. The
temporaries T1 and T2 are bound to the reference parameters of operator+; these temporaries are destroyed at the
end of the full-expression containing the call to operator+. The temporary T3 bound to the reference cr is destroyed
at the end of cr’s lifetime, that is, at the end of the program. In addition, the order in which T3 is destroyed takes
into account the destruction order of other objects with static storage duration. That is, because obj1 is constructed
before T3, and T3 is constructed before obj2, obj2 shall be destroyed before T3, and T3 shall be destroyed before obj1.
— end example]

6.8 Types [basic.types]
6.8.1 General [basic.types.general]

[Note 1: 6.8 and the subclauses thereof impose requirements on implementations regarding the representation of
types. There are two kinds of types: fundamental types and compound types. Types describe objects (6.7.2),
references (9.3.4.3), or functions (9.3.4.6). — end note]

For any object (other than a potentially-overlapping subobject) of trivially copyable type T, whether or not
the object holds a valid value of type T, the underlying bytes (6.7.1) making up the object can be copied into
an array of char, unsigned char, or std: :byte (17.2.1).29 If the content of that array is copied back into
the object, the object shall subsequently hold its original value.

[Example 1:

29) By using, for example, the library functions (16.4.2.3) std: :memcpy or std: :memmove.

§6.8.1 74

©ISO/IEC N4944

constexpr std::size_t N = sizeof(T);
char buf[N];

T obj; // obj initialized to its original value
std: :memcpy (buf, &obj, N); // between these two calls to std: :memcpy, obj might be modified
std: :memcpy(&obj, buf, N); // at this point, each subobject of obj of scalar type holds its original value

— end ezample]

3 For two distinct objects obj1l and obj2 of trivially copyable type T, where neither obj1l nor obj2 is a
potentially-overlapping subobject, if the underlying bytes (6.7.1) making up obj1 are copied into obj2,°
obj2 shall subsequently hold the same value as obj1.

[Ezample 2:
T* tip;
T* t2p;
// provided that t2p points to an initialized object ...
std: :memcpy (tlp, t2p, sizeof(T));
// at this point, every subobject of trivially copyable type in *tlp contains
// the same value as the corresponding subobject in *t2p

— end ezample]

4 The object representation of an object of type T is the sequence of N unsigned char objects taken up by the
object of type T, where N equals sizeof (T). The value representation of an object of type T is the set of bits
that participate in representing a value of type T. Bits in the object representation that are not part of the
value representation are padding bits. For trivially copyable types, the value representation is a set of bits in
the object representation that determines a value, which is one discrete element of an implementation-defined
set of values.?!

5 A class that has been declared but not defined, an enumeration type in certain contexts (9.7.1), or an array of
unknown bound or of incomplete element type, is an incompletely-defined object type.>? Incompletely-defined
object types and cv void are incomplete types (6.8.2).

[Note 2: Objects cannot be defined to have an incomplete type (6.2). — end note]

6 A class type (such as “class X”) can be incomplete at one point in a translation unit and complete later on;
the type “class X” is the same type at both points. The declared type of an array object can be an array of
incomplete class type and therefore incomplete; if the class type is completed later on in the translation unit,
the array type becomes complete; the array type at those two points is the same type. The declared type of
an array object can be an array of unknown bound and therefore be incomplete at one point in a translation
unit and complete later on; the array types at those two points (“array of unknown bound of T” and “array
of N T”) are different types.

[Note 8: The type of a pointer or reference to array of unknown bound permanently points to or refers to an incomplete
type. An array of unknown bound named by a typedef declaration permanently refers to an incomplete type. In

either case, the array type cannot be completed. — end note]
[Ezample 3:
class X; // X is an incomplete type
extern X* xp; // xp is a pointer to an incomplete type
extern int arr[]; // the type of arr is incomplete
typedef int UNKA[]; // UNKA is an incomplete type
UNKA* arrp; // arrp is a pointer to an incomplete type

UNKA** arrpp;

void foo() {

Xptt; // error: X is incomplete
arrp++; // error: incomplete type
arrpp++; // OK, sizeof UNKA* is known

}

struct X { int i; }; // now X is a complete type

int arr[10]; // now the type of arr is complete

30) By using, for example, the library functions (16.4.2.3) std: :memcpy or std: :memmove.
31) The intent is that the memory model of C++ is compatible with that of ISO/IEC 9899 Programming Language C.
32) The size and layout of an instance of an incompletely-defined object type is unknown.

§6.8.1 75

10
(10.1)
(10.2)
(10.3)
(10.4)
(10.5)

(10.5.1)
(10.5.2)
(10.5.3)
(10.5.3.1)

(10.5.3.2)

(10.5.3.3)

(10.5.3.4)

11

©ISO/IEC N4944

X x;
void bar() {
xp = &x; // OK; type is “pointer to X”
arrp = &arr; // OK; qualification conversion (7.3.6)
Xp++; // OK, X is complete
arrp++; // error: UNKA can’t be completed
}
— end ezample]
[Note 4: The rules for declarations and expressions describe in which contexts incomplete types are prohibited. — end
note|

An object type is a (possibly cv-qualified) type that is not a function type, not a reference type, and not
cv void.

Arithmetic types (6.8.2), enumeration types, pointer types, pointer-to-member types (6.8.4), std: :nullptr_t,
and cv-qualified (6.8.5) versions of these types are collectively called scalar types. Scalar types, trivially
copyable class types (11.2), arrays of such types, and cv-qualified versions of these types are collectively called
trivially copyable types. Scalar types, trivial class types (11.2), arrays of such types and cv-qualified versions
of these types are collectively called trivial types. Scalar types, standard-layout class types (11.2), arrays of
such types and cv-qualified versions of these types are collectively called standard-layout types. Scalar types,
implicit-lifetime class types (11.2), array types, and cv-qualified versions of these types are collectively called
implicit-lifetime types.
A type is a literal type if it is:
— c¢v void; or
— a scalar type; or
— a reference type; or
— an array of literal type; or
— a possibly cv-qualified class type (Clause 11) that has all of the following properties:
— it has a constexpr destructor (9.2.6),
— all of its non-static non-variant data members and base classes are of non-volatile literal types, and
— it
— is a closure type (7.5.5.2),

— is an aggregate union type that has either no variant members or at least one variant member
of non-volatile literal type,

— is a non-union aggregate type for which each of its anonymous union members satisfies the
above requirements for an aggregate union type, or

— has at least one constexpr constructor or constructor template (possibly inherited (9.9) from
a base class) that is not a copy or move constructor.

[Note 5: A literal type is one for which it might be possible to create an object within a constant expression. It is
not a guarantee that it is possible to create such an object, nor is it a guarantee that any object of that type will be
usable in a constant expression. — end note|

Two types cvl T1 and cv2 T2 are layout-compatible types if T1 and T2 are the same type, layout-compatible
enumerations (9.7.1), or layout-compatible standard-layout class types (11.4).

6.8.2 Fundamental types [basic.fundamental]

There are five standard signed integer types: “signed char”, “short int”, “int”, “long int”, and “long
long int”. In this list, each type provides at least as much storage as those preceding it in the list. There
may also be implementation-defined extended signed integer types. The standard and extended signed integer
types are collectively called signed integer types. The range of representable values for a signed integer type
is —2N=1 to0 21 — 1 (inclusive), where N is called the width of the type.

[Note 1: Plain ints are intended to have the natural width suggested by the architecture of the execution environment;
the other signed integer types are provided to meet special needs. — end note]

For each of the standard signed integer types, there exists a corresponding (but different) standard un-
signed integer type: “unsigned char”, “unsigned short int”, “unsigned int”, “unsigned long int”,

§6.8.2 76

©ISO/IEC N4944

and “unsigned long long int”. Likewise, for each of the extended signed integer types, there exists a cor-
responding extended unsigned integer type. The standard and extended unsigned integer types are collectively
called unsigned integer types. An unsigned integer type has the same width N as the corresponding signed
integer type. The range of representable values for the unsigned type is 0 to 2 — 1 (inclusive); arithmetic
for the unsigned type is performed modulo 2%V.

[Note 2: Unsigned arithmetic does not overflow. Overflow for signed arithmetic yields undefined behavior (7.1).
— end note]

3 An unsigned integer type has the same object representation, value representation, and alignment requirements
(6.7.6) as the corresponding signed integer type. For each value z of a signed integer type, the value of the
corresponding unsigned integer type congruent to x modulo 2%V has the same value of corresponding bits in
its value representation.3?

[Ezample 1: The value —1 of a signed integer type has the same representation as the largest value of the corresponding
unsigned type. — end ezample]

Table 14: Minimum width [tab:basic.fundamental.width]

’ Type Minimum width N ‘
signed char 8
short int 16
int 16
long int 32
long long int 64

4 The width of each signed integer type shall not be less than the values specified in Table 14. The value
representation of a signed or unsigned integer type comprises N bits, where N is the respective width. Each
set of values for any padding bits (6.8.1) in the object representation are alternative representations of the
value specified by the value representation.

[Note 3: Padding bits have unspecified value, but cannot cause traps. In contrast, see ISO C 6.2.6.2. — end note]
[Note 4: The signed and unsigned integer types satisfy the constraints given in ISO C 5.2.4.2.1. — end note]
Except as specified above, the width of a signed or unsigned integer type is implementation-defined.

5 Fach value z of an unsigned integer type with width N has a unique representation z = 2¢2° + z,2" +
...+ 2n_12Y71 where each coefficient z; is either 0 or 1; this is called the base-2 representation of x. The
base-2 representation of a value of signed integer type is the base-2 representation of the congruent value of
the corresponding unsigned integer type. The standard signed integer types and standard unsigned integer
types are collectively called the standard integer types, and the extended signed integer types and extended
unsigned integer types are collectively called the extended integer types.

6 A fundamental type specified to have a signed or unsigned integer type as its underlying type has the same
object representation, value representation, alignment requirements (6.7.6), and range of representable values
as the underlying type. Further, each value has the same representation in both types.

7 Type char is a distinct type that has an implementation-defined choice of “signed char” or “unsigned
char” as its underlying type. The three types char, signed char, and unsigned char are collectively called
ordinary character types. The ordinary character types and char8_t are collectively called narrow character
types. For narrow character types, each possible bit pattern of the object representation represents a distinct
value.

[Note 5: This requirement does not hold for other types. — end note]

[Note 6: A bit-field of narrow character type whose width is larger than the width of that type has padding bits; see
6.8.1. — end note]

8 Type wchar_t is a distinct type that has an implementation-defined signed or unsigned integer type as its
underlying type.

9 Type char8_t denotes a distinct type whose underlying type is unsigned char. Types char16_t and
char32_t denote distinct types whose underlying types are uint_least16_t and uint_least32_t, respec-
tively, in <cstdint> (17.4.1).

33) This is also known as two’s complement representation.

§6.8.2 77

10

11

12

13

14

15

16

©ISO/IEC N4944

Type bool is a distinct type that has the same object representation, value representation, and alignment
requirements as an implementation-defined unsigned integer type. The values of type bool are true and
false.

[Note 7: There are no signed, unsigned, short, or long bool types or values. — end note]

The types char, wchar_t, char8_t, charl16_t, and char32_t are collectively called character types. The
character types, bool, the signed and unsigned integer types, and cv-qualified versions (6.8.5) thereof, are
collectively termed integral types. A synonym for integral type is integer type.

[Note 8: Enumerations (9.7.1) are not integral; however, unscoped enumerations can be promoted to integral types as
specified in 7.3.7. — end note]

The three distinct types float, double, and long double can represent floating-point numbers. The type
double provides at least as much precision as float, and the type long double provides at least as much
precision as double. The set of values of the type float is a subset of the set of values of the type double;
the set of values of the type double is a subset of the set of values of the type long double. The types
float, double, and long double, and cv-qualified versions (6.8.5) thereof, are collectively termed standard
floating-point types. An implementation may also provide additional types that represent floating-point values
and define them (and cv-qualified versions thereof) to be extended floating-point types. The standard and
extended floating-point types are collectively termed floating-point types.

[Note 9: Any additional implementation-specific types representing floating-point values that are not defined by the
implementation to be extended floating-point types are not considered to be floating-point types, and this document
imposes no requirements on them or their interactions with floating-point types. — end note]

Except as specified in 6.8.3, the object and value representations and accuracy of operations of floating-point
types are implementation-defined.

Integral and floating-point types are collectively termed arithmetic types.

[Note 10: Properties of the arithmetic types, such as their minimum and maximum representable value, can be queried
using the facilities in the standard library headers <limits> (17.3.3), <climits> (17.3.6), and <cfloat> (17.3.7).
— end note]

A type cv void is an incomplete type that cannot be completed; such a type has an empty set of values. It is
used as the return type for functions that do not return a value. Any expression can be explicitly converted
to type cv void (7.6.1.4, 7.6.1.9, 7.6.3). An expression of type cv void shall be used only as an expression
statement (8.3), as an operand of a comma expression (7.6.20), as a second or third operand of ?: (7.6.16),
as the operand of typeid, noexcept, or decltype, as the expression in a return statement (8.7.4) for a
function with the return type cv void, or as the operand of an explicit conversion to type cv void.

A value of type std::nullptr_t is a null pointer constant (7.3.12). Such values participate in the
pointer and the pointer-to-member conversions (7.3.12; 7.3.13). sizeof (std::nullptr_t) shall be equal to
sizeof (voidx*).

The types described in this subclause are called fundamental types.

[Note 11: Even if the implementation defines two or more fundamental types to have the same value representation,
they are nevertheless different types. — end note]

6.8.3 Optional extended floating-point types [basic.extended.fp]

If the implementation supports an extended floating-point type (6.8.2) whose properties are specified by the
ISO/IEC/IEEE 60559 floating-point interchange format binary16, then the typedef-name std::float16_t
is defined in the header <stdfloat> (17.4.2) and names such a type, the macro __STDCPP_FLOAT16_T__ is
defined (15.11), and the floating-point literal suffixes £16 and F16 are supported (5.13.4).

If the implementation supports an extended floating-point type whose properties are specified by the
ISO/IEC/IEEE 60559 floating-point interchange format binary32, then the typedef-name std::float32_t
is defined in the header <stdfloat> and names such a type, the macro __STDCPP_FLOAT32_T__ is defined,
and the floating-point literal suffixes £32 and F32 are supported.

If the implementation supports an extended floating-point type whose properties are specified by the
ISO/IEC/IEEE 60559 floating-point interchange format binary64, then the typedef-name std::float64_t
is defined in the header <stdfloat> and names such a type, the macro __STDCPP_FLOAT64_T__ is defined,
and the floating-point literal suffixes £64 and F64 are supported.

If the implementation supports an extended floating-point type whose properties are specified by the
ISO/IEC/IEEE 60559 floating-point interchange format binary128, then the typedef-name std::float128_t

§6.8.3 78

(1.1)

(1.2)

(1.6)
(1.7)

(1.8)

©ISO/IEC N4944

is defined in the header <stdfloat> and names such a type, the macro __STDCPP_FLOAT128_T__ is defined,
and the floating-point literal suffixes £128 and F128 are supported.

If the implementation supports an extended floating-point type with the properties, as specified by
ISO/IEC/IEEE 60559, of radix (b) of 2, storage width in bits (k) of 16, precision in bits (p) of 8, maximum
exponent (emax) of 127, and exponent field width in bits (w) of 8, then the typedef-name std::bfloatl6_t
is defined in the header <stdfloat> and names such a type, the macro __STDCPP_BFLOAT16_T__ is defined,
and the floating-point literal suffixes bf16 and BF16 are supported.

[Note 1: A summary of the parameters for each type is given in Table 15. The precision p includes the implicit 1 bit

at the beginning of the mantissa, so the storage used for the mantissa is p — 1 bits. ISO/IEC/IEEE 60559 does not
assign a name for a type having the parameters specified for std: :bfloat16_t. — end note]

Table 15: Properties of named extended floating-point types [tab:basic.extended.fp]

’ Parameter floatl1l6_t float32_t float64_t floatl128_t bfloatl6_t
ISO/IEC/IEEE 60559 name binary16 binary32 binary64 binary128
k, storage width in bits 16 32 64 128 16
p, precision in bits 11 24 53 113 8
emazr, maximum exponent 15 127 1023 16383 127
w, exponent field width in bits 5 8 11 15 8

Recommended practice: Any names that the implementation provides for the extended floating-point types
described in this subsection that are in addition to the names defined in the <stdfloat> header should
be chosen to increase compatibility and interoperability with the interchange types _Float16, _Float32,
_Float64, and _Float128 defined in ISO/IEC TS 18661-3 and with future versions of the C standard.

6.8.4 Compound types [basic.compound]
Compound types can be constructed in the following ways:
— arrays of objects of a given type, 9.3.4.5;

— functions, which have parameters of given types and return void or references or objects of a given
type, 9.3.4.6;

— pointers to cv void or objects or functions (including static members of classes) of a given type, 9.3.4.2;
— references to objects or functions of a given type, 9.3.4.3. There are two types of references:

— lvalue reference

— rvalue reference

— classes containing a sequence of objects of various types (Clause 11), a set of types, enumerations
and functions for manipulating these objects (11.4.2), and a set of restrictions on the access to these
entities (11.8);

— unions, which are classes capable of containing objects of different types at different times, 11.5;
— enumerations, which comprise a set of named constant values, 9.7.1;

— pointers to non-static class members,>* which identify members of a given type within objects of a
given class, 9.3.4.4. Pointers to data members and pointers to member functions are collectively called
pointer-to-member types.

These methods of constructing types can be applied recursively; restrictions are mentioned in 9.3.4. Con-
structing a type such that the number of bytes in its object representation exceeds the maximum value
representable in the type std::size_t (17.2) is ill-formed.

The type of a pointer to cv void or a pointer to an object type is called an object pointer type.

[Note 1: A pointer to void does not have a pointer-to-object type, however, because void is not an object type.
— end note]

34) Static class members are objects or functions, and pointers to them are ordinary pointers to objects or functions.

§6.8.4 79

(3.1)
(3.2)
(3.3)

(3.4)

(4.1)
(4.2)

(4.3)

©ISO/IEC N4944

The type of a pointer that can designate a function is called a function pointer type. A pointer to an object
of type T is referred to as a “pointer to T”.

[Ezample 1: A pointer to an object of type int is referred to as “pointer to int” and a pointer to an object of class X
is called a “pointer to X”. — end example]

Except for pointers to static members, text referring to “pointers” does not apply to pointers to members.
Pointers to incomplete types are allowed although there are restrictions on what can be done with them (6.7.6).
Every value of pointer type is one of the following:

— a pointer to an object or function (the pointer is said to point to the object or function), or
— a pointer past the end of an object (7.6.6), or

— the null pointer value for that type, or

— an nwalid pointer value.

A value of a pointer type that is a pointer to or past the end of an object represents the address of the first
byte in memory (6.7.1) occupied by the object3® or the first byte in memory after the end of the storage
occupied by the object, respectively.

[Note 2: A pointer past the end of an object (7.6.6) is not considered to point to an unrelated object of the object’s

type, even if the unrelated object is located at that address. A pointer value becomes invalid when the storage it
denotes reaches the end of its storage duration; see 6.7.5. — end note]

For purposes of pointer arithmetic (7.6.6) and comparison (7.6.9, 7.6.10), a pointer past the end of the
last element of an array x of n elements is considered to be equivalent to a pointer to a hypothetical array
element n of x and an object of type T that is not an array element is considered to belong to an array
with one element of type T. The value representation of pointer types is implementation-defined. Pointers to
layout-compatible types shall have the same value representation and alignment requirements (6.7.6).

[Note 3: Pointers to over-aligned types (6.7.6) have no special representation, but their range of valid values is
restricted by the extended alignment requirement. — end note]

Two objects a and b are pointer-interconvertible if:
— they are the same object, or
— one is a union object and the other is a non-static data member of that object (11.5), or

— one is a standard-layout class object and the other is the first non-static data member of that object or
any base class subobject of that object (11.4), or

— there exists an object ¢ such that a and ¢ are pointer-interconvertible, and ¢ and b are pointer-
interconvertible.

If two objects are pointer-interconvertible, then they have the same address, and it is possible to obtain a
pointer to one from a pointer to the other via a reinterpret_cast (7.6.1.10).

[Note 4: An array object and its first element are not pointer-interconvertible, even though they have the same
address. — end note]

A byte of storage b is reachable through a pointer value that points to an object z if there is an object v,
pointer-interconvertible with z, such that b is within the storage occupied by y, or the immediately-enclosing
array object if y is an array element.

A pointer to cv void can be used to point to objects of unknown type. Such a pointer shall be able to hold
any object pointer. An object of type “pointer to cv void” shall have the same representation and alignment
requirements as an object of type “pointer to cv char”.

6.8.5 CV-qualifiers [basic.type.qualifier]

Each type other than a function or reference type is part of a group of four distinct, but related, types:
a cv-unqualified version, a const-qualified version, a volatile-qualified version, and a const-volatile-qualified
version. The types in each such group shall have the same representation and alignment requirements (6.7.6).3°
A function or reference type is always cv-unqualified.

— A const object is an object of type const T or a non-mutable subobject of a const object.

35) For an object that is not within its lifetime, this is the first byte in memory that it will occupy or used to occupy.
36) The same representation and alignment requirements are meant to imply interchangeability as arguments to functions,
return values from functions, and non-static data members of unions.

§6.8.5 80

(1.2)

(1.3)

4

©ISO/IEC N4944

— A wolatile object is an object of type volatile T or a subobject of a volatile object.

— A const volatile object is an object of type const volatile T, a non-mutable subobject of a const
volatile object, a const subobject of a volatile object, or a non-mutable volatile subobject of a const
object.

[Note 1: The type of an object (6.7.2) includes the cv-qualifiers specified in the decl-specifier-seq (9.2), declarator (9.3),
type-id (9.3.2), or new-type-id (7.6.2.8) when the object is created. — end note]

Except for array types, a compound type (6.8.4) is not cv-qualified by the cv-qualifiers (if any) of the types
from which it is compounded.

An array type whose elements are cv-qualified is also considered to have the same cv-qualifications as its
elements.

[Note 2: Cv-qualifiers applied to an array type attach to the underlying element type, so the notation “cv T”, where T
is an array type, refers to an array whose elements are so-qualified (9.3.4.5). — end note]

[Ezample 1:

typedef char CA[5];
typedef const char CC;
CC arr1[5] = { 0 };
const CA arr2 = { 0 };

The type of both arrl and arr2 is “array of 5 const char”, and the array type is considered to be const-qualified.
— end ezample]

[Note 3: See 9.3.4.6 and 12.2.2 regarding function types that have cv-qualifiers. — end note]

5 There is a partial ordering on cv-qualifiers, so that a type can be said to be more cv-qualified than another.

Table 16 shows the relations that constitute this ordering.

Table 16: Relations on const and volatile [tab:basic.type.qualifier.rel]

no cv-qualifier < const

no cv-qualifier < volatile
no cv-qualifier < const volatile
const < const volatile
volatile < const volatile

6 In this document, the notation cv (or cvi, cv2, etc.), used in the description of types, represents an arbitrary

(1.1)

(1.2)

(1.3)

(1.6)
(1.7)

(1.8)

set of cv-qualifiers, i.e., one of {const}, {volatile}, {const, volatile}, or the empty set. For a type cv T,
the top-level cv-qualifiers of that type are those denoted by cwv.

[Ezample 2: The type corresponding to the type-id const int& has no top-level cv-qualifiers. The type corresponding
to the type-id volatile int * const has the top-level cv-qualifier const. For a class type C, the type corresponding
to the type-id void (C::* volatile) (int) conmst has the top-level cv-qualifier volatile. — end ezample]

6.8.6 Conversion ranks [conv.rank]

Every integer type has an integer conversion rank defined as follows:

— No two signed integer types other than char and signed char (if char is signed) have the same rank,
even if they have the same representation.

— The rank of a signed integer type is greater than the rank of any signed integer type with a smaller
width.

— The rank of long long int is greater than the rank of long int, which is greater than the rank of
int, which is greater than the rank of short int, which is greater than the rank of signed char.

— The rank of any unsigned integer type equals the rank of the corresponding signed integer type.

— The rank of any standard integer type is greater than the rank of any extended integer type with the
same width.

— The rank of char equals the rank of signed char and unsigned char.
— The rank of bool is less than the rank of all standard integer types.

— The ranks of char8_t, char16_t, char32_t, and wchar_t equal the ranks of their underlying types
(6.8.2).

§6.8.6 81

(1.9)

(1.10)

(2.1)

(2.2)

(3.1)
(3.2)

(3.3)

©ISO/IEC N4944

— The rank of any extended signed integer type relative to another extended signed integer type with the
same width is implementation-defined, but still subject to the other rules for determining the integer
conversion rank.

— For all integer types T1, T2, and T3, if T1 has greater rank than T2 and T2 has greater rank than T3,
then T1 has greater rank than T3.

[Note 1: The integer conversion rank is used in the definition of the integral promotions (7.3.7) and the usual
arithmetic conversions (7.4). — end note]

Every floating-point type has a floating-point conversion rank defined as follows:

— The rank of a floating point type T is greater than the rank of any floating-point type whose set of
values is a proper subset of the set of values of T.

— The rank of long double is greater than the rank of double, which is greater than the rank of float.
— Two extended floating-point types with the same set of values have equal ranks.

— An extended floating-point type with the same set of values as exactly one cv-unqualified standard
floating-point type has a rank equal to the rank of that standard floating-point type.

— An extended floating-point type with the same set of values as more than one cv-unqualified standard
floating-point type has a rank equal to the rank of double.

[Note 2: The conversion ranks of floating-point types T1 and T2 are unordered if the set of values of T1 is neither a
subset nor a superset of the set of values of T2. This can happen when one type has both a larger range and a lower
precision than the other. — end note]

Floating-point types that have equal floating-point conversion ranks are ordered by floating-point conversion
subrank. The subrank forms a total order among types with equal ranks. The types std::float16_t,
std::float32_t, std::float64_t, and std: :float128_t (17.4.2) have a greater conversion subrank than
any standard floating-point type with equal conversion rank. Otherwise, the conversion subrank order is
implementation-defined.

[Note 3: The floating-point conversion rank and subrank are used in the definition of the usual arithmetic conversions
(7.4). — end note]

6.9 Program execution [basic.exec]
6.9.1 Sequential execution [intro.execution]

An instance of each object with automatic storage duration (6.7.5.4) is associated with each entry into its
block. Such an object exists and retains its last-stored value during the execution of the block and while the
block is suspended (by a call of a function, suspension of a coroutine (7.6.2.4), or receipt of a signal).

A constituent expression is defined as follows:
— The constituent expression of an expression is that expression.

— The constituent expression of a conversion is the corresponding implicit function call, if any, or the
converted expression otherwise.

— The constituent expressions of a braced-init-list or of a (possibly parenthesized) expression-list are the
constituent expressions of the elements of the respective list.

— The constituent expressions of a brace-or-equal-initializer of the form = initializer-clause are the constituent
expressions of the initializer-clause.

[Ezample 1:

struct A { int x; };
struct B { int y; struct A a; };
Bb={5,{1+1 } };

The constituent expressions of the initializer used for the initialization of b are 5 and 1+1. — end example]
The immediate subexpressions of an expression E are

— the constituent expressions of E’s operands (7.2),

— any function call that E implicitly invokes,

— if E is a lambda-expression (7.5.5), the initialization of the entities captured by copy and the constituent
expressions of the initializer of the init-captures,

§6.9.1 82

©ISO/IEC N4944

— if F is a function call (7.6.1.3) or implicitly invokes a function, the constituent expressions of each
default argument (9.3.4.7) used in the call, or

— if F creates an aggregate object (9.4.2), the constituent expressions of each default member initializer
(11.4) used in the initialization.

A subexpression of an expression E is an immediate subexpression of E or a subexpression of an immediate
subexpression of E.

[Note 1: Expressions appearing in the compound-statement of a lambda-expression are not subexpressions of the
lambda-expression. — end note]

The potentially-evaluated subexpressions of an expression, conversion, or initializer E are
— the constituent expressions of F and
— the subexpressions thereof that are not subexpressions of a nested unevaluated operand (7.2.3).
A full-expression is
— an unevaluated operand (7.2.3),
— a constant-expression (7.7),
— an immediate invocation (7.7),
— an init-declarator (9.3) or a mem-initializer (11.9.3), including the constituent expressions of the initializer,

— an invocation of a destructor generated at the end of the lifetime of an object other than a temporary
object (6.7.7) whose lifetime has not been extended, or

— an expression that is not a subexpression of another expression and that is not otherwise part of a
full-expression.

If a language construct is defined to produce an implicit call of a function, a use of the language construct is
considered to be an expression for the purposes of this definition. Conversions applied to the result of an
expression in order to satisfy the requirements of the language construct in which the expression appears are
also considered to be part of the full-expression. For an initializer, performing the initialization of the entity
(including evaluating default member initializers of an aggregate) is also considered part of the full-expression.
[Ezample 2:
struct S {

S(int i): IG) { } // full-expression is initialization of I

int& v() { return I; }

~S() noexcept(false) { }

private:
int I;
}
S s1(1); // full-expression comprises call of S::S(int)
void £() {
S s2 = 2; // full-expression comprises call of S::S(int)
if (s(3).v0) // full-expression includes lvalue-to-rvalue and int to bool conversions,
// performed before temporary is deleted at end of full-expression
{72
bool b = noexcept(S()); // exception specification of destructor of S considered for noexcept

// full-expression is destruction of s2 at end of block

}
struct B {
B(S = S(0));
};
B b[2] = { BO, BO I}; // full-expression is the entire initialization

// including the destruction of temporaries

— end ezample]

[Note 2: The evaluation of a full-expression can include the evaluation of subexpressions that are not lexically part of
the full-expression. For example, subexpressions involved in evaluating default arguments (9.3.4.7) are considered to
be created in the expression that calls the function, not the expression that defines the default argument. — end note]

§6.9.1 83

©ISO/IEC N4944

7 Reading an object designated by a volatile glvalue (7.2.1), modifying an object, calling a library I/0O
function, or calling a function that does any of those operations are all side effects, which are changes in the
state of the execution environment. Evaluation of an expression (or a subexpression) in general includes both
value computations (including determining the identity of an object for glvalue evaluation and fetching a
value previously assigned to an object for prvalue evaluation) and initiation of side effects. When a call to a
library I/O function returns or an access through a volatile glvalue is evaluated the side effect is considered
complete, even though some external actions implied by the call (such as the I/0O itself) or by the volatile
access may not have completed yet.

8 Sequenced before is an asymmetric, transitive, pair-wise relation between evaluations executed by a single
thread (6.9.2), which induces a partial order among those evaluations. Given any two evaluations A and B,
if A is sequenced before B (or, equivalently, B is sequenced after A), then the execution of A shall precede
the execution of B. If A is not sequenced before B and B is not sequenced before A, then A and B are
unsequenced.

[Note 3: The execution of unsequenced evaluations can overlap. — end note]

Evaluations A and B are indeterminately sequenced when either A is sequenced before B or B is sequenced
before A, but it is unspecified which.

[Note 4: Indeterminately sequenced evaluations cannot overlap, but either can be executed first. — end note]

An expression X is said to be sequenced before an expression Y if every value computation and every side
effect associated with the expression X is sequenced before every value computation and every side effect
associated with the expression Y.

9 Every value computation and side effect associated with a full-expression is sequenced before every value
computation and side effect associated with the next full-expression to be evaluated.?”

10 Except where noted, evaluations of operands of individual operators and of subexpressions of individual
expressions are unsequenced.

[Note 5: In an expression that is evaluated more than once during the execution of a program, unsequenced and
indeterminately sequenced evaluations of its subexpressions need not be performed consistently in different evaluations.
— end note]

The value computations of the operands of an operator are sequenced before the value computation of the
result of the operator. If a side effect on a memory location (6.7.1) is unsequenced relative to either another
side effect on the same memory location or a value computation using the value of any object in the same
memory location, and they are not potentially concurrent (6.9.2), the behavior is undefined.

[Note 6: The next subclause imposes similar, but more complex restrictions on potentially concurrent computations.

— end note]
[Ezample 3:
void g(int i) {
i =7, i++, it++; // i becomes 9
i=di++ + 1; // the value of i is incremented
i= i++ + i // undefined behavior
i=1i+1; // the value of i is incremented
}

— end ezample]

11 When invoking a function (whether or not the function is inline), every argument expression and the postfix
expression designating the called function are sequenced before every expression or statement in the body
of the called function. For each function invocation or evaluation of an await-expression F, each evaluation
that does not occur within F' but is evaluated on the same thread and as part of the same signal handler (if
any) is either sequenced before all evaluations that occur within F' or sequenced after all evaluations that
occur within F;38 if F' invokes or resumes a coroutine (7.6.2.4), only evaluations subsequent to the previous
suspension (if any) and prior to the next suspension (if any) are considered to occur within F.

Several contexts in C++ cause evaluation of a function call, even though no corresponding function call syntax
appears in the translation unit.

37) As specified in 6.7.7, after a full-expression is evaluated, a sequence of zero or more invocations of destructor functions for
temporary objects takes place, usually in reverse order of the construction of each temporary object.
38) In other words, function executions do not interleave with each other.

§6.9.1 84

12

©ISO/IEC N4944

[Example 4: Evaluation of a new-expression invokes one or more allocation and constructor functions; see 7.6.2.8. For
another example, invocation of a conversion function (11.4.8.3) can arise in contexts in which no function call syntax
appears. — end ezample]

The sequencing constraints on the execution of the called function (as described above) are features of the
function calls as evaluated, regardless of the syntax of the expression that calls the function.

If a signal handler is executed as a result of a call to the std: :raise function, then the execution of the
handler is sequenced after the invocation of the std: :raise function and before its return.

[Note 7: When a signal is received for another reason, the execution of the signal handler is usually unsequenced with
respect to the rest of the program. — end note]

6.9.2 Multi-threaded executions and data races [intro.multithread]
6.9.2.1 General [intro.multithread.general]

A thread of execution (also known as a thread) is a single flow of control within a program, including the initial
invocation of a specific top-level function, and recursively including every function invocation subsequently
executed by the thread.

[Note 1: When one thread creates another, the initial call to the top-level function of the new thread is executed by
the new thread, not by the creating thread. — end note]

Every thread in a program can potentially access every object and function in a program.?® Under a hosted
implementation, a C++ program can have more than one thread running concurrently. The execution of each
thread proceeds as defined by the remainder of this document. The execution of the entire program consists
of an execution of all of its threads.

[Note 2: Usually the execution can be viewed as an interleaving of all its threads. However, some kinds of atomic
operations, for example, allow executions inconsistent with a simple interleaving, as described below. — end note]

Under a freestanding implementation, it is implementation-defined whether a program can have more than
one thread of execution.

For a signal handler that is not executed as a result of a call to the std: :raise function, it is unspecified
which thread of execution contains the signal handler invocation.

6.9.2.2 Data races [intro.races]

The value of an object visible to a thread T at a particular point is the initial value of the object, a value
assigned to the object by T', or a value assigned to the object by another thread, according to the rules below.

[Note 1: In some cases, there might instead be undefined behavior. Much of this subclause is motivated by the desire
to support atomic operations with explicit and detailed visibility constraints. However, it also implicitly supports a
simpler view for more restricted programs. — end note]

Two expression evaluations conflict if one of them modifies a memory location (6.7.1) and the other one reads
or modifies the same memory location.

The library defines a number of atomic operations (33.5) and operations on mutexes (Clause 33) that are
specially identified as synchronization operations. These operations play a special role in making assignments
in one thread visible to another. A synchronization operation on one or more memory locations is either a
consume operation, an acquire operation, a release operation, or both an acquire and release operation. A
synchronization operation without an associated memory location is a fence and can be either an acquire
fence, a release fence, or both an acquire and release fence. In addition, there are relaxed atomic operations,
which are not synchronization operations, and atomic read-modify-write operations, which have special
characteristics.

[Note 2: For example, a call that acquires a mutex will perform an acquire operation on the locations comprising the
mutex. Correspondingly, a call that releases the same mutex will perform a release operation on those same locations.
Informally, performing a release operation on A forces prior side effects on other memory locations to become visible
to other threads that later perform a consume or an acquire operation on A. “Relaxed” atomic operations are not
synchronization operations even though, like synchronization operations, they cannot contribute to data races. — end
note|

39) An object with automatic or thread storage duration (6.7.5) is associated with one specific thread, and can be accessed by
a different thread only indirectly through a pointer or reference (6.8.4).

§6.9.2.2 85

(7.1)
(7.1.1)

(7.1.2)

(7.1.3)

(7.1.4)

(7.2)

(7.3)

(9.3.1)
(9.3.2)

(9.3.3)

©ISO/IEC N4944

All modifications to a particular atomic object M occur in some particular total order, called the modification
order of M.

[Note 3: There is a separate order for each atomic object. There is no requirement that these can be combined into a
single total order for all objects. In general this will be impossible since different threads can observe modifications to
different objects in inconsistent orders. — end note]

A release sequence headed by a release operation A on an atomic object M is a maximal contiguous sub-
sequence of side effects in the modification order of M, where the first operation is A, and every subsequent
operation is an atomic read-modify-write operation.

Certain library calls synchronize with other library calls performed by another thread. For example, an
atomic store-release synchronizes with a load-acquire that takes its value from the store (33.5.4).

[Note 4: Except in the specified cases, reading a later value does not necessarily ensure visibility as described below.
Such a requirement would sometimes interfere with efficient implementation. — end note]

[Note 5: The specifications of the synchronization operations define when one reads the value written by another. For
atomic objects, the definition is clear. All operations on a given mutex occur in a single total order. Each mutex
acquisition “reads the value written” by the last mutex release. — end note]

An evaluation A carries a dependency to an evaluation B if
— the value of A is used as an operand of B, unless:
— B is an invocation of any specialization of std::kill_dependency (33.5.4), or

— A is the left operand of a built-in logical AND (&&, see 7.6.14) or logical OR (| |, see 7.6.15) operator,
or

— A is the left operand of a conditional (?:, see 7.6.16) operator, or
— A is the left operand of the built-in comma (,) operator (7.6.20);
or

— A writes a scalar object or bit-field M, B reads the value written by A from M, and A is sequenced
before B, or

— for some evaluation X, A carries a dependency to X, and X carries a dependency to B.

[Note 6: “Carries a dependency to” is a subset of “is sequenced before”, and is similarly strictly intra-thread. — end
note|

An evaluation A is dependency-ordered before an evaluation B if

— A performs a release operation on an atomic object M, and, in another thread, B performs a consume
operation on M and reads the value written by A, or

— for some evaluation X, A is dependency-ordered before X and X carries a dependency to B.

[Note 7: The relation “is dependency-ordered before” is analogous to “synchronizes with”, but uses release/consume
in place of release/acquire. — end note]

An evaluation A inter-thread happens before an evaluation B if
— A synchronizes with B, or
— A is dependency-ordered before B, or
— for some evaluation X
— A synchronizes with X and X is sequenced before B, or
— A is sequenced before X and X inter-thread happens before B, or
— A inter-thread happens before X and X inter-thread happens before B.

[Note 8: The “inter-thread happens before” relation describes arbitrary concatenations of “sequenced before”,
“synchronizes with” and “dependency-ordered before” relationships, with two exceptions. The first exception is that a
concatenation is not permitted to end with “dependency-ordered before” followed by “sequenced before”. The reason
for this limitation is that a consume operation participating in a “dependency-ordered before” relationship provides
ordering only with respect to operations to which this consume operation actually carries a dependency. The reason
that this limitation applies only to the end of such a concatenation is that any subsequent release operation will provide
the required ordering for a prior consume operation. The second exception is that a concatenation is not permitted to
consist entirely of “sequenced before”. The reasons for this limitation are (1) to permit “inter-thread happens before’
to be transitively closed and (2) the “happens before” relation, defined below, provides for relationships consisting
entirely of “sequenced before”. — end note]

i

§6.9.2.2 86

10
(10.1)

(10.2)

11
(11.1)
(11.2)

(11.3)

12
(12.1)
(12.2)

(12.3)

(12.4)

13

(13.1)

(13.2)

14

15

16

17

18

©ISO/IEC N4944

An evaluation A happens before an evaluation B (or, equivalently, B happens after A) if:
— A is sequenced before B, or
— A inter-thread happens before B.

The implementation shall ensure that no program execution demonstrates a cycle in the “happens before”
relation.

[Note 9: This cycle would otherwise be possible only through the use of consume operations. — end note]
An evaluation A simply happens before an evaluation B if either

— A is sequenced before B, or

— A synchronizes with B, or

— A simply happens before X and X simply happens before B.

[Note 10: In the absence of consume operations, the happens before and simply happens before relations are identical.
— end note]

An evaluation A strongly happens before an evaluation D if, either
— A is sequenced before D, or
— A synchronizes with D, and both A and D are sequentially consistent atomic operations (33.5.4), or

— there are evaluations B and C such that A is sequenced before B, B simply happens before C, and C'
is sequenced before D, or

— there is an evaluation B such that A strongly happens before B, and B strongly happens before D.

[Note 11: Informally, if A strongly happens before B, then A appears to be evaluated before B in all contexts.
Strongly happens before excludes consume operations. — end note|

A wisible side effect A on a scalar object or bit-field M with respect to a value computation B of M satisfies
the conditions:

— A happens before B and
— there is no other side effect X to M such that A happens before X and X happens before B.

The value of a non-atomic scalar object or bit-field M, as determined by evaluation B, shall be the value
stored by the visible side effect A.

[Note 12: If there is ambiguity about which side effect to a non-atomic object or bit-field is visible, then the behavior
is either unspecified or undefined. — end note]

[Note 13: This states that operations on ordinary objects are not visibly reordered. This is not actually detectable
without data races, but it is necessary to ensure that data races, as defined below, and with suitable restrictions on
the use of atomics, correspond to data races in a simple interleaved (sequentially consistent) execution. — end note]

The value of an atomic object M, as determined by evaluation B, shall be the value stored by some side
effect A that modifies M, where B does not happen before A.

[Note 14: The set of such side effects is also restricted by the rest of the rules described here, and in particular, by
the coherence requirements below. — end note]

If an operation A that modifies an atomic object M happens before an operation B that modifies M, then A
shall be earlier than B in the modification order of M.

[Note 15: This requirement is known as write-write coherence. — end note]

If a value computation A of an atomic object M happens before a value computation B of M, and A takes
its value from a side effect X on M, then the value computed by B shall either be the value stored by X or
the value stored by a side effect Y on M, where Y follows X in the modification order of M.

[Note 16: This requirement is known as read-read coherence. — end note]

If a value computation A of an atomic object M happens before an operation B that modifies M, then A
shall take its value from a side effect X on M, where X precedes B in the modification order of M.

[Note 17: This requirement is known as read-write coherence. — end note]

If a side effect X on an atomic object M happens before a value computation B of M, then the evaluation B
shall take its value from X or from a side effect Y that follows X in the modification order of M.

[Note 18: This requirement is known as write-read coherence. — end note]

§6.9.2.2 87

19

20

21
(21.1)

(21.2)

22

23

24

(2.1)

©ISO/IEC N4944

[Note 19: The four preceding coherence requirements effectively disallow compiler reordering of atomic operations
to a single object, even if both operations are relaxed loads. This effectively makes the cache coherence guarantee
provided by most hardware available to C++ atomic operations. — end note]

[Note 20: The value observed by a load of an atomic depends on the “happens before” relation, which depends on the
values observed by loads of atomics. The intended reading is that there must exist an association of atomic loads with
modifications they observe that, together with suitably chosen modification orders and the “happens before” relation
derived as described above, satisfy the resulting constraints as imposed here. — end note]

Two actions are potentially concurrent if
— they are performed by different threads, or

— they are unsequenced, at least one is performed by a signal handler, and they are not both performed
by the same signal handler invocation.

The execution of a program contains a data race if it contains two potentially concurrent conflicting actions,
at least one of which is not atomic, and neither happens before the other, except for the special case for
signal handlers described below. Any such data race results in undefined behavior.

[Note 21: It can be shown that programs that correctly use mutexes and memory_order: :seq_cst operations to
prevent all data races and use no other synchronization operations behave as if the operations executed by their
constituent threads were simply interleaved, with each value computation of an object being taken from the last side
effect on that object in that interleaving. This is normally referred to as “sequential consistency”. However, this applies
only to data-race-free programs, and data-race-free programs cannot observe most program transformations that do
not change single-threaded program semantics. In fact, most single-threaded program transformations continue to be
allowed, since any program that behaves differently as a result has undefined behavior. — end note]

Two accesses to the same object of type volatile std::sig_atomic_t do not result in a data race if
both occur in the same thread, even if one or more occurs in a signal handler. For each signal handler
invocation, evaluations performed by the thread invoking a signal handler can be divided into two groups A
and B, such that no evaluations in B happen before evaluations in A, and the evaluations of such volatile
std::sig_atomic_t objects take values as though all evaluations in A happened before the execution of the
signal handler and the execution of the signal handler happened before all evaluations in B.

[Note 22: Compiler transformations that introduce assignments to a potentially shared memory location that would
not be modified by the abstract machine are generally precluded by this document, since such an assignment might
overwrite another assignment by a different thread in cases in which an abstract machine execution would not have
encountered a data race. This includes implementations of data member assignment that overwrite adjacent members
in separate memory locations. Reordering of atomic loads in cases in which the atomics in question might alias is also
generally precluded, since this could violate the coherence rules. — end note]

[Note 23: Transformations that introduce a speculative read of a potentially shared memory location might not
preserve the semantics of the C++ program as defined in this document, since they potentially introduce a data
race. However, they are typically valid in the context of an optimizing compiler that targets a specific machine with
well-defined semantics for data races. They would be invalid for a hypothetical machine that is not tolerant of races
or provides hardware race detection. — end note]
6.9.2.3 Forward progress [intro.progress]
The implementation may assume that any thread will eventually do one of the following:

— terminate,

— make a call to a library I/O function,

— perform an access through a volatile glvalue, or

— perform a synchronization operation or an atomic operation.

[Note 1: This is intended to allow compiler transformations such as removal of empty loops, even when termination
cannot be proven. — end note]

Executions of atomic functions that are either defined to be lock-free (33.5.10) or indicated as lock-free (33.5.5)
are lock-free executions.

— If there is only one thread that is not blocked (3.7) in a standard library function, a lock-free execution
in that thread shall complete.

[Note 2: Concurrently executing threads might prevent progress of a lock-free execution. For example, this
situation can occur with load-locked store-conditional implementations. This property is sometimes termed
obstruction-free. — end note]

§6.9.2.3 88

(2.2)

(3.1)
(3.2)

(3.3)

10

11

12

13

14

©ISO/IEC N4944

— When one or more lock-free executions run concurrently, at least one should complete.

[Note 3: It is difficult for some implementations to provide absolute guarantees to this effect, since repeated
and particularly inopportune interference from other threads could prevent forward progress, e.g., by repeatedly
stealing a cache line for unrelated purposes between load-locked and store-conditional instructions. For
implementations that follow this recommendation and ensure that such effects cannot indefinitely delay progress
under expected operating conditions, such anomalies can therefore safely be ignored by programmers. Outside
this document, this property is sometimes termed lock-free. — end note]

During the execution of a thread of execution, each of the following is termed an execution step:
— termination of the thread of execution,
— performing an access through a volatile glvalue, or
— completion of a call to a library I/O function, a synchronization operation, or an atomic operation.

An invocation of a standard library function that blocks (3.7) is considered to continuously execute execution
steps while waiting for the condition that it blocks on to be satisfied.

[Example 1: A library I/O function that blocks until the I/O operation is complete can be considered to continuously
check whether the operation is complete. Each such check consists of one or more execution steps, for example using
observable behavior of the abstract machine. — end example]

[Note 4: Because of this and the preceding requirement regarding what threads of execution have to perform eventually,
it follows that no thread of execution can execute forever without an execution step occurring. — end note]

A thread of execution makes progress when an execution step occurs or a lock-free execution does not complete
because there are other concurrent threads that are not blocked in a standard library function (see above).

For a thread of execution providing concurrent forward progress guarantees, the implementation ensures that
the thread will eventually make progress for as long as it has not terminated.

[Note 5: This is required regardless of whether or not other threads of execution (if any) have been or are making
progress. To eventually fulfill this requirement means that this will happen in an unspecified but finite amount of
time. — end note]

It is implementation-defined whether the implementation-created thread of execution that executes main
(6.9.3.1) and the threads of execution created by std::thread (33.4.3) or std::jthread (33.4.4) provide
concurrent forward progress guarantees. General-purpose implementations should provide these guarantees.

For a thread of execution providing parallel forward progress guarantees, the implementation is not required
to ensure that the thread will eventually make progress if it has not yet executed any execution step; once
this thread has executed a step, it provides concurrent forward progress guarantees.

[Note 6: This does not specify a requirement for when to start this thread of execution, which will typically be specified
by the entity that creates this thread of execution. For example, a thread of execution that provides concurrent
forward progress guarantees and executes tasks from a set of tasks in an arbitrary order, one after the other, satisfies
the requirements of parallel forward progress for these tasks. — end note]

For a thread of execution providing weakly parallel forward progress guarantees, the implementation does not
ensure that the thread will eventually make progress.

[Note 7: Threads of execution providing weakly parallel forward progress guarantees cannot be expected to make
progress regardless of whether other threads make progress or not; however, blocking with forward progress guarantee
delegation, as defined below, can be used to ensure that such threads of execution make progress eventually. — end
note)

Concurrent forward progress guarantees are stronger than parallel forward progress guarantees, which in
turn are stronger than weakly parallel forward progress guarantees.

[Note 8: For example, some kinds of synchronization between threads of execution might only make progress if the
respective threads of execution provide parallel forward progress guarantees, but will fail to make progress under
weakly parallel guarantees. — end note]

When a thread of execution P is specified to block with forward progress guarantee delegation on the completion
of a set S of threads of execution, then throughout the whole time of P being blocked on S, the implementation
shall ensure that the forward progress guarantees provided by at least one thread of execution in S is at least
as strong as P’s forward progress guarantees.

[Note 9: It is unspecified which thread or threads of execution in S are chosen and for which number of execution
steps. The strengthening is not permanent and not necessarily in place for the rest of the lifetime of the affected
thread of execution. As long as P is blocked, the implementation has to eventually select and potentially strengthen a
thread of execution in S. — end note]

§6.9.2.3 89

15

16

17

18

(3.1)
(3.2)
(3.3)

(3.4)

©ISO/IEC N4944

Once a thread of execution in S terminates, it is removed from S. Once S is empty, P is unblocked.

[Note 10: A thread of execution B thus can temporarily provide an effectively stronger forward progress guarantee for
a certain amount of time, due to a second thread of execution A being blocked on it with forward progress guarantee
delegation. In turn, if B then blocks with forward progress guarantee delegation on C, this can also temporarily
provide a stronger forward progress guarantee to C. — end note]

[Note 11: If all threads of execution in S finish executing (e.g., they terminate and do not use blocking synchronization
incorrectly), then P’s execution of the operation that blocks with forward progress guarantee delegation will not result
in P’s progress guarantee being effectively weakened. — end note]

[Note 12: This does not remove any constraints regarding blocking synchronization for threads of execution providing
parallel or weakly parallel forward progress guarantees because the implementation is not required to strengthen a
particular thread of execution whose too-weak progress guarantee is preventing overall progress. — end note]

An implementation should ensure that the last value (in modification order) assigned by an atomic or
synchronization operation will become visible to all other threads in a finite period of time.

6.9.3 Start and termination [basic.start]
6.9.3.1 main function [basic.start.main)]

A program shall contain exactly one function called main that belongs to the global scope. Executing
a program starts a main thread of execution (6.9.2, 33.4) in which the main function is invoked. Tt is
implementation-defined whether a program in a freestanding environment is required to define a main
function.

[Note 1: In a freestanding environment, startup and termination is implementation-defined; startup contains the
execution of constructors for non-local objects with static storage duration; termination contains the execution of
destructors for objects with static storage duration. — end note]

An implementation shall not predefine the main function. Its type shall have C++ language linkage and
it shall have a declared return type of type int, but otherwise its type is implementation-defined. An
implementation shall allow both

— a function of () returning int and
— a function of (int, pointer to pointer to char) returning int

as the type of main (9.3.4.6). In the latter form, for purposes of exposition, the first function parameter is
called argc and the second function parameter is called argv, where argc shall be the number of arguments
passed to the program from the environment in which the program is run. If argc is nonzero these arguments
shall be supplied in argv[0] through argv[argc-1] as pointers to the initial characters of null-terminated
multibyte strings (NTMBss) (16.3.3.3.4.3) and argv[0] shall be the pointer to the initial character of a NTMBS
that represents the name used to invoke the program or "". The value of argc shall be non-negative. The
value of argv[argc] shall be 0.

Recommended practice: Any further (optional) parameters should be added after argv.

The function main shall not be used within a program. The linkage (6.6) of main is implementation-defined. A
program that defines main as deleted or that declares main to be inline, static, constexpr, or consteval
is ill-formed. The function main shall not be a coroutine (9.5.4). The main function shall not be declared
with a linkage-specification (9.11). A program that declares

— a variable main that belongs to the global scope, or
— a function main that belongs to the global scope and is attached to a named module, or
— a function template main that belongs to the global scope, or
— an entity named main with C language linkage (in any namespace)
is ill-formed. The name main is not otherwise reserved.

[Ezample 1: Member functions, classes, and enumerations can be called main, as can entities in other namespaces.
— end example]

Terminating the program without leaving the current block (e.g., by calling the function std: :exit(int)
(17.5)) does not destroy any objects with automatic storage duration (11.4.7). If std: :exit is invoked during
the destruction of an object with static or thread storage duration, the program has undefined behavior.

A return statement (8.7.4) in main has the effect of leaving the main function (destroying any objects with
automatic storage duration) and calling std: :exit with the return value as the argument. If control flows

§6.9.3.1 90

(3.1)

(3.2)

2
(2.1)

(2.2)

3

(3.1)

(3.1.1)

(3.1.2)

©ISO/IEC N4944

off the end of the compound-statement of main, the effect is equivalent to a return with operand 0 (see also
14.4).

6.9.3.2 Static initialization [basic.start.static]

Variables with static storage duration are initialized as a consequence of program initiation. Variables with
thread storage duration are initialized as a consequence of thread execution. Within each of these phases of
initiation, initialization occurs as follows.

Constant initialization is performed if a variable or temporary object with static or thread storage duration
is constant-initialized (7.7). If constant initialization is not performed, a variable with static storage
duration (6.7.5.2) or thread storage duration (6.7.5.3) is zero-initialized (9.4). Together, zero-initialization
and constant initialization are called static initialization; all other initialization is dynamic initialization. All
static initialization strongly happens before (6.9.2.2) any dynamic initialization.

[Note 1: The dynamic initialization of non-block variables is described in 6.9.3.3; that of static block variables is
described in 8.8. — end note]

An implementation is permitted to perform the initialization of a variable with static or thread storage
duration as a static initialization even if such initialization is not required to be done statically, provided that

— the dynamic version of the initialization does not change the value of any other object of static or
thread storage duration prior to its initialization, and

— the static version of the initialization produces the same value in the initialized variable as would be
produced by the dynamic initialization if all variables not required to be initialized statically were
initialized dynamically.

[Note 2: As a consequence, if the initialization of an object obj1 refers to an object obj2 potentially requiring dynamic
initialization and defined later in the same translation unit, it is unspecified whether the value of obj2 used will be
the value of the fully initialized obj2 (because obj2 was statically initialized) or will be the value of obj2 merely
zero-initialized. For example,

inline double fd() { return 1.0; }
extern double di;
double d2 = di; // unspecified:
// either statically initialized to 0.0 or
// dynamically initialized to 0.0 if d1 is
// dynamically initialized, or 1.0 otherwise
double d1 = £d(); // either initialized statically or dynamically to 1.0

— end note]

6.9.3.3 Dynamic initialization of non-block variables [basic.start.dynamic]

Dynamic initialization of a non-block variable with static storage duration is unordered if the variable is an
implicitly or explicitly instantiated specialization, is partially-ordered if the variable is an inline variable that
is not an implicitly or explicitly instantiated specialization, and otherwise is ordered.

[Note 1: A non-inline explicit specialization of a templated variable has ordered initialization. — end note]
A declaration D is appearance-ordered before a declaration E if
— D appears in the same translation unit as E, or
— the translation unit containing E has an interface dependency on the translation unit containing D,
in either case prior to E.
Dynamic initialization of non-block variables V and W with static storage duration are ordered as follows:

— If V and W have ordered initialization and the definition of V is appearance-ordered before the definition
of W, or if V has partially-ordered initialization, W does not have unordered initialization, and for every
definition E of W there exists a definition D of V such that D is appearance-ordered before E, then

— if the program does not start a thread (6.9.2) other than the main thread (6.9.3.1) or V and W
have ordered initialization and they are defined in the same translation unit, the initialization of V
is sequenced before the initialization of W;

— otherwise, the initialization of V strongly happens before the initialization of W.

§6.9.3.3 91

(3.2)

(3.3)

t

©ISO/IEC N4944

— Otherwise, if the program starts a thread other than the main thread before either V or W is initialized,
it is unspecified in which threads the initializations of V and W occur; the initializations are unsequenced
if they occur in the same thread.

— Otherwise, the initializations of V and W are indeterminately sequenced.

ote 2: This definition permits initialization of a sequence of ordered variables concurrently with another sequence.
Note 2: This definiti its initializati f f ordered iabl tly with th
— end note]

A non-initialization odr-use is an odr-use (6.3) not caused directly or indirectly by the initialization of a
non-block static or thread storage duration variable.

It is implementation-defined whether the dynamic initialization of a non-block non-inline variable with static
storage duration is sequenced before the first statement of main or is deferred. If it is deferred, it strongly
happens before any non-initialization odr-use of any non-inline function or non-inline variable defined in the
same translation unit as the variable to be initialized.*° It is implementation-defined in which threads and at
which points in the program such deferred dynamic initialization occurs.

Recommended practice: An implementation should choose such points in a way that allows the programmer
to avoid deadlocks.

[Example 1:
// - File 1 -
#include "a.h"
#include "b.h"
B b;
A::AQ {

b.Use();

}

// - File 2 -
#include "a.h"
A a;

// - File 3 -
#include "a.h"
#include "b.h"
extern A a;
extern B b;

int main() {
a.Use();
b.Use();

}

It is implementation-defined whether either a or b is initialized before main is entered or whether the initializations
are delayed until a is first odr-used in main. In particular, if a is initialized before main is entered, it is not guaranteed
that b will be initialized before it is odr-used by the initialization of a, that is, before A::A is called. If, however, a is
initialized at some point after the first statement of main, b will be initialized prior to its use in A: :A. — end ezample]

It is implementation-defined whether the dynamic initialization of a non-block inline variable with static
storage duration is sequenced before the first statement of main or is deferred. If it is deferred, it strongly
happens before any non-initialization odr-use of that variable. It is implementation-defined in which threads
and at which points in the program such deferred dynamic initialization occurs.

It is implementation-defined whether the dynamic initialization of a non-block non-inline variable with thread
storage duration is sequenced before the first statement of the initial function of a thread or is deferred. If it is
deferred, the initialization associated with the entity for thread ¢ is sequenced before the first non-initialization
odr-use by t of any non-inline variable with thread storage duration defined in the same translation unit
as the variable to be initialized. It is implementation-defined in which threads and at which points in the
program such deferred dynamic initialization occurs.

If the initialization of a non-block variable with static or thread storage duration exits via an exception, the
function std::terminate is called (14.6.2).

40) A non-block variable with static storage duration having initialization with side effects is initialized in this case, even if it is
not itself odr-used (6.3, 6.7.5.2).

§6.9.3.3 92

©ISO/IEC N4944

6.9.3.4 Termination [basic.start.term)|

Constructed objects (9.4) with static storage duration are destroyed and functions registered with std: :atexit
are called as part of a call to std::exit (17.5). The call to std: :exit is sequenced before the destructions
and the registered functions.

[Note 1: Returning from main invokes std::exit (6.9.3.1). — end note]

Constructed objects with thread storage duration within a given thread are destroyed as a result of returning
from the initial function of that thread and as a result of that thread calling std: :exit. The destruction of
all constructed objects with thread storage duration within that thread strongly happens before destroying
any object with static storage duration.

If the completion of the constructor or dynamic initialization of an object with static storage duration
strongly happens before that of another, the completion of the destructor of the second is sequenced before
the initiation of the destructor of the first. If the completion of the constructor or dynamic initialization of an
object with thread storage duration is sequenced before that of another, the completion of the destructor of
the second is sequenced before the initiation of the destructor of the first. If an object is initialized statically,
the object is destroyed in the same order as if the object was dynamically initialized. For an object of array or
class type, all subobjects of that object are destroyed before any block variable with static storage duration
initialized during the construction of the subobjects is destroyed. If the destruction of an object with static
or thread storage duration exits via an exception, the function std::terminate is called (14.6.2).

If a function contains a block variable of static or thread storage duration that has been destroyed and the
function is called during the destruction of an object with static or thread storage duration, the program
has undefined behavior if the flow of control passes through the definition of the previously destroyed block
variable.

[Note 2: Likewise, the behavior is undefined if the block variable is used indirectly (e.g., through a pointer) after its
destruction. — end note]

If the completion of the initialization of an object with static storage duration strongly happens before a call
to std::atexit (see <cstdlib>, 17.5), the call to the function passed to std::atexit is sequenced before
the call to the destructor for the object. If a call to std: :atexit strongly happens before the completion of
the initialization of an object with static storage duration, the call to the destructor for the object is sequenced
before the call to the function passed to std::atexit. If a call to std::atexit strongly happens before
another call to std: :atexit, the call to the function passed to the second std: :atexit call is sequenced
before the call to the function passed to the first std: :atexit call.

If there is a use of a standard library object or function not permitted within signal handlers (17.13) that
does not happen before (6.9.2) completion of destruction of objects with static storage duration and execution
of std::atexit registered functions (17.5), the program has undefined behavior.

[Note 8: If there is a use of an object with static storage duration that does not happen before the object’s destruction,
the program has undefined behavior. Terminating every thread before a call to std::exit or the exit from main
is sufficient, but not necessary, to satisfy these requirements. These requirements permit thread managers as
static-storage-duration objects. — end note|

Calling the function std: :abort () declared in <cstdlib> (17.2.2) terminates the program without executing
any destructors and without calling the functions passed to std::atexit() or std::at_quick_exit().

§6.9.3.4 93

©ISO/IEC N4944

7 Expressions lexpr]

7.1 Preamble [expr.pre]

[Note 1: Clause 7 defines the syntax, order of evaluation, and meaning of expressions.’! An expression is a sequence
of operators and operands that specifies a computation. An expression can result in a value and can cause side effects.
— end note]

[Note 2: Operators can be overloaded, that is, given meaning when applied to expressions of class type (Clause 11)
or enumeration type (9.7.1). Uses of overloaded operators are transformed into function calls as described in 12.4.
Overloaded operators obey the rules for syntax and evaluation order specified in 7.6, but the requirements of operand
type and value category are replaced by the rules for function call. Relations between operators, such as ++a meaning
a+=1, are not guaranteed for overloaded operators (12.4). — end note]

Subclause 7.6 defines the effects of operators when applied to types for which they have not been overloaded.
Operator overloading shall not modify the rules for the built-in operators, that is, for operators applied to
types for which they are defined by this Standard. However, these built-in operators participate in overload
resolution, and as part of that process user-defined conversions will be considered where necessary to convert
the operands to types appropriate for the built-in operator. If a built-in operator is selected, such conversions
will be applied to the operands before the operation is considered further according to the rules in subclause
7.6; see 12.2.2.3, 12.5.

If during the evaluation of an expression, the result is not mathematically defined or not in the range of
representable values for its type, the behavior is undefined.

[Note 3: Treatment of division by zero, forming a remainder using a zero divisor, and all floating-point exceptions
varies among machines, and is sometimes adjustable by a library function. — end note]

[Note 4: The implementation can regroup operators according to the usual mathematical rules only where the

operators really are associative or commutative.*?> For example, in the following fragment

int a, b;
/% ... %/
a =a + 32760 + b + 5;

the expression statement behaves exactly the same as

a = (((a + 32760) + b) + 5);
due to the associativity and precedence of these operators. Thus, the result of the sum (a + 32760) is next added to
b, and that result is then added to 5 which results in the value assigned to a. On a machine in which overflows produce

an exception and in which the range of values representable by an int is [-32768, +32767], the implementation cannot
rewrite this expression as

a = ((a + b) + 32765);

since if the values for a and b were, respectively, —32754 and —15, the sum a + b would produce an exception while
the original expression would not; nor can the expression be rewritten as either

a = ((a + 32765) + b);
or

a=(a+ (b + 32765));
since the values for a and b might have been, respectively, 4 and —8 or —17 and 12. However on a machine in which
overflows do not produce an exception and in which the results of overflows are reversible, the above expression

statement can be rewritten by the implementation in any of the above ways because the same result will occur. — end
note|

The values of the floating-point operands and the results of floating-point expressions may be represented in
greater precision and range than that required by the type; the types are not changed thereby.*3

41) The precedence of operators is not directly specified, but it can be derived from the syntax.

42) Overloaded operators are never assumed to be associative or commutative.

43) The cast and assignment operators must still perform their specific conversions as described in 7.6.1.4, 7.6.3, 7.6.1.9
and 7.6.19.

§7.1 94

1

(1.3)

(1.4)

(1.5)

(4.3)
(4.4)

(4.5)

©ISO/IEC N4944

7.2 Properties of expressions [expr.prop]

7.2.1 Value category [basic.lval]

Expressions are categorized according to the taxonomy in Figure 2.

expression
glvalue rvalue
Ivalue xvalue prvalue

Figure 2: Expression category taxonomy [fig:basic.lval]

— A glvalue is an expression whose evaluation determines the identity of an object or function.

— A proalue is an expression whose evaluation initializes an object or computes the value of an operand
of an operator, as specified by the context in which it appears, or an expression that has type cv void.

— An zvalue is a glvalue that denotes an object whose resources can be reused (usually because it is near
the end of its lifetime).

— An [value is a glvalue that is not an xvalue.

— An rvalue is a prvalue or an xvalue.
Every expression belongs to exactly one of the fundamental classifications in this taxonomy: lvalue, xvalue,
or prvalue. This property of an expression is called its value category.

[Note 1: The discussion of each built-in operator in 7.6 indicates the category of the value it yields and the value
categories of the operands it expects. For example, the built-in assignment operators expect that the left operand is an
Ivalue and that the right operand is a prvalue and yield an lvalue as the result. User-defined operators are functions,
and the categories of values they expect and yield are determined by their parameter and return types. — end note]

[Note 2: Historically, lvalues and rvalues were so-called because they could appear on the left- and right-hand side
of an assignment (although this is no longer generally true); glvalues are “generalized” lvalues, prvalues are “pure”
rvalues, and xvalues are “eXpiring” lvalues. Despite their names, these terms classify expressions, not values. — end
note|

[Note 3: An expression is an xvalue if it is:
— a move-eligible id-expression (7.5.4.2),

— the result of calling a function, whether implicitly or explicitly, whose return type is an rvalue reference to
object type (7.6.1.3),

— a cast to an rvalue reference to object type (7.6.1.4, 7.6.1.7, 7.6.1.9, 7.6.1.10, 7.6.1.11, 7.6.3),
— a subscripting operation with an xvalue array operand (7.6.1.2),

— a class member access expression designating a non-static data member of non-reference type in which the
object expression is an xvalue (7.6.1.5), or

— a .* pointer-to-member expression in which the first operand is an xvalue and the second operand is a pointer
to data member (7.6.4).

In general, the effect of this rule is that named rvalue references are treated as lvalues and unnamed rvalue references
to objects are treated as xvalues; rvalue references to functions are treated as lvalues whether named or not. —end
note)

[Ezample 1:
struct A {
int m;
};
A&& operator+(A, A);
A%& £(0);

A a;
A%& ar = static_cast<A&&>(a);

§7.2.1 95

6

10

11

(11.1)
(11.2)

(11.3)

2

©ISO/IEC N4944

The expressions £(), £() .m, static_cast<A&&>(a), and a + a are xvalues. The expression ar is an lvalue. — end
example]

The result of a glvalue is the entity denoted by the expression. The result of a prvalue is the value that the
expression stores into its context; a prvalue that has type cv void has no result. A prvalue whose result
is the value V is sometimes said to have or name the value V. The result object of a prvalue is the object
initialized by the prvalue; a non-discarded prvalue that is used to compute the value of an operand of a
built-in operator or a prvalue that has type cv void has no result object.

[Note 4: Except when the prvalue is the operand of a decltype-specifier, a prvalue of class or array type always has a
result object. For a discarded prvalue that has type other than cv void, a temporary object is materialized; see 7.2.3.
— end note]

Whenever a glvalue appears as an operand of an operator that expects a prvalue for that operand, the
lvalue-to-rvalue (7.3.2), array-to-pointer (7.3.3), or function-to-pointer (7.3.4) standard conversions are applied
to convert the expression to a prvalue.

[Note 5: An attempt to bind an rvalue reference to an lvalue is not such a context; see 9.4.4. — end note]

[Note 6: Because cv-qualifiers are removed from the type of an expression of non-class type when the expression is
converted to a prvalue, an lvalue of type const int can, for example, be used where a prvalue of type int is required.
— end note]

[Note 7: There are no prvalue bit-fields; if a bit-field is converted to a prvalue (7.3.2), a prvalue of the type of the
bit-field is created, which might then be promoted (7.3.7). — end note]

Whenever a prvalue appears as an operand of an operator that expects a glvalue for that operand, the
temporary materialization conversion (7.3.5) is applied to convert the expression to an xvalue.

The discussion of reference initialization in 9.4.4 and of temporaries in 6.7.7 indicates the behavior of lvalues
and rvalues in other significant contexts.

Unless otherwise indicated (9.2.9.5), a prvalue shall always have complete type or the void type; if it has a
class type or (possibly multi-dimensional) array of class type, that class shall not be an abstract class (11.7.4).
A glvalue shall not have type cv void.

[Note 8: A glvalue can have complete or incomplete non-void type. Class and array prvalues can have cv-qualified
types; other prvalues always have cv-unqualified types. See 7.2.2. — end note]

An lvalue is modifiable unless its type is const-qualified or is a function type.

[Note 9: A program that attempts to modify an object through a nonmodifiable lvalue or through an rvalue is
ill-formed (7.6.19, 7.6.1.6, 7.6.2.3). — end note]

If a program attempts to access (3.1) the stored value of an object through a glvalue whose type is not
similar (7.3.6) to one of the following types the behavior is undefined:**

— the dynamic type of the object,
— a type that is the signed or unsigned type corresponding to the dynamic type of the object, or
— a char, unsigned char, or std: :byte type.

If a program invokes a defaulted copy/move constructor or copy/move assignment operator for a union of
type U with a glvalue argument that does not denote an object of type cv U within its lifetime, the behavior
is undefined.

[Note 10: In C, an entire object of structure type can be accessed, e.g., using assignment. By contrast, C++ has no
notion of accessing an object of class type through an lvalue of class type. — end note]

7.2.2 Type [expr.type]

If an expression initially has the type “reference to T” (9.3.4.3, 9.4.4), the type is adjusted to T prior to
any further analysis. The expression designates the object or function denoted by the reference, and the
expression is an lvalue or an xvalue, depending on the expression.

[Note 1: Before the lifetime of the reference has started or after it has ended, the behavior is undefined (see 6.7.3).
— end note]

If a prvalue initially has the type “cv T”, where T is a cv-unqualified non-class, non-array type, the type of
the expression is adjusted to T prior to any further analysis.

44) The intent of this list is to specify those circumstances in which an object can or cannot be aliased.

§7.2.2 96

©ISO/IEC N4944

3 The composite pointer type of two operands pl and p2 having types T1 and T2, respectively, where at least

(3.6)

(3.7)

(3.8)

(3.9)

(2.4)

(2.7)

(2.8)

one is a pointer or pointer-to-member type or std: :nullptr_t, is:
— if both p1 and p2 are null pointer constants, std: :nullptr_t;
— if either p1 or p2 is a null pointer constant, T2 or T1, respectively;

— if T1 or T2 is “pointer to cv! void” and the other type is “pointer to cv2 T”, where T is an object type
or void, “pointer to cv12 void”, where cv12 is the union of cvl and cv2;

— if T1 or T2 is “pointer to noexcept function” and the other type is “pointer to function”, where the
function types are otherwise the same, “pointer to function”;

— if T1 is “pointer to cvl C1” and T2 is “pointer to cv2 C2”, where C1 is reference-related to C2 or
C2 is reference-related to C1 (9.4.4), the qualification-combined type (7.3.6) of T1 and T2 or the
qualification-combined type of T2 and T1, respectively;

— if T1 or T2 is “pointer to member of C1 of type function”, the other type is “pointer to member of C2 of
type noexcept function”, and C1 is reference-related to C2 or C2 is reference-related to C1 (9.4.4), where
the function types are otherwise the same, “pointer to member of C2 of type function” or “pointer to
member of C1 of type function”, respectively;

— if T1 is “pointer to member of C1 of type cv! U” and T2 is “pointer to member of C2 of type cv2 U”, for
some non-function type U, where C1 is reference-related to C2 or C2 is reference-related to C1 (9.4.4), the
qualification-combined type of T2 and T1 or the qualification-combined type of T1 and T2, respectively;

— if T1 and T2 are similar types (7.3.6), the qualification-combined type of T1 and T2;
— otherwise, a program that necessitates the determination of a composite pointer type is ill-formed.
[Example 1:

typedef void *p;
typedef const int *q;
typedef int **pi;
typedef const int **pci;

The composite pointer type of p and q is “pointer to const void”; the composite pointer type of pi and pci is
“pointer to const pointer to const int”. — end ezample]
7.2.3 Context dependence [expr.context]

In some contexts, unevaluated operands appear (7.5.7, 7.6.1.8, 7.6.2.5, 7.6.2.7, 9.2.9.5, 13.1, 13.7.9). An
unevaluated operand is not evaluated.

[Note 1: In an unevaluated operand, a non-static class member can be named (7.5.4) and naming of objects or
functions does not, by itself, require that a definition be provided (6.3). An unevaluated operand is considered a
full-expression (6.9.1). — end note]

In some contexts, an expression only appears for its side effects. Such an expression is called a discarded-value
expression. The array-to-pointer (7.3.3) and function-to-pointer (7.3.4) standard conversions are not applied.
The lvalue-to-rvalue conversion (7.3.2) is applied if and only if the expression is a glvalue of volatile-qualified
type and it is one of the following:

— (expression), where expression is one of these expressions,
— id-expression (7.5.4),

— subscripting (7.6.1.2),

— class member access (7.6.1.5),

— indirection (7.6.2.2),

— pointer-to-member operation (7.6.4),

— conditional expression (7.6.16) where both the second and the third operands are one of these expressions,
or

— comma expression (7.6.20) where the right operand is one of these expressions.

[Note 2: Using an overloaded operator causes a function call; the above covers only operators with built-in meaning.
— end note]

The temporary materialization conversion (7.3.5) is applied if the (possibly converted) expression is a prvalue
of object type.

§7.23 97

(1.1)

(1.2)

(2.1)

(2.2)

(2.3)

(2.4)

©ISO/IEC N4944

[Note 8: If the original expression is an lvalue of class type, it must have a volatile copy constructor to initialize the
temporary object that is the result object of the temporary materialization conversion. — end note]

The expression is evaluated and its result (if any) is discarded.

7.3 Standard conversions [conv]

7.3.1 General [conv.general]

Standard conversions are implicit conversions with built-in meaning. 7.3 enumerates the full set of such
conversions. A standard conversion sequence is a sequence of standard conversions in the following order:

— Zero or one conversion from the following set: lvalue-to-rvalue conversion, array-to-pointer conversion,
and function-to-pointer conversion.

— Zero or one conversion from the following set: integral promotions, floating-point promotion, integral
conversions, floating-point conversions, floating-integral conversions, pointer conversions, pointer-to-
member conversions, and boolean conversions.

— Zero or one function pointer conversion.
— Zero or one qualification conversion.
[Note 1: A standard conversion sequence can be empty, i.e., it can consist of no conversions. — end note]

A standard conversion sequence will be applied to an expression if necessary to convert it to a required
destination type.

[Note 2: Expressions with a given type will be implicitly converted to other types in several contexts:

— When used as operands of operators. The operator’s requirements for its operands dictate the destination
type (7.6).

— When used in the condition of an if statement (8.5.2) or iteration statement (8.6). The destination type is
bool.

— When used in the expression of a switch statement (8.5.3). The destination type is integral.

— When used as the source expression for an initialization (which includes use as an argument in a function call
and use as the expression in a return statement). The type of the entity being initialized is (generally) the
destination type. See 9.4, 9.4.4.

— end note]

An expression E can be implicitly converted to a type T if and only if the declaration T t=F; is well-formed,
for some invented temporary variable t (9.4).

Certain language constructs require that an expression be converted to a Boolean value. An expression F
appearing in such a context is said to be contextually converted to bool and is well-formed if and only if the
declaration bool t(E); is well-formed, for some invented temporary variable t (9.4).

Certain language constructs require conversion to a value having one of a specified set of types appropriate
to the construct. An expression E of class type C appearing in such a context is said to be contextually
tmplicitly converted to a specified type T and is well-formed if and only if E' can be implicitly converted to a
type T that is determined as follows: C is searched for non-explicit conversion functions whose return type is
cv T or reference to cv T such that T is allowed by the context. There shall be exactly one such T.

The effect of any implicit conversion is the same as performing the corresponding declaration and initialization
and then using the temporary variable as the result of the conversion. The result is an lvalue if T is an Ivalue
reference type or an rvalue reference to function type (9.3.4.3), an xvalue if T is an rvalue reference to object
type, and a prvalue otherwise. The expression F is used as a glvalue if and only if the initialization uses it as
a glvalue.

[Note 3: For class types, user-defined conversions are considered as well; see 11.4.8. In general, an implicit conversion

sequence (12.2.4.2) consists of a standard conversion sequence followed by a user-defined conversion followed by
another standard conversion sequence. — end note]

[Note 4: There are some contexts where certain conversions are suppressed. For example, the lvalue-to-rvalue
conversion is not done on the operand of the unary & operator. Specific exceptions are given in the descriptions of
those operators and contexts. — end note]

§7.3.1 98

(2.1)

(2.2)

3

(3.1)

(3.2)

(3.3)

(3.4)

©ISO/IEC N4944

7.3.2 Lvalue-to-rvalue conversion [conv.lval]

A glvalue (7.2.1) of a non-function, non-array type T can be converted to a prvalue.*® If T is an incomplete
type, a program that necessitates this conversion is ill-formed. If T is a non-class type, the type of the prvalue
is the cv-unqualified version of T. Otherwise, the type of the prvalue is T.46

When an lvalue-to-rvalue conversion is applied to an expression E, and either
— F is not potentially evaluated, or

— the evaluation of F results in the evaluation of a member E; of the set of potential results of E, and
E; names a variable x that is not odr-used by E, (6.3),

the value contained in the referenced object is not accessed.
[Ezample 1:

struct S { int n; };
auto £() {
Sx {13}
constexpr Sy { 2 };
return [&] (bool b) { return (b 7 y : x).n; };

}

auto g = £();

int m = g(false); // undefined behavior: access of x.n outside its lifetime
int n = g(true); // OK, does not access y.n

— end ezample]
The result of the conversion is determined according to the following rules:
— If Tis cv std: :nullptr_t, the result is a null pointer constant (7.3.12).

[Note 1: Since the conversion does not access the object to which the glvalue refers; there is no side effect even
if T is volatile-qualified (6.9.1), and the glvalue can refer to an inactive member of a union (11.5). — end note]

— Otherwise, if T has a class type, the conversion copy-initializes the result object from the glvalue.

— Otherwise, if the object to which the glvalue refers contains an invalid pointer value (6.7.5.5.3), the
behavior is implementation-defined.

— Otherwise, the object indicated by the glvalue is read (3.1), and the value contained in the object is the
prvalue result.

[Note 2: See also 7.2.1. — end note]

7.3.3 Array-to-pointer conversion [conv.array]

An lvalue or rvalue of type “array of N T” or “array of unknown bound of T” can be converted to a prvalue of
type “pointer to T”. The temporary materialization conversion (7.3.5) is applied. The result is a pointer to
the first element of the array.

7.3.4 Function-to-pointer conversion [conv.func]

An lvalue of function type T can be converted to a prvalue of type “pointer to T”. The result is a pointer to
the function.*”

7.3.5 Temporary materialization conversion [conv.rval]

A prvalue of type T can be converted to an xvalue of type T. This conversion initializes a temporary
object (6.7.7) of type T from the prvalue by evaluating the prvalue with the temporary object as its result
object, and produces an xvalue denoting the temporary object. T shall be a complete type.

[Note 1: If T is a class type (or array thereof), it must have an accessible and non-deleted destructor; see 11.4.7.
— end note]

45) For historical reasons, this conversion is called the “lvalue-to-rvalue” conversion, even though that name does not accurately
reflect the taxonomy of expressions described in 7.2.1.

46) In C++ class and array prvalues can have cv-qualified types. This differs from ISO C, in which non-lvalues never have
cv-qualified types.

47) This conversion never applies to non-static member functions because an lvalue that refers to a non-static member function
cannot be obtained.

§7.3.5 99

(3.1)

(3.2)

(3.3)

©ISO/IEC N4944

[Example 1:

struct X { int n; };
int k = X .n; // OK, XQO) prvalue is converted to zvalue

— end ezxample]

7.3.6 Qualification conversions [conv.qual]
A qualification-decomposition of a type T is a sequence of cv; and P; such that T is
“cvg Py cvy Py -+ ¢cvp_q1 Pph_1 cv, U forn > 0,

where each cv; is a set of cv-qualifiers (6.8.5), and each P; is “pointer to” (9.3.4.2), “pointer to member of
class C; of type” (9.3.4.4), “array of N;”, or “array of unknown bound of” (9.3.4.5). If P; designates an array,
the cv-qualifiers cv;11 on the element type are also taken as the cv-qualifiers cv; of the array.

[Ezample 1: The type denoted by the type-id const int *x has three qualification-decompositions, taking U as “int”,
as “pointer to const int”, and as “pointer to pointer to const int”. — end example]

The n-tuple of cv-qualifiers after the first one in the longest qualification-decomposition of T, that is,
CU1, CV2, . .., CU,, is called the cv-qualification signature of T.

Two types T1 and T2 are similar if they have qualification-decompositions with the same n such that
corresponding P; components are either the same or one is “array of N;” and the other is “array of unknown
bound of”, and the types denoted by U are the same.

The qualification-combined type of two types T1 and T2 is the type T3 similar to T1 whose qualification-
decomposition is such that:

— for every i > 0, cv? is the union of cv} and cv?,

— if either P! or P? is “array of unknown bound of”, P? is “array of unknown bound of”, otherwise it is
P}, and
1 2

— if the resulting cv? is different from cv} or cv?, or the resulting P? is different from P} or P?, then
const is added to every cv% for 0 < k < 1,

where cv{ and Pij are the components of the qualification-decomposition of Tj. A prvalue of type T1 can be

converted to type T2 if the qualification-combined type of T1 and T2 is T2.

[Note 1: If a program could assign a pointer of type T** to a pointer of type const T** (that is, if line #1 below were
allowed), a program could inadvertently modify a const object (as it is done on line #2). For example,

int main() {

const char ¢ = 'c';

char* pc;

const char** pcc = &pc; // #1: not allowed

*pcc = &c;

*pc = 'C'; // #2: modifies a const object
}

— end note]

[Note 2: Given similar types T1 and T2, this construction ensures that both can be converted to the qualification-
combined type of T1 and T2. — end note]

4 [Note 3: A prvalue of type “pointer to cvl T” can be converted to a prvalue of type “pointer to cv2 T” if “cv2 T”

is more cv-qualified than “cvl T”. A prvalue of type “pointer to member of X of type cvi T” can be converted to a
prvalue of type “pointer to member of X of type cv2 T” if “cv2 T” is more cv-qualified than “cvl T”. — end note]

[Note 4: Function types (including those used in pointer-to-member-function types) are never cv-qualified (9.3.4.6).
— end note]

7.3.7 Integral promotions [conv.prom]

A prvalue of an integer type other than bool, char8_t, char16_t, char32_t, or wchar_t whose integer
conversion rank (6.8.6) is less than the rank of int can be converted to a prvalue of type int if int can
represent all the values of the source type; otherwise, the source prvalue can be converted to a prvalue of
type unsigned int.

A prvalue of type char8_t, char16_t, char32_t, or wchar_t (6.8.2) can be converted to a prvalue of the first
of the following types that can represent all the values of its underlying type: int, unsigned int, long int,
unsigned long int, long long int, or unsigned long long int. If none of the types in that list can

§7.3.7 100

©ISO/IEC N4944

represent all the values of its underlying type, a prvalue of type char8_t, char16_t, char32_t, or wchar_t
can be converted to a prvalue of its underlying type.

A prvalue of an unscoped enumeration type whose underlying type is not fixed can be converted to a prvalue
of the first of the following types that can represent all the values of the enumeration (9.7.1): int, unsigned
int, long int, unsigned long int, long long int, or unsigned long long int. If none of the types in
that list can represent all the values of the enumeration, a prvalue of an unscoped enumeration type can be
converted to a prvalue of the extended integer type with lowest integer conversion rank (6.8.6) greater than
the rank of long long in which all the values of the enumeration can be represented. If there are two such
extended types, the signed one is chosen.

A prvalue of an unscoped enumeration type whose underlying type is fixed (9.7.1) can be converted to a
prvalue of its underlying type. Moreover, if integral promotion can be applied to its underlying type, a
prvalue of an unscoped enumeration type whose underlying type is fixed can also be converted to a prvalue
of the promoted underlying type.

A prvalue for an integral bit-field (11.4.10) can be converted to a prvalue of type int if int can represent all
the values of the bit-field; otherwise, it can be converted to unsigned int if unsigned int can represent all
the values of the bit-field. If the bit-field is larger yet, no integral promotion applies to it. If the bit-field has
enumeration type, it is treated as any other value of that type for promotion purposes.

A prvalue of type bool can be converted to a prvalue of type int, with false becoming zero and true
becoming one.

These conversions are called integral promotions.

7.3.8 Floating-point promotion [conv.fpprom]
A prvalue of type float can be converted to a prvalue of type double. The value is unchanged.

This conversion is called floating-point promotion.

7.3.9 Integral conversions [conv.integral]

A prvalue of an integer type can be converted to a prvalue of another integer type. A prvalue of an unscoped
enumeration type can be converted to a prvalue of an integer type.

If the destination type is bool, see 7.3.15. If the source type is bool, the value false is converted to zero
and the value true is converted to one.

Otherwise, the result is the unique value of the destination type that is congruent to the source integer
modulo 2V, where N is the width of the destination type.

The conversions allowed as integral promotions are excluded from the set of integral conversions.

7.3.10 Floating-point conversions [conv.double]
A prvalue of floating-point type can be converted to a prvalue of another floating-point type with a greater

or equal conversion rank (6.8.6). A prvalue of standard floating-point type can be converted to a prvalue of
another standard floating-point type.

If the source value can be exactly represented in the destination type, the result of the conversion is that exact
representation. If the source value is between two adjacent destination values, the result of the conversion is
an implementation-defined choice of either of those values. Otherwise, the behavior is undefined.

The conversions allowed as floating-point promotions are excluded from the set of floating-point conversions.

7.3.11 Floating-integral conversions [conv.fpint]

A prvalue of a floating-point type can be converted to a prvalue of an integer type. The conversion truncates;
that is, the fractional part is discarded. The behavior is undefined if the truncated value cannot be represented
in the destination type.

[Note 1: If the destination type is bool, see 7.3.15. — end note]

A prvalue of an integer type or of an unscoped enumeration type can be converted to a prvalue of a floating-
point type. The result is exact if possible. If the value being converted is in the range of values that can be
represented but the value cannot be represented exactly, it is an implementation-defined choice of either the
next lower or higher representable value.

§7.3.11 101

©ISO/IEC N4944

[Note 2: Loss of precision occurs if the integral value cannot be represented exactly as a value of the floating-point
type. — end note]

If the value being converted is outside the range of values that can be represented, the behavior is undefined.
If the source type is bool, the value false is converted to zero and the value true is converted to one.

7.3.12 Pointer conversions [conv.ptr]

A null pointer constant is an integer literal (5.13.2) with value zero or a prvalue of type std::nullptr_t. A
null pointer constant can be converted to a pointer type; the result is the null pointer value of that type (6.8.4)
and is distinguishable from every other value of object pointer or function pointer type. Such a conversion
is called a null pointer conversion. Two null pointer values of the same type shall compare equal. The
conversion of a null pointer constant to a pointer to cv-qualified type is a single conversion, and not the
sequence of a pointer conversion followed by a qualification conversion (7.3.6). A null pointer constant of
integral type can be converted to a prvalue of type std: :nullptr_t.

[Note 1: The resulting prvalue is not a null pointer value. — end note]

A prvalue of type “pointer to cv T”, where T is an object type, can be converted to a prvalue of type “pointer
to cv void”. The pointer value (6.8.4) is unchanged by this conversion.

A prvalue of type “pointer to cv D”, where D is a complete class type, can be converted to a prvalue of type
“pointer to cv B”, where B is a base class (11.7) of D. If B is an inaccessible (11.8) or ambiguous (6.5.2) base
class of D, a program that necessitates this conversion is ill-formed. The result of the conversion is a pointer
to the base class subobject of the derived class object. The null pointer value is converted to the null pointer
value of the destination type.

7.3.13 Pointer-to-member conversions [conv.mem]

A null pointer constant (7.3.12) can be converted to a pointer-to-member type; the result is the null member
pointer value of that type and is distinguishable from any pointer to member not created from a null pointer
constant. Such a conversion is called a null member pointer conversion. Two null member pointer values of
the same type shall compare equal. The conversion of a null pointer constant to a pointer to member of
cv-qualified type is a single conversion, and not the sequence of a pointer-to-member conversion followed by a
qualification conversion (7.3.6).

A prvalue of type “pointer to member of B of type cv T”, where B is a class type, can be converted to a
prvalue of type “pointer to member of D of type cv T”, where D is a complete class derived (11.7) from B. If B
is an inaccessible (11.8), ambiguous (6.5.2), or virtual (11.7.2) base class of D, or a base class of a virtual
base class of D, a program that necessitates this conversion is ill-formed. The result of the conversion refers
to the same member as the pointer to member before the conversion took place, but it refers to the base
class member as if it were a member of the derived class. The result refers to the member in D’s instance of
B. Since the result has type “pointer to member of D of type cv T”, indirection through it with a D object is
valid. The result is the same as if indirecting through the pointer to member of B with the B subobject of D.
The null member pointer value is converted to the null member pointer value of the destination type.*®

7.3.14 Function pointer conversions [conv.fctptr]

A prvalue of type “pointer to noexcept function” can be converted to a prvalue of type “pointer to function”.
The result is a pointer to the function. A prvalue of type “pointer to member of type noexcept function” can
be converted to a prvalue of type “pointer to member of type function”. The result designates the member
function.

[Ezample 1:

void (*p) O;
void (**pp) () noexcept = &p; // error: cannot convert to pointer to noexcept function

struct S { typedef void (*p) (); operator p(); };
void (*q) () noexcept = S(Q); // error: cannot convert to pointer to noexcept function

— end example]

48) The rule for conversion of pointers to members (from pointer to member of base to pointer to member of derived) appears
inverted compared to the rule for pointers to objects (from pointer to derived to pointer to base) (7.3.12, 11.7). This inversion is
necessary to ensure type safety. Note that a pointer to member is not an object pointer or a function pointer and the rules for
conversions of such pointers do not apply to pointers to members. In particular, a pointer to member cannot be converted to a
voidx*.

§7.3.14 102

(1.1)

(1.2)
(1.2.1)

(1.2.2)

(1.2.3)

(1.2.4)

(1.2.5)

(1.3)

(1.3.1)

(1.3.2)

(1.3.3)
(1.3.3.1)
(1.3.3.2)
(1.3.3.3)

2

©ISO/IEC N4944

7.3.15 Boolean conversions [conv.bool]

A prvalue of arithmetic, unscoped enumeration, pointer, or pointer-to-member type can be converted to a
prvalue of type bool. A zero value, null pointer value, or null member pointer value is converted to false;
any other value is converted to true.

7.4 Usual arithmetic conversions [expr.arith.conv]

Many binary operators that expect operands of arithmetic or enumeration type cause conversions and yield
result types in a similar way. The purpose is to yield a common type, which is also the type of the result.
This pattern is called the usual arithmetic conversions, which are defined as follows:

— If either operand is of scoped enumeration type (9.7.1), no conversions are performed; if the other
operand does not have the same type, the expression is ill-formed.

— Otherwise, if either operand is of floating-point type, the following rules are applied:
— If both operands have the same type, no further conversion is needed.
— Otherwise, if one of the operands is of a non-floating-point type, that operand is converted to the
type of the operand with the floating-point type.

— Otherwise, if the floating-point conversion ranks (6.8.6) of the types of the operands are ordered
but not equal, then the operand of the type with the lesser floating-point conversion rank is
converted to the type of the other operand.

— Otherwise, if the floating-point conversion ranks of the types of the operands are equal, then the
operand with the lesser floating-point conversion subrank (6.8.6) is converted to the type of the
other operand.

— Otherwise, the expression is ill-formed.

— Otherwise, each operand is converted to a common type C. The integral promotion rules (7.3.7) are
used to determine a type T1 and type T2 for each operand.*® Then the following rules are applied to
determine C:

— If T1 and T2 are the same type, C is that type.

— Otherwise, if T1 and T2 are both signed integer types or are both unsigned integer types, C is the
type with greater rank.

— Otherwise, let U be the unsigned integer type and S be the signed integer type.
— If U has rank greater than or equal to the rank of S, C is U.
— Otherwise, if S can represent all of the values of U, C is S.
— Otherwise, C is the unsigned integer type corresponding to S.

If one operand is of enumeration type and the other operand is of a different enumeration type or a
floating-point type, this behavior is deprecated (D.2).

7.5 Primary expressions [expr.prim)]
primary-expression:
literal
this
(expression)
id-expression
lambda-expression
fold-expression
requires-expression

7.5.1 Literals [expr.prim.literal]

The type of a literal is determined based on its form as specified in 5.13. A string-literal is an lvalue
designating a corresponding string literal object (5.13.5), a user-defined-literal has the same value category as
the corresponding operator call expression described in 5.13.8, and any other literal is a prvalue.

49) As a consequence, operands of type bool, char8_t, char16_t, char32_t, wchar_t, or of enumeration type are converted to
some integral type.

§75.1 103

©ISO/IEC N4944

7.5.2 This [expr.prim.this]

The keyword this names a pointer to the object for which an implicit object member function (11.4.3) is
invoked or a non-static data member’s initializer (11.4) is evaluated.

The current class at a program point is the class associated with the innermost class scope containing that
point.

[Note 1: A lambda-expression does not introduce a class scope. — end note]

If a declaration declares a member function or member function template of a class X, the expression this
is a prvalue of type “pointer to cv-qualifier-seq X” wherever X is the current class between the optional
cv-qualifier-seq and the end of the function-definition, member-declarator, or declarator. It shall not appear
within the declaration of either a static member function or an explicit object member function of the current
class (although its type and value category are defined within such member functions as they are within an
implicit object member function).

[Note 2: This is because declaration matching does not occur until the complete declarator is known. — end note]

[Note 3: In a trailing-return-type, the class being defined is not required to be complete for purposes of class member
access (7.6.1.5). Class members declared later are not visible.

[Ezample 1:

struct A {
char g(Q);
template<class T> auto f(T t) -> decltype(t + g())
{ return t + g(O; }
I
template auto A::f(int t) -> decltype(t + g();
— end ezample]
— end note]

Otherwise, if a member-declarator declares a non-static data member (11.4) of a class X, the expression
this is a prvalue of type “pointer to X” wherever X is the current class within the optional default member
initializer (11.4).

The expression this shall not appear in any other context.

[Ezample 2:
class Outer {
int al[sizeof (*¥this)]; // error: not inside a member function
unsigned int sz = sizeof (xthis); // OK, in default member initializer
void £() {
int blsizeof (*this)]; // OK
struct Inner {
int c[sizeof (*this)]; // error: not inside a member function of Inner
s
}
};

— end ezample]

7.5.3 Parentheses [expr.prim.paren]

A parenthesized expression (F) is a primary expression whose type, result, and value category are identical
to those of E. The parenthesized expression can be used in exactly the same contexts as those where E can
be used, and with the same meaning, except as otherwise indicated.

7.5.4 Names [expr.prim.id]
7.5.4.1 General [expr.prim.id.general]

id-expression:
unqualified-id
qualified-id

An id-expression is a restricted form of a primary-expression.

[Note 1: An id-expression can appear after . and -> operators (7.6.1.5). — end note]

§7.5.4.1 104

©ISO/IEC N4944

2 If an id-expression E denotes a member M of an anonymous union (11.5.2) U:

(2.1)

(2.2)

— If U is a non-static data member, E refers to M as a member of the lookup context of the terminal
name of E (after any transformation to a class member access expression (11.4.3)).

[Example 1: o.x is interpreted as o.u.x, where u names the anonymous union member. — end ezample]

— Otherwise, E is interpreted as a class member access (7.6.1.5) that designates the member subobject
M of the anonymous union variable for U.

[Note 2: Under this interpretation, E no longer denotes a non-static data member. — end note]

[Ezample 2: N::x is interpreted as N::u.x, where u names the anonymous union variable. — end ezample]

3 An id-expression that denotes a non-static data member or implicit object member function of a class can

(3.1)

(3.2)

(3.3)

only be used:

— as part of a class member access (7.6.1.5) in which the object expression refers to the member’s class®
or a class derived from that class, or

— to form a pointer to member (7.6.2.2), or

— if that id-expression denotes a non-static data member and it appears in an unevaluated operand.

[Ezample 3:
struct S {
int m;
};
int i = sizeof(S::m); // OK
int j = sizeof(S::m + 42); // OK

— end ezample]

4 For an id-expression that denotes an overload set, overload resolution is performed to select a unique

1

function (12.2, 12.3).

[Note 8: A program cannot refer to a function with a trailing requires-clause whose constraint-expression is not satisfied,
because such functions are never selected by overload resolution.

[Ezample 4:

template<typename T> struct A {
static void f(int) requires false;

};
void g() {
A<int>::£(0); // error: cannot call £
void (*pl) (int) = A<int>::f; // error: cannot take the address of £
decltype(A<int>::f)* p2 = nullptr; // error: the type decltype (A<int>::f) is invalid
}
In each case, the constraints of £ are not satisfied. In the declaration of p2, those constraints are required to be
satisfied even though f is an unevaluated operand (7.2.3). — end ezample]
— end note]
7.5.4.2 TUngqualified names [expr.prim.id.unqual]

unqualified-id:
identifier
operator-function-id
conversion-function-id
literal-operator-id
~ type-name
~ decltype-specifier
template-id

An identifier is only an id-expression if it has been suitably declared (Clause 9) or if it appears as part of a
declarator-id (9.3). An identifier that names a coroutine parameter refers to the copy of the parameter (9.5.4).

[Note 1: For operator-function-ids, see 12.4; for conversion-function-ids, see 11.4.8.3; for literal-operator-ids, see 12.6; for
template-ids, see 13.3. A type-name or decltype-specifier prefixed by ~ denotes the destructor of the type so named;

50) This also applies when the object expression is an implicit (¥this) (11.4.3).

§7.5.4.2 105

(3.1)

4

©ISO/IEC N4944

see 7.5.4.4. Within the definition of a non-static member function, an identifier that names a non-static member is
transformed to a class member access expression (11.4.3). — end note]

A component name of an unqualified-id U is
— U if it is a name or
— the component name of the template-id or type-name of U, if any.
[Note 2: Other constructs that contain names to look up can have several component names (7.5.4.3, 9.2.9.3, 9.2.9.4,
9.3.4.4, 9.9, 13.2, 13.3, 13.8). — end note]
The terminal name of a construct is the component name of that construct that appears lexically last.

The result is the entity denoted by the unqualified-id (6.5.3). If the unqualified-id appears in a lambda-expression
at program point P and the entity is a local entity (6.1) or a variable declared by an init-capture (7.5.5.3),
then let S be the compound-statement of the innermost enclosing lambda-expression of P. If naming the
entity from outside of an unevaluated operand within S would refer to an entity captured by copy in some
intervening lambda-expression, then let E be the innermost such lambda-expression.

— If there is such a lambda-expression and if P is in E’s function parameter scope but not its parameter-
declaration-clause, then the type of the expression is the type of a class member access expression
(7.6.1.5) naming the non-static data member that would be declared for such a capture in the object
parameter (9.3.4.6) of the function call operator of E.

[Note 8: If E is not declared mutable, the type of such an identifier will typically be const qualified. — end
note]

— Otherwise (if there is no such lambda-expression or if P either precedes E’s function parameter scope or
is in E’s parameter-declaration-clause), the type of the expression is the type of the result.

[Note 4: If the entity is a template parameter object for a template parameter of type T (13.2), the type of the
expression is const T. — end note]

[Note 5: The type will be adjusted as described in 7.2.2 if it is cv-qualified or is a reference type. — end note]

The expression is an xvalue if it is move-eligible (see below); an lvalue if the entity is a function, variable,
structured binding (9.6), data member, or template parameter object; and a prvalue otherwise (7.2.1); it is a
bit-field if the identifier designates a bit-field.

[Example 1:

void £() {
float x, &r = x;

[=10 -> decltype((x)) { // lambda returns float const& because this lambda is not mutable and
// % is an lalue
decltype(x) yi; // y1 has type float

decltype((x)) y2 =
decltype(r) rl = y1
decltype((r)) r2 =
return y2;

yi; // y2 has type float const&
; // 1l has type float&
y2; // 2 has type float const&

};
[=]1 (decltype((x)) y) {
decltype((x)) z = x; // OK, y has type float&, z has type £loat const&
};
[=]1 {
[1(decltype((x)) y) {}; // OK, lambda takes a parameter of type float const&
[x=1] (decltype((x)) y) {
decltype((x)) z = x; // OK, y has type int&, z has type int const&
};

};
}

— end example]

An implicitly movable entity is a variable of automatic storage duration that is either a non-volatile object or
an rvalue reference to a non-volatile object type. In the following contexts, an id-expression is move-eligible:

§7.5.4.2 106

(4.1)

(4.2)

(3.1)

(3.2)

(5.1)
(5.2)
(5.3)
(5.4)

(5.5)

©ISO/IEC N4944

— If the id-expression (possibly parenthesized) is the operand of a return (8.7.4) or co_return (8.7.5)
statement, and names an implicitly movable entity declared in the body or parameter-declaration-clause
of the innermost enclosing function or lambda-expression, or

— if the id-expression (possibly parenthesized) is the operand of a throw-expression (7.6.18), and names
an implicitly movable entity that belongs to a scope that does not contain the compound-statement of
the innermost lambda-expression, try-block, or function-try-block (if any) whose compound-statement or
ctor-initializer contains the throw-expression.

7.5.4.3 Qualified names [expr.prim.id.qual]

qualified-id:
nested-name-specifier template,y; unqualified-id

nested-name-specifier:
type-name ::
namespace-name : :
decltype-specifier : :

nested-name-specifier identifier : :
nested-name-specifier template,y; simple-template-id : :

The component names of a qualified-id are those of its nested-name-specifier and unqualified-id. The component
names of a nested-name-specifier are its identifier (if any) and those of its type-name, namespace-name, simple-
template-id, and/or nested-name-specifier.

A nested-name-specifier is declarative if it is part of
— a class-head-name,
— an enum-head-name,
— a qualified-id that is the id-expression of a declarator-id, or
— a declarative nested-name-specifier.

A declarative nested-name-specifier shall not have a decltype-specifier. A declaration that uses a declarative
nested-name-specifier shall be a friend declaration or inhabit a scope that contains the entity being redeclared
or specialized.

The nested-name-specifier :: nominates the global namespace. A nested-name-specifier with a decltype-
specifier nominates the type denoted by the decltype-specifier, which shall be a class or enumeration type. If
a nested-name-specifier N is declarative and has a simple-template-id with a template argument list A that
involves a template parameter, let T' be the template nominated by N without A. T shall be a class template.

— If A is the template argument list (13.4) of the corresponding template-head H (13.7.3), N nominates
the primary template of T'; H shall be equivalent to the template-head of T' (13.7.7.2).

— Otherwise, N nominates the partial specialization (13.7.6) of T" whose template argument list is
equivalent to A (13.7.7.2); the program is ill-formed if no such partial specialization exists.

Any other nested-name-specifier nominates the entity denoted by its type-name, namespace-name, identifier,
or simple-template-id. If the nested-name-specifier is not declarative, the entity shall not be a template.

A qualified-id shall not be of the form nested-name-specifier template,,; ~ decltype-specifier nor of the form
decltype-specifier :: ~ type-name.

The result of a qualified-id @ is the entity it denotes (6.5.5). The type of the expression is the type of the
result. The result is an lvalue if the member is

— a function other than a non-static member function,

— a non-static member function if @) is the operand of a unary & operator,
— a variable,

— a structured binding (9.6), or

— a data member,

and a prvalue otherwise.

§7543 107

©ISO/IEC N4944

7.5.4.4 Destruction [expr.prim.id.dtor]

L An id-expression that denotes the destructor of a type T names the destructor of T if T is a class type (11.4.7),
otherwise the id-expression is said to name a pseudo-destructor.

2 If the id-expression names a pseudo-destructor, T shall be a scalar type and the id-expression shall appear as the
right operand of a class member access (7.6.1.5) that forms the postfix-expression of a function call (7.6.1.3).

[Note 1: Such a call ends the lifetime of the object (7.6.1.3, 6.7.3). — end note]
3 [Example 1:

struct C { };
void £() {
C * pc = new C;
using C2 = C;
pc->C::~C20); // OK, destroys *pc
CO.C::~CQO; // undefined behavior: temporary of type C destroyed twice
using T = int;
0 .T::~TQ; // OK, no effect
0.T::~TQ; // error: 0.T is a user-defined-floating-point-literal (5.15.8)
}

— end ezample]

7.5.5 Lambda expressions [expr.prim.lambda]
7.5.5.1 General [expr.prim.lambda.general]

lambda-expression:
lambda-introducer attribute-specifier-seqo,: lambda-declarator compound-statement
lambda-introducer < template-parameter-list > requires-clause,,; attribute-specifier-seqop:
lambda-declarator compound-statement

lambda-introducer:
[lambda-capturep;]

lambda-declarator:
lambda-specifier-seq noexcept-specifieryy: attribute-specifier-seqop; trailing-return-type,p;
noexcept-specifier attribute-specifier-seqop: trailing-return-typeop:
trailing-return-typeopt
(parameter-declaration-clause) lambda-specifier-seq.,: noexcept-specifieroy; attribute-specifier-seqopt
trailing-return-type,p: requires-clauseqps
lambda-specitier:
consteval
constexpr
mutable
static
lambda-specifier-seq:
lambda-specifier
lambda-specifier lambda-specifier-seq

1 A lambda-expression provides a concise way to create a simple function object.
[Example 1:

#include <algorithm>
#include <cmath>
void abssort(float* x, unsigned N) {
std::sort(x, x + N, [J(float a, float b) { return std::abs(a) < std::abs(b); });
}

— end ezample]
2 A lambda-expression is a prvalue whose result object is called the closure object.
[Note 1: A closure object behaves like a function object (22.10). — end note]

3 An ambiguity can arise because a requires-clause can end in an attribute-specifier-seq, which collides with the
attribute-specifier-seq in lambda-expression. In such cases, any attributes are treated as attribute-specifier-seq
in lambda-expression.

§7.5.5.1 108

©ISO/IEC N4944

[Note 2: Such ambiguous cases cannot have valid semantics because the constraint expression would not have type
bool. — end note]

A lambda-specifier-seq shall contain at most one of each lambda-specifier and shall not contain both constexpr
and consteval. If the lambda-declarator contains an explicit object parameter (9.3.4.6), then no /ambda-
specifier in the lambda-specifier-seq shall be mutable or static. The lambda-specifier-seq shall not contain
both mutable and static. If the lambda-specifier-seq contains static, there shall be no lambda-capture.

[Note 3: The trailing requires-clause is described in 9.3. — end note]

If a lambda-declarator does not include a parameter-declaration-clause, it is as if () were inserted at the start
of the lambda-declarator. If the lambda-declarator does not include a trailing-return-type, it is considered to be
-> auto.

[Note 4: In that case, the return type is deduced from return statements as described in 9.2.9.6. — end note]
[Ezample 2:

auto x1 = [J(@int i) { return i; }; // OK, return type is int

auto x2 = []{ return { 1, 2 }; }; // error: deducing return type from braced-init-list

int j;

auto x3 = [&] ()->auto&& { return j; }; // OK, return type is int&
— end example]

A lambda is a generic lambda if the lambda-expression has any generic parameter type placeholders (9.2.9.6),
or if the lambda has a template-parameter-list.

[Ezample 3:
int 1 = [J(int i, auto a) { return i; }(3, 4); // OK, a generic lambda
int j = [l<class T>(T t, int i) { return i; }(3, 4); // OK, a generic lambda

— end ezample]

7.5.5.2 Closure types [expr.prim.lambda.closure]

The type of a lambda-expression (which is also the type of the closure object) is a unique, unnamed non-union
class type, called the closure type, whose properties are described below.

The closure type is declared in the smallest block scope, class scope, or namespace scope that contains the
corresponding lambda-expression.

[Note 1: This determines the set of namespaces and classes associated with the closure type (6.5.4). The parameter
types of a lambda-declarator do not affect these associated namespaces and classes. — end note]

The closure type is not an aggregate type (9.4.2). An implementation may define the closure type differently
from what is described below provided this does not alter the observable behavior of the program other than
by changing:

— the size and/or alignment of the closure type,
— whether the closure type is trivially copyable (11.2), or
— whether the closure type is a standard-layout class (11.2).
An implementation shall not add members of rvalue reference type to the closure type.

The closure type for a lambda-expression has a public inline function call operator (for a non-generic lambda)
or function call operator template (for a generic lambda) (12.4.4) whose parameters and return type are
described by the lambda-expression’s parameter-declaration-clause and trailing-return-type respectively, and
whose template-parameter-list consists of the specified template-parameter-list, if any. The requires-clause of
the function call operator template is the requires-clause immediately following < template-parameter-list >, if
any. The trailing requires-clause of the function call operator or operator template is the requires-clause of the
lambda-declarator, if any.

[Note 2: The function call operator template for a generic lambda can be an abbreviated function template (9.3.4.6).
— end note]

[Example 1:

auto glambda = [](auto a, auto&& b) { return a < b; };
bool b = glambda(3, 3.14); // OK

§7.5.5.2 109

©ISO/IEC N4944

auto vglambda = [](auto printer) {
return [=] (auto&& ... ts) { // OK, ts is a function parameter pack
printer(std::forward<decltype(ts)>(ts)...);

return [=] () {

printer(ts ...);
};

}
}
auto p = vglambda([](auto vl1, auto v2, auto v3)

{ std::cout << vl << v2 << v3; });

auto q = p(1, 'a', 3.14); // OK, outputs 1a3.14
q0); // OK, outputs 1a3.14
auto fact = [](this auto self, int n) -> int { // OK, explicit object parameter

return (n <= 1) 7 1 : n * self(n-1);
I
std::cout << fact(5); // OK, outputs 120

— end example]

4 Given a lambda with a lambda-capture, the type of the explicit object parameter, if any, of the lambda’s
function call operator (possibly instantiated from a function call operator template) shall be either:

(4.1) — the closure type,
(4.2) — a class type derived from the closure type, or
(4.3) — a reference to a possibly cv-qualified such type.
[Ezample 2:
struct C {
template <typename T>
Cc(T);
};
void func(int i) {
int x = [=](this auto&&) { return i; }QO); // OK
int y = [=](this C) { return i; }Q); // error
int z = [J(this C) { return 42; }Q); // OK
}

— end ezample]

5 The function call operator or operator template is a static member function or static member function
template (11.4.9.2) if the lambda-expression’s parameter-declaration-clause is followed by static. Otherwise, it
is a non-static member function or member function template (11.4.3) that is declared const (11.4.3) if and only
if the lambda-expression’s parameter-declaration-clause is not followed by mutable and the lambda-declarator
does not contain an explicit object parameter. It is neither virtual nor declared volatile. Any noexcept-
specifier specified on a lambda-expression applies to the corresponding function call operator or operator
template. An attribute-specifier-seq in a lambda-declarator appertains to the type of the corresponding
function call operator or operator template. An attribute-specifier-seq in a lambda-expression preceding
a lambda-declarator appertains to the corresponding function call operator or operator template. The
function call operator or any given operator template specialization is a constexpr function if either the
corresponding lambda-expression’s parameter-declaration-clause is followed by constexpr or consteval, or
it is constexpr-suitable (9.2.6). It is an immediate function (9.2.6) if the corresponding lambda-expression’s
parameter-declaration-clause is followed by consteval.

[Ezample 3:

auto ID = [](auto a) { return a; I};
static_assert(ID(3) == 3); // OK

struct NonLiteral {
NonLiteral(int n) : n(n) { }
int n;
};
static_assert (ID(NonLiteral{3}).n == 3); // error

§7.552 110

6

10

©ISO/IEC N4944

— end ezample]
[Ezample 4:

auto monoid = [](auto v) { return [=] { return v; }; };
auto add = [](auto ml) constexpr {
auto ret = m1();
return [=] (auto m2) mutable {
auto mival = m1();
auto plus = [=] (auto m2val) mutable constexpr
{ return mival += m2val; };
ret = plus(m2());
return monoid(ret);
};
I
constexpr auto zero = monoid(0);
constexpr auto one = monoid(1);
static_assert(add(one) (zero) () == one()); // OK

// Since two below is not declared constexpr, an evaluation of its constexpr member function call operator
// cannot perform an lvalue-to-rvalue conversion on one of its subobjects (that represents its capture)

// in a constant expression.

auto two = monoid(2);

assert(two() == 2); // OK, not a constant expression.

static_assert(add(one) (one) () == two()); // error: two() is not a constant expression
static_assert(add(one) (one) () == monoid(2)()); // OK

— end ezample]

[Note 3: The function call operator or operator template can be constrained (13.5.3) by a type-constraint (13.2), a
requires-clause (13.1), or a trailing requires-clause (9.3).

[Ezample 5:
template <typename T> concept Cl = /* ... %/;
template <std::size_t N> concept C2 = /x ... */;
template <typename A, typename B> concept C3 = /* ... */;

auto f = []<typename T1, C1 T2> requires C2<sizeof(T1) + sizeof (T2)>
(T1 al, T1 bl, T2 a2, auto a3, auto a4) requires C3<decltype(a4d), T2> {
// T2 is constrained by a type-constraint.
// T1 and T2 are constrained by a requires-clause, and
// T2 and the type of a4 are constrained by a trailing requires-clause.
};
— end example]

— end note]

The closure type for a non-generic lambda-expression with no lambda-capture whose constraints (if any) are
satisfied has a conversion function to pointer to function with C++ language linkage (9.11) having the same
parameter and return types as the closure type’s function call operator. The conversion is to “pointer to
noexcept function” if the function call operator has a non-throwing exception specification. If the function
call operator is a static member function, then the value returned by this conversion function is the address
of the function call operator. Otherwise, the value returned by this conversion function is the address of a
function F that, when invoked, has the same effect as invoking the closure type’s function call operator on a
default-constructed instance of the closure type. F is a constexpr function if the function call operator is a
constexpr function and is an immediate function if the function call operator is an immediate function.

For a generic lambda with no lambda-capture, the closure type has a conversion function template to pointer
to function. The conversion function template has the same invented template parameter list, and the pointer
to function has the same parameter types, as the function call operator template. The return type of the
pointer to function shall behave as if it were a decltype-specifier denoting the return type of the corresponding
function call operator template specialization.

[Note 4: If the generic lambda has no trailing-return-type or the trailing-return-type contains a placeholder type, return
type deduction of the corresponding function call operator template specialization has to be done. The corresponding

specialization is that instantiation of the function call operator template with the same template arguments as those
deduced for the conversion function template. Consider the following:

§7.552 111

11

12

©ISO/IEC N4944

auto glambda = [](auto a) { return a; };
int (*fp) (int) = glambda;

The behavior of the conversion function of glambda above is like that of the following conversion function:

struct Closure {

template<class T> auto operator()(T t) const { /* ... %/ }

template<class T> static auto lambda_call_operator_invoker(T a) {
// forwards execution to operator () (a) and therefore has
// the same return type deduced
VA V4

}

template<class T> using fptr_t =
decltype(lambda_call_operator_invoker (declval<T>())) (*)(T);

template<class T> operator fptr_t<T>() const
{ return &lambda_call_operator_invoker; }

};

— end note]

[Ezample 6:
void f1(int (*)(int)) { }
void f2(char (*)(int)) { }
void g(int (x)(int)) {1} /) #1
void g(char (*)(char)) { } /) #2
void h(int (*) (int)) {1 /) #3
void h(char (¥)(int)) {} // #4

auto glambda = [](auto a) { return a; };

f1(glambda) ; // OK

f2(glambda) ; // error: ID is not convertible

g(glambda) ; // error: ambiguous

h(glambda) ; // OK, calls #3 since it is convertible from ID
int& (*fpi) (int*) = []1(auto* a) -> auto& { return *a; }; // OK

— end example]

If the function call operator template is a static member function template, then the value returned by any
given specialization of this conversion function template is the address of the corresponding function call
operator template specialization. Otherwise, the value returned by any given specialization of this conversion
function template is the address of a function F that, when invoked, has the same effect as invoking the generic
lambda’s corresponding function call operator template specialization on a default-constructed instance of
the closure type. F is a constexpr function if the corresponding specialization is a constexpr function and F is
an immediate function if the function call operator template specialization is an immediate function.

[Note 5: This will result in the implicit instantiation of the generic lambda’s body. The instantiated generic lambda’s
return type and parameter types are required to match the return type and parameter types of the pointer to function.
— end note]

[Ezample 7:
auto GL = [](auto a) { std::cout << a; return a; };
int (*GL_int) (int) = GL; // OK, through conversion function template
GL_int(3); // OK, same as GL(3)

— end ezample]

The conversion function or conversion function template is public, constexpr, non-virtual, non-explicit, const,
and has a non-throwing exception specification (14.5).

[Ezample 8:

auto Fwd = [](int (*fp) (int), auto a) { return fp(a); };
auto C = [](auto a) { return a; };

static_assert(Fwd(C,3) == 3); // OK

§7.552 112

13

14

15

16

1

©ISO/IEC N4944

// No specialization of the function call operator template can be constexpr (due to the local static).
auto NC = [](auto a) { static int s; return a; };
static_assert(Fwd(NC,3) == 3); // error

— end ezample]

The lambda-expression’s compound-statement yields the function-body (9.5) of the function call operator, but
it is not within the scope of the closure type.

[Ezample 9:

struct S1 {
int x, y;
int operator() (int);
void £() {
[=1O->int {
return operator() (this->x + y); // equivalent to S1::operator () (this->x + (*this).y)
// this has type S1*
};
}
}

— end ezample]

Further, a variable __func__ is implicitly defined at the beginning of the compound-statement of the
lambda-expression, with semantics as described in 9.5.1.

The closure type associated with a lambda-expression has no default constructor if the lambda-expression has
a lambda-capture and a defaulted default constructor otherwise. It has a defaulted copy constructor and a
defaulted move constructor (11.4.5.3). It has a deleted copy assignment operator if the lambda-expression has
a lambda-capture and defaulted copy and move assignment operators otherwise (11.4.6).

[Note 6: These special member functions are implicitly defined as usual, which can result in them being defined as
deleted. — end note]

The closure type associated with a lambda-expression has an implicitly-declared destructor (11.4.7).

A member of a closure type shall not be explicitly instantiated (13.9.3), explicitly specialized (13.9.4), or
named in a friend declaration (11.8.4).

7.5.5.3 Captures [expr.prim.lambda.capture]

lambda-capture:
capture-default
capture-list
capture-default , capture-list

capture-default:
&

capture-list:
capture
capture-list , capture

capture:
simple-capture
init-capture

simple-capture:
identifier . . . opt
& identifier . . . opt
this
* this

init-capture:
. . opt identifier initializer
& .. .opt identifier initializer

The body of a lambda-expression may refer to local entities of enclosing block scopes by capturing those
entities, as described below.

§7553 113

©ISO/IEC N4944

2 If a lambda-capture includes a capture-default that is &, no identifier in a simple-capture of that lambda-capture
shall be preceded by &. If a lambda-capture includes a capture-default that is =, each simple-capture of that
lambda-capture shall be of the form “& identifier .. .,,;", “this”, or “* this”

[Note 1: The form [&,this] is redundant but accepted for compatibility with ISO C++ 2014. — end note]

Ignoring appearances in initializers of init-captures, an identifier or this shall not appear more than once in a
lambda-capture.

[Example 1:

struct 82 { void f(int i); };
void S2::f(int i) {

[&, i1{ }; // OK
[&, this, il{ }; // OK, equivalent to [&, il
[&, &i1{ }; // error: i preceded by & when & is the default
[=, *this]{ }; // OK
[=, this]{ }; // OK, equivalent to [=]
[i, i1{ }; // error: i repeated
[this, *this]{ }; // error: this appears twice
}

— end example]

3 A lambda-expression shall not have a capture-default or simple-capture in its lambda-introducer unless its
innermost enclosing scope is a block scope (6.4.3) or it appears within a default member initializer and its
innermost enclosing scope is the corresponding class scope (6.4.7).

4 The identifier in a simple-capture shall denote a local entity (6.5.3, 6.1). The simple-captures this and *
this denote the local entity *this. An entity that is designated by a simple-capture is said to be explicitly
captured.

5 If an identifier in a capture appears as the declarator-id of a parameter of the lambda-declarator’s parameter-
declaration-clause or as the name of a template parameter of the lambda-expression’s template-parameter-list,
the program is ill-formed.

[Ezample 2:
void £() {
int x = 0;
auto g = [x](int x) { return 0; }; // error: parameter and capture have the same name
auto h = [y = Ol<typename y>(y) { return 0; }; // error: template parameter and capture
// have the same name
}

— end ezample]

6 An init-capture inhabits the lambda scope (6.4.5) of the lambda-expression. An init-capture without ellipsis
behaves as if it declares and explicitly captures a variable of the form “auto init-capture ;”, except that:

(6.1) — if the capture is by copy (see below), the non-static data member declared for the capture and the
variable are treated as two different ways of referring to the same object, which has the lifetime of the
non-static data member, and no additional copy and destruction is performed, and

(6.2) — if the capture is by reference, the variable’s lifetime ends when the closure object’s lifetime ends.
[Note 2: This enables an init-capture like “x = std::move(x)”; the second “x” must bind to a declaration in the
surrounding context. — end note]

[Ezample 3:
int x = 4;
auto y = [&r = x, x = x+1]1 ()->int {
r += 2;
return x+2;

Y05 // Updates ::x to 6, and initializes y to 7.
auto z = [a = 42] (int a) { return 1; }; // error: parameter and conceptual local variable have the same
name
auto counter = [i=0]() mutable -> decltype(i) { // OK, returns int

return i++;
};

§7.5.5.3 114

©ISO/IEC N4944

— end ezample]

7 For the purposes of lambda capture, an expression potentially references local entities as follows:

(7.1)

(7.2)

(7.3)

— An id-expression that names a local entity potentially references that entity; an id-expression that names
one or more non-static class members and does not form a pointer to member (7.6.2.2) potentially
references *this.

[Note 3: This occurs even if overload resolution selects a static member function for the id-expression. — end
note]

— A this expression potentially references *this.
— A lambda-expression potentially references the local entities named by its simple-captures.

If an expression potentially references a local entity within a scope in which it is odr-usable (6.3), and the
expression would be potentially evaluated if the effect of any enclosing typeid expressions (7.6.1.8) were
ignored, the entity is said to be implicitly captured by each intervening lambda-expression with an associated
capture-default that does not explicitly capture it. The implicit capture of *this is deprecated when the
capture-default is =; see D.3.

[Example 4:
void f(int, const int (&)[2] = {}); /) #1
void f(const int&, const int (&) [11); /) #2

void test() {
const int x = 17;
auto g = [I(auto a) {
£(x); // OK, calls #1, does not capture x
};

auto gl = [=](auto a) {
£(x); // OK, calls #1, captures x
};

auto g2 = [=](auto a) {
int selector[sizeof(a) == 1 7 1 : 2]{};

f(x, selector); // OK, captures x, can call #1 or #2
};
auto g3 = [=](auto a) {
typeid(a + x); // captures x regardless of whether a + x is an unevaluated operand
};
}
Within g1, an implementation can optimize away the capture of x as it is not odr-used. — end ezample]

[Note 4: The set of captured entities is determined syntactically, and entities are implicitly captured even if the
expression denoting a local entity is within a discarded statement (8.5.2).

[Ezample 5:
template<bool B>
void f(int n) {
[=](auto a) {
if constexpr (B && sizeof(a) > 4) {
(void)n; // captures n regardless of the value of B and sizeof (int)
}
}(0);
}

— end example]

— end note]

An entity is captured if it is captured explicitly or implicitly. An entity captured by a lambda-expression is
odr-used (6.3) by the lambda-expression.

[Note 5: As a consequence, if a lambda-expression explicitly captures an entity that is not odr-usable, the program is
ill-formed (6.3). — end note]

[Ezample 6:

§7553 115

©ISO/IEC N4944

void fi(int i) {
int const N = 20;
auto m1 = [=]{
int const M = 30;
auto m2 = [i]{

int x[N][M]; // OK, N and M are not odr-used
x[0][0] = 1i; // OK, i is explicitly captured by m2 and implicitly captured by ml
I
};
struct s1 {
int f;
void work(int n) {
int m = n*n;
int j = 40;
auto m3 = [this,m] {
auto m4 = [&,j] { // error: j not odr-usable due to intervening lambda m3
int x = n; // error: n is odr-used but not odr-usable due to intervening lambda m3
X += m; // OK, m implicitly captured by m4 and explicitly captured by m3
X += i; // error: i is odr-used but not odr-usable
// due to intervening function and class scopes
x += f; // OK, this captured implicitly by m4 and explicitly by m3
};
I
}
3
}
struct s2 {
double ohseven = .007;
auto £() {
return [this] {
return [*this] {
return ohseven; // OK
};
Y05
}
auto g() {
return [] {
return [*this] { }; // error: xthis not captured by outer lambda-expression
Y05
}

};
— end ezample]

9 [Note 6: Because local entities are not odr-usable within a default argument (6.3), a lambda-expression appearing in
a default argument cannot implicitly or explicitly capture any local entity. Such a lambda-expression can still have
an init-capture if any full-expression in its initializer satisfies the constraints of an expression appearing in a default
argument (9.3.4.7). — end note]

[Ezample 7:

void £20) {
int i = 1;
void gl(int = ([i]{ return i; 1 O); // error
void g2(int = ([i]{ return 0; }) O); // error
void g3(int = ([=]{ return i; }) ()); // error
void g4(int = ([=]{ return 0; })(O)); // OK
void gb(int = ([1{ return sizeof i; })()); // OK
void g6(int = ([x=1]{ return x; } O); // OK
void g7(int = ([x=1i]{ return x; 1 O); // error

}

— end example]
10 An entity is captured by copy if

(10.1) — it is implicitly captured, the capture-default is =, and the captured entity is not *this, or

§7553 116

(10.2)

11

12

13

14

(14.1)

(14.2)

©ISO/IEC N4944

— it is explicitly captured with a capture that is not of the form this, & identifier, or & identifier initializer.

For each entity captured by copy, an unnamed non-static data member is declared in the closure type. The
declaration order of these members is unspecified. The type of such a data member is the referenced type
if the entity is a reference to an object, an lvalue reference to the referenced function type if the entity
is a reference to a function, or the type of the corresponding captured entity otherwise. A member of an
anonymous union shall not be captured by copy.

Every id-expression within the compound-statement of a lambda-expression that is an odr-use (6.3) of an entity
captured by copy is transformed into an access to the corresponding unnamed data member of the closure
type.

[Note 7: An id-expression that is not an odr-use refers to the original entity, never to a member of the closure type.
However, such an id-expression can still cause the implicit capture of the entity. — end note]

If *this is captured by copy, each expression that odr-uses *this is transformed to instead refer to the
corresponding unnamed data member of the closure type.

[Ezample 8:

void f(const int*);
void g() {
const int N = 10;
[=]1 {
int arr([N]; // OK, not an odr-use, refers to automatic variable
£(&N) ; // OK, causes N to be captured; &N points to
// the corresponding member of the closure type
};
}

— end ezample]
An entity is captured by reference if it is implicitly or explicitly captured but not captured by copy. It is

unspecified whether additional unnamed non-static data members are declared in the closure type for entities
captured by reference. If declared, such non-static data members shall be of literal type.

[Ezample 9:

// The inner closure type must be a literal type regardless of how reference captures are represented.
static_assert([](int n) { return [&n] { return ++n; }(); }(3) == 4);

— end ezample]
A bit-field or a member of an anonymous union shall not be captured by reference.

An id-expression within the compound-statement of a lambda-expression that is an odr-use of a reference
captured by reference refers to the entity to which the captured reference is bound and not to the captured
reference.

[Note 8: The validity of such captures is determined by the lifetime of the object to which the reference refers, not by
the lifetime of the reference itself. — end note]

[Ezample 10:

auto h(int &r) {
return [&] {
++r; // Valid after h returns if the lifetime of the
// object to which r is bound has not ended
};
}

— end ezample]

If a lambda-expression m2 captures an entity and that entity is captured by an immediately enclosing
lambda-expression m1, then m2’s capture is transformed as follows:

— If m1 captures the entity by copy, m2 captures the corresponding non-static data member of m1’s closure
type; if m1 is not mutable, the non-static data member is considered to be const-qualified.

— If m1 captures the entity by reference, m2 captures the same entity captured by m1.
[Ezample 11: The nested lambda-expressions and invocations below will output 123234.

int a=1, b=1, c = 1;

§7.5.5.3 117

15

16

17

1

2

©ISO/IEC N4944

auto m1 = [a, &b, &c]() mutable {
auto m2 = [a, b, &c]() mutable {
std::cout << a << b << c;
a=4; b=4; c = 4;
};
a=3; b=3; c=3;
m2Q) ;
};
a=2; b=2; c=2;
miQ);
std::cout << a << b << ¢;

— end example]

When the lambda-expression is evaluated, the entities that are captured by copy are used to direct-initialize
each corresponding non-static data member of the resulting closure object, and the non-static data members
corresponding to the init-captures are initialized as indicated by the corresponding initializer (which may be
copy- or direct-initialization). (For array members, the array elements are direct-initialized in increasing
subscript order.) These initializations are performed in the (unspecified) order in which the non-static data
members are declared.

[Note 9: This ensures that the destructions will occur in the reverse order of the constructions. — end note]

[Note 10: If a non-reference entity is implicitly or explicitly captured by reference, invoking the function call operator
of the corresponding lambda-expression after the lifetime of the entity has ended is likely to result in undefined behavior.
— end note]

A simple-capture containing an ellipsis is a pack expansion (13.7.4). An init-capture containing an ellipsis is a
pack expansion that declares an init-capture pack (13.7.4).

[Ezample 12:

template<class... Args>

void f(Args... args) {
auto 1m = [&, args...] { return g(args...); };
Im();

auto 1m2 = [...xs=std::move(args)] { return g(xs...); };
Im2();
}

— end ezample]

7.5.6 Fold expressions [expr.prim.fold]
A fold expression performs a fold of a pack (13.7.4) over a binary operator.

fold-expression:

(cast-expression fold-operator ...)
(... fold-operator cast-expression)
(cast-expression fold-operator . .. fold-operator cast-expression)
fold-operator: one of
+ - ok /% " & | << >
+= —= x= /= Y= "= &= |= <K= >>= =
= 1= < > <= >= && || , Sk =>%
An expression of the form (... op e) where op is a fold-operator is called a unary left fold. An expression

of the form (e op ...) where op is a fold-operator is called a unary right fold. Unary left folds and unary
right folds are collectively called unary folds. In a unary fold, the cast-expression shall contain an unexpanded
pack (13.7.4).

An expression of the form (el opl ... op2 e2) where opl and op2 are fold-operators is called a binary fold.
In a binary fold, op! and op2 shall be the same fold-operator, and either el shall contain an unexpanded pack
or e2 shall contain an unexpanded pack, but not both. If e2 contains an unexpanded pack, the expression is
called a binary left fold. If el contains an unexpanded pack, the expression is called a binary right fold.

[Example 1:

§7.5.6 118

©ISO/IEC N4944

template<typename ...Args>
bool f(Args ...args) {
return (true && ... && args); // OK
}
template<typename ...Args>
bool f(Args ...args) {
return (args + ... + args); // error: both operands contain unexpanded packs
}
— end ezample]
7.5.7 Requires expressions [expr.prim.req]
7.5.7.1 General [expr.prim.req.general]

A requires-expression provides a concise way to express requirements on template arguments that can be
checked by name lookup (6.5) or by checking properties of types and expressions.

requires-expression:
requires requirement-parameter-list,p: requirement-body

requirement-parameter-list:
(parameter-declaration-clause)

requirement-body:

{ requirement-seq }
requirement-seq:

requirement

requirement requirement-seq

requirement:
simple-requirement
type-requirement
compound-requirement
nested-requirement

A requires-expression is a prvalue of type bool whose value is described below. Expressions appearing within
a requirement-body are unevaluated operands (7.2.3).

[Example 1: A common use of requires-expressions is to define requirements in concepts such as the one below:

template<typename T>
concept R = requires (T i) {
typename T::type;
{*i} -> std::convertible_to<const typename T::type&>;
};
A requires-expression can also be used in a requires-clause (13.1) as a way of writing ad hoc constraints on template
arguments such as the one below:

template<typename T>
requires requires (T x) { x + x; }
T add(T a, T b) { return a + b; }

The first requires introduces the requires-clause, and the second introduces the requires-expression. — end example]

A requires-expression may introduce local parameters using a parameter-declaration-clause (9.3.4.6). A local
parameter of a requires-expression shall not have a default argument. These parameters have no linkage,
storage, or lifetime; they are only used as notation for the purpose of defining requirements. The parameter-
declaration-clause of a requirement-parameter-list shall not terminate with an ellipsis.

[Ezample 2:
template<typename T>
concept C = requires(T t, ...) { // error: terminates with an ellipsis
t;
3

— end ezample]

The substitution of template arguments into a requires-expression may result in the formation of invalid
types or expressions in its requirements or the violation of the semantic constraints of those requirements. In

§7.5.7.1 119

©ISO/IEC N4944

such cases, the requires-expression evaluates to false; it does not cause the program to be ill-formed. The
substitution and semantic constraint checking proceeds in lexical order and stops when a condition that
determines the result of the requires-expression is encountered. If substitution (if any) and semantic constraint
checking succeed, the requires-expression evaluates to true.

[Note 1: If a requires-expression contains invalid types or expressions in its requirements, and it does not appear within
the declaration of a templated entity, then the program is ill-formed. — end note]

If the substitution of template arguments into a requirement would always result in a substitution failure, the
program is ill-formed; no diagnostic required.

[Ezample 3:

template<typename T> concept C =
requires {
new int[-(int)sizeof(T)]; // ill-formed, no diagnostic required

};

— end ezxample]

7.5.7.2 Simple requirements [expr.prim.req.simple]

simple-requirement:
expression ;

1 A simple-requirement asserts the validity of an expression.

[Note 1: The enclosing requires-expression will evaluate to false if substitution of template arguments into the
expression fails. The expression is an unevaluated operand (7.2.3). — end note]

[Example 1:

template<typename T> concept C =
requires (T a, T b) {
a + b; // C<T> is true if a + b is a valid expression
};
— end example]
2 A requirement that starts with a requires token is never interpreted as a simple-requirement.

[Note 2: This simplifies distinguishing between a simple-requirement and a nested-requirement. — end note]

7.5.7.3 Type requirements [expr.prim.req.type]

type-requirement:
typename nested-name-specifieroy; type-name ;

1A type-requirement asserts the validity of a type.

[Note 1: The enclosing requires-expression will evaluate to false if substitution of template arguments fails. — end
note)
[Ezample 1:

template<typename T, typename T::type = 0> struct S;
template<typename T> using Ref = T&;

template<typename T> concept C = requires {

typename T::inner; // required nested member name
typename S<T>; // required valid (13.3) template-id;

// fails if T::type does not exist as a type to which O can be implicitly converted
typename Ref<T>; // required alias template substitution, fails if T is void

};
— end example]

2 A type-requirement that names a class template specialization does not require that type to be complete (6.8.1).

7.5.7.4 Compound requirements [expr.prim.req.compound]

compound-requirement:
{ expression } noexcept,y; return-type-requirementyp; ;

return-type-requirement:
-> type-constraint

§7.5.7.4 120

1

©ISO/IEC N4944

A compound-requirement asserts properties of the expression E. Substitution of template arguments (if any)
and verification of semantic properties proceed in the following order:

— Substitution of template arguments (if any) into the expression is performed.
— If the noexcept specifier is present, E shall not be a potentially-throwing expression (14.5).
— If the return-type-requirement is present, then:

— Substitution of template arguments (if any) into the return-type-requirement is performed.

— The immediately-declared constraint (13.2) of the type-constraint for decltype ((E)) shall be
satisfied.

[Ezample 1: Given concepts C and D,

requires {

{E1} ->C;

{ E2 } -> D<Ay, -+, Ap>;
};

is equivalent to

requires {
El; requires C<decltype((E1))>;

E2; requires D<decltype((E2)), A1, ---, Ap>;
I
(including in the case where n is zero). — end ezample]
[Ezample 2:

template<typename T> concept Cl = requires(T x) {
{x++1};

}’

The compound-requirement in C1 requires that x++ is a valid expression. It is equivalent to the simple-requirement
X++;

template<typename T> concept C2 = requires(T x) {
{*x} -> std::same_as<typename T::inner>;
};
The compound-requirement in C2 requires that *x is a valid expression, that typename T::inner is a valid type, and
that std::same_as<decltype((*x)), typename T::inner> is satisfied.

template<typename T> concept C3 =
requires(T x) {
{g(x)} noexcept;

}’
The compound-requirement in C3 requires that g(x) is a valid expression and that g(x) is non-throwing. — end
example)
7.5.7.5 Nested requirements [expr.prim.req.nested]

nested-requirement:
requires constraint-expression ;

A nested-requirement can be used to specify additional constraints in terms of local parameters. The
constraint-expression shall be satisfied (13.5.3) by the substituted template arguments, if any. Substitution of
template arguments into a nested-requirement does not result in substitution into the constraint-expression
other than as specified in 13.5.2.

[Ezample 1:

template<typename U> concept C = sizeof(U) == 1;

template<typename T> concept D = requires (T t) {
requires C<decltype (+t)>;
};
D<T> is satisfied if sizeof (decltype (+t)) == 1 (13.5.2.3). — end ezample]

§7.5.7.5 121

©ISO/IEC N4944

7.6 Compound expressions [expr.compound]
7.6.1 Postfix expressions [expr.post]
7.6.1.1 General [expr.post.general]

1 Postfix expressions group left-to-right.
postfix-expression:
primary-expression
postfix-expression [expression-list,p;]
postfix-expression (expression-listop:)
simple-type-specifier (expression-listop:)
typename-specifier (expression-list,p;)
simple-type-specifier braced-init-list
typename-specifier braced-init-list
postfix-expression . template,y; id-expression
postfix-expression => template,y; id-expression
postfix-expression ++
postfix-expression —-
dynamic_cast < type-id > (expression)
static_cast < type-id > (expression)
reinterpret_cast < type-id > (expression)
const_cast < type-id > (expression)
typeid (expression)
typeid (type-id)
expression-list:
initializer-list
2 [Note 1: The > token following the type-id in a dynamic_cast, static_cast, reinterpret_cast, or const_cast can
be the product of replacing a >> token by two consecutive > tokens (13.3). — end note]

7.6.1.2 Subscripting [expr.sub]

1 A subscript expression is a postfix expression followed by square brackets containing a possibly empty,
comma-separated list of initializer-clauses that constitute the arguments to the subscript operator. The
postfix-expression and the initialization of the object parameter of any applicable subscript operator function is
sequenced before each expression in the expression-list and also before any default argument. The initialization
of a non-object parameter of a subscript operator function S (12.4.5), including every associated value
computation and side effect, is indeterminately sequenced with respect to that of any other non-object
parameter of S.

2 With the built-in subscript operator, an expression-list shall be present, consisting of a single assignment-
expression. One of the expressions shall be a glvalue of type “array of T” or a prvalue of type “pointer to T”
and the other shall be a prvalue of unscoped enumeration or integral type. The result is of type “T”. The
type “T” shall be a completely-defined object type.”! The expression E1[E2] is identical (by definition) to
*((E1)+(E2)), except that in the case of an array operand, the result is an lvalue if that operand is an lvalue
and an xvalue otherwise.

3 [Note 1: Despite its asymmetric appearance, subscripting is a commutative operation except for sequencing. See 7.6.2
and 7.6.6 for details of * and + and 9.3.4.5 for details of array types. — end note]

7.6.1.3 Function call [expr.call]

1 A function call is a postfix expression followed by parentheses containing a possibly empty, comma-separated
list of initializer-clauses which constitute the arguments to the function.

[Note 1: If the postfix expression is a function or member function name, the appropriate function and the validity of
the call are determined according to the rules in 12.2. — end note]

The postfix expression shall have function type or function pointer type. For a call to a non-member function
or to a static member function, the postfix expression shall either be an lvalue that refers to a function (in
which case the function-to-pointer standard conversion (7.3.4) is suppressed on the postfix expression), or
have function pointer type.

2 If the selected function is non-virtual, or if the id-expression in the class member access expression is a
qualified-id, that function is called. Otherwise, its final overrider (11.7.3) in the dynamic type of the object
expression is called; such a call is referred to as a virtual function call.

51) This is true even if the subscript operator is used in the following common idiom: &x[0].

§76.1.3 122

©ISO/IEC N4944

[Note 2: The dynamic type is the type of the object referred to by the current value of the object expression.
11.9.5 describes the behavior of virtual function calls when the object expression refers to an object under construction
or destruction. — end note]

[Note 3: If a function or member function name is used, and name lookup (6.5) does not find a declaration of that
name, the program is ill-formed. No function is implicitly declared by such a call. — end note]

If the postfix-expression names a destructor or pseudo-destructor (7.5.4.4), the type of the function call
expression is void; otherwise, the type of the function call expression is the return type of the statically
chosen function (i.e., ignoring the virtual keyword), even if the type of the function actually called is
different. If the postfix-expression names a pseudo-destructor (in which case the postfix-expression is a possibly-
parenthesized class member access), the function call destroys the object of scalar type denoted by the object
expression of the class member access (7.6.1.5, 6.7.3).

Calling a function through an expression whose function type E is different from the function type F of the
called function’s definition results in undefined behavior unless the type “pointer to F” can be converted to
the type “pointer to E” via a function pointer conversion (7.3.14).

[Note 4: The exception applies when the expression has the type of a potentially-throwing function, but the called
function has a non-throwing exception specification, and the function types are otherwise the same. — end note]

When a function is called, each parameter (9.3.4.6) is initialized (9.4, 11.4.5.3) with its corresponding argument.
If the function is an explicit object member function and there is an implied object argument (12.2.2.2.2), the
list of provided arguments is preceded by the implied object argument for the purposes of this correspondence.
If there is no corresponding argument, the default argument for the parameter is used.

[Ezample 1:

template<typename ...T> int f(int n =0, T ...t);
int x = f<int>(); // error: no argument for second function parameter

— end example]

If the function is an implicit object member function, the this parameter of the function (7.5.2) is initialized
with a pointer to the object of the call, converted as if by an explicit type conversion (7.6.3).

[Note 5: There is no access or ambiguity checking on this conversion; the access checking and disambiguation are
done as part of the (possibly implicit) class member access operator. See 6.5.2, 11.8.3, and 7.6.1.5. — end note|

When a function is called, the type of any parameter shall not be a class type that is either incomplete or
abstract.

[Note 6: This still allows a parameter to be a pointer or reference to such a type. However, it prevents a passed-by-value
parameter to have an incomplete or abstract class type. — end note]

It is implementation-defined whether the lifetime of a parameter ends when the function in which it is defined
returns or at the end of the enclosing full-expression. The initialization and destruction of each parameter
occurs within the context of the calling function.

[Example 2: The access of the constructor, conversion functions or destructor is checked at the point of call in the
calling function. If a constructor or destructor for a function parameter throws an exception, the search for a handler
starts in the calling function; in particular, if the function called has a function-try-block (14.1) with a handler that
can handle the exception, this handler is not considered. — end ezample]

The postfix-expression is sequenced before each expression in the expression-list and any default argument. The
initialization of a parameter, including every associated value computation and side effect, is indeterminately
sequenced with respect to that of any other parameter.

[Note 7: All side effects of argument evaluations are sequenced before the function is entered (see 6.9.1). — end note]
[Ezample 3:
void £() {
std::string s = "but I have heard it works even if you don't believe in it";
s.replace(0, 4, "").replace(s.find("even"), 4, "only").replace(s.find(" don't"), 6, "");
assert(s == "I have heard it works only if you believe in it"); // OK
}

— end ezample]

[Note 8: If an operator function is invoked using operator notation, argument evaluation is sequenced as specified for
the built-in operator; see 12.2.2.3. — end note]

[Ezample 4:

§76.1.3 123

10

11

12

13

©ISO/IEC N4944

struct S {
S(int);

}

int operator<<(S, int);

int i, j;

int x = S(i=1) << (i=2);

int y = operator<<(S(j=1), j=2);
After performing the initializations, the value of i is 2 (see 7.6.7), but it is unspecified whether the value of j is 1 or
2. —end example]

The result of a function call is the result of the possibly-converted operand of the return statement (8.7.4)
that transferred control out of the called function (if any), except in a virtual function call if the return type
of the final overrider is different from the return type of the statically chosen function, the value returned
from the final overrider is converted to the return type of the statically chosen function.

[Note 9: A function can change the values of its non-const parameters, but these changes cannot affect the values
of the arguments except where a parameter is of a reference type (9.3.4.3); if the reference is to a const-qualified
type, const_cast is required to be used to cast away the constness in order to modify the argument’s value. Where a
parameter is of const reference type a temporary object is introduced if needed (9.2.9, 5.13, 5.13.5, 9.3.4.5, 6.7.7). In
addition, it is possible to modify the values of non-constant objects through pointer parameters. — end note]

A function can be declared to accept fewer arguments (by declaring default arguments (9.3.4.7)) or more
arguments (by using the ellipsis, ..., or a function parameter pack (9.3.4.6)) than the number of parameters
in the function definition (9.5).

[Note 10: This implies that, except where the ellipsis (...) or a function parameter pack is used, a parameter is
available for each argument. — end note]

When there is no parameter for a given argument, the argument is passed in such a way that the receiving
function can obtain the value of the argument by invoking va_arg (17.13).

[Note 11: This paragraph does not apply to arguments passed to a function parameter pack. Function parameter
packs are expanded during template instantiation (13.7.4), thus each such argument has a corresponding parameter
when a function template specialization is actually called. — end note]

The lvalue-to-rvalue (7.3.2), array-to-pointer (7.3.3), and function-to-pointer (7.3.4) standard conversions
are performed on the argument expression. An argument that has type cv std: :nullptr_t is converted to
type voidx (7.3.12). After these conversions, if the argument does not have arithmetic, enumeration, pointer,
pointer-to-member, or class type, the program is ill-formed. Passing a potentially-evaluated argument of a
scoped enumeration type or of a class type (Clause 11) having an eligible non-trivial copy constructor, an
eligible non-trivial move constructor, or a non-trivial destructor (11.4.4), with no corresponding parameter, is
conditionally-supported with implementation-defined semantics. If the argument has integral or enumeration
type that is subject to the integral promotions (7.3.7), or a floating-point type that is subject to the floating-
point promotion (7.3.8), the value of the argument is converted to the promoted type before the call. These
promotions are referred to as the default argument promotions.

Recursive calls are permitted, except to the main function (6.9.3.1).

A function call is an lvalue if the result type is an lvalue reference type or an rvalue reference to function
type, an xvalue if the result type is an rvalue reference to object type, and a prvalue otherwise.

7.6.1.4 Explicit type conversion (functional notation) [expr.type.conv]

A simple-type-specifier (9.2.9.3) or typename-specifier (13.8) followed by a parenthesized optional expression-list
or by a braced-init-list (the initializer) constructs a value of the specified type given the initializer. If the type
is a placeholder for a deduced class type, it is replaced by the return type of the function selected by overload
resolution for class template deduction (12.2.2.9) for the remainder of this subclause. Otherwise, if the type
contains a placeholder type, it is replaced by the type determined by placeholder type deduction (9.2.9.6.2).

[Ezample 1:
struct A {};
void f(A&); /) #1
void f(A&&); /) #2
A% gQ);
void h() {
£(gO); // calls #1
f(A(g0)); // calls #2 with a temporary object

§7.6.1.4 124

(6.1)

(6.2)

(6.3)

(6.3.1)

(6.3.2)

©ISO/IEC N4944

f(auto(g)); // calls #2 with a temporary object
}

— end example]

If the initializer is a parenthesized single expression, the type conversion expression is equivalent to the
corresponding cast expression (7.6.3). Otherwise, if the type is cv void and the initializer is () or {} (after
pack expansion, if any), the expression is a prvalue of type void that performs no initialization. Otherwise,
the expression is a prvalue of the specified type whose result object is direct-initialized (9.4) with the initializer.
If the initializer is a parenthesized optional expression-list, the specified type shall not be an array type.

7.6.1.5 Class member access [expr.ref]

A postfix expression followed by a dot . or an arrow —>, optionally followed by the keyword template, and
then followed by an id-expression, is a postfix expression. The postfix expression before the dot or arrow is
evaluated;®? the result of that evaluation, together with the id-expression, determines the result of the entire
postfix expression.

[Note 1: If the keyword template is used, the following unqualified name is considered to refer to a template (13.3).
If a simple-template-id results and is followed by a ::, the id-expression is a qualified-id. — end note]

For the first option (dot) the first expression shall be a glvalue. For the second option (arrow) the first
expression shall be a prvalue having pointer type. The expression E1->E2 is converted to the equivalent form
(*(E1)) .E2; the remainder of 7.6.1.5 will address only the first option (dot).”

Abbreviating postfix-expression . id-expression as E1.E2, E1 is called the object expression. If the object
expression is of scalar type, E2 shall name the pseudo-destructor of that same type (ignoring cv-qualifications)
and E1.E2 is a prvalue of type “function of () returning void”.

[Note 2: This value can only be used for a notional function call (7.5.4.4). — end note]

Otherwise, the object expression shall be of class type. The class type shall be complete unless the class
member access appears in the definition of that class.

[Note 3: The program is ill-formed if the result differs from that when the class is complete (6.5.2). — end note]
[Note 4: 6.5.5 describes how names are looked up after the . and -> operators. — end note]

If E2 is a bit-field, E1.E2 is a bit-field. The type and value category of E1.E2 are determined as follows.
In the remainder of 7.6.1.5, cq represents either const or the absence of const and wvq represents either
volatile or the absence of volatile. cv represents an arbitrary set of cv-qualifiers, as defined in 6.8.5.

If E2 is declared to have type “reference to T”, then E1.E2 is an lvalue of type T. If E2 is a static data
member, E1.E2 designates the object or function to which the reference is bound, otherwise E1.E2 designates
the object or function to which the corresponding reference member of E1 is bound. Otherwise, one of the
following rules applies.

— If E2 is a static data member and the type of E2 is T, then E1.E2 is an lvalue; the expression designates
the named member of the class. The type of E1.E2 is T.

— If E2 is a non-static data member and the type of E1 is “cql vql X”, and the type of E2 is “cq2 vq2 T,
the expression designates the corresponding member subobject of the object designated by the first
expression. If E1 is an lvalue, then E1.E2 is an lvalue; otherwise E1.E2 is an xvalue. Let the notation
vq12 stand for the “union” of vq! and vq2; that is, if vg! or vg2 is volatile, then vgl2 is volatile.
Similarly, let the notation cq12 stand for the “union” of ¢q! and cq2; that is, if cq! or cq2 is const,
then cqI2 is const. If E2 is declared to be a mutable member, then the type of E1.E2 is “vq12 T”. If
E2 is not declared to be a mutable member, then the type of E1.E2 is “cq12 vql12 T

— If E2 is an overload set, function overload resolution (12.2) is used to select the function to which E2
refers. The type of E1.E2 is the type of E2 and E1.E2 refers to the function referred to by E2.

— If E2 refers to a static member function, E1.E2 is an lvalue.

— Otherwise (when E2 refers to a non-static member function), E1.E2 is a prvalue. The expression
can be used only as the left-hand operand of a member function call (11.4.2).

[Note 5: Any redundant set of parentheses surrounding the expression is ignored (7.5.3). — end note]

52) If the class member access expression is evaluated, the subexpression evaluation happens even if the result is unnecessary to
determine the value of the entire postfix expression, for example if the id-expression denotes a static member.
53) Note that (x(E1)) is an lvalue.

§7.6.1.5 125

©ISO/IEC N4944

— If E2 is a nested type, the expression E1.E2 is ill-formed.

— If E2 is a member enumerator and the type of E2 is T, the expression E1.E2 is a prvalue of type T
whose value is the value of the enumerator.

If E2 is a non-static member, the program is ill-formed if the class of which E2 is directly a member is an
ambiguous base (6.5.2) of the naming class (11.8.3) of E2.

[Note 6: The program is also ill-formed if the naming class is an ambiguous base of the class type of the object
expression; see 11.8.3. — end note]

If E2 is a non-static member and the result of E1 is an object whose type is not similar (7.3.6) to the type of
E1, the behavior is undefined.

[Ezample 1:

struct A { int i; };
struct B { int j; };
struct D : A, B {};

void £() {
D d;
static_cast<B&>(d).j; // OK, object expression designates the B subobject of d
reinterpret_cast<B&>(d).j; // undefined behavior

}

— end ezample]

7.6.1.6 Increment and decrement [expr.post.incr]
The value of a postfix ++ expression is the value of its operand.
[Note 1: The value obtained is a copy of the original value. — end note|

The operand shall be a modifiable lvalue. The type of the operand shall be an arithmetic type other than
cv bool, or a pointer to a complete object type. An operand with volatile-qualified type is deprecated; see D.5.
The value of the operand object is modified (3.1) by adding 1 to it. The value computation of the ++ expression
is sequenced before the modification of the operand object. With respect to an indeterminately-sequenced
function call, the operation of postfix ++ is a single evaluation.

[Note 2: Therefore, a function call cannot intervene between the lvalue-to-rvalue conversion and the side effect
associated with any single postfix ++ operator. — end note]
The result is a prvalue. The type of the result is the cv-unqualified version of the type of the operand. If

the operand is a bit-field that cannot represent the incremented value, the resulting value of the bit-field is
implementation-defined. See also 7.6.6 and 7.6.19.

The operand of postfix —- is decremented analogously to the postfix ++ operator.

[Note 3: For prefix increment and decrement, see 7.6.2.3. — end note]

7.6.1.7 Dynamic cast [expr.dynamic.cast]

The result of the expression dynamic_cast<T>(v) is the result of converting the expression v to type T. T
shall be a pointer or reference to a complete class type, or “pointer to cv void”. The dynamic_cast operator
shall not cast away constness (7.6.1.11).

If T is a pointer type, v shall be a prvalue of a pointer to complete class type, and the result is a prvalue of
type T. If T is an lvalue reference type, v shall be an lvalue of a complete class type, and the result is an
Ivalue of the type referred to by T. If T is an rvalue reference type, v shall be a glvalue having a complete
class type, and the result is an xvalue of the type referred to by T.

If the type of v is the same as T (ignoring cv-qualifications), the result is v (converted if necessary).

If T is “pointer to cvl B” and v has type “pointer to cv2 D” such that B is a base class of D, the result is a
pointer to the unique B subobject of the D object pointed to by v, or a null pointer value if v is a null pointer
value. Similarly, if T is “reference to cvl B” and v has type cv2 D such that B is a base class of D, the result
is the unique B subobject of the D object referred to by v.°* In both the pointer and reference cases, the
program is ill-formed if B is an inaccessible or ambiguous base class of D.

[Example 1:

struct B { };

54) The most derived object (6.7.2) pointed or referred to by v can contain other B objects as base classes, but these are ignored.

§7.6.1.7 126

(8.1)

(8.2)

(8.3)

©ISO/IEC N4944

struct D : B { };
void foo(Dx dp) {
B* bp = dynamic_cast<B*>(dp); // equivalent to Bx bp = dp;
}
— end ezample]
Otherwise, v shall be a pointer to or a glvalue of a polymorphic type (11.7.3).
If v is a null pointer value, the result is a null pointer value.

If T is “pointer to cv void”, then the result is a pointer to the most derived object pointed to by v. Otherwise,
a runtime check is applied to see if the object pointed or referred to by v can be converted to the type pointed
or referred to by T.

Let C be the class type to which T points or refers. The runtime check logically executes as follows:

— If, in the most derived object pointed (referred) to by v, v points (refers) to a public base class subobject
of a C object, and if only one object of type C is derived from the subobject pointed (referred) to by v
the result points (refers) to that C object.

— Otherwise, if v points (refers) to a public base class subobject of the most derived object, and the type
of the most derived object has a base class, of type C, that is unambiguous and public, the result points
(refers) to the C subobject of the most derived object.

— Otherwise, the runtime check fails.

The value of a failed cast to pointer type is the null pointer value of the required result type. A failed
cast to reference type throws an exception (14.2) of a type that would match a handler (14.4) of type
std::bad_cast (17.7.4).

[Ezample 2:

class A { virtual void £(); };
class B { virtual void g(); };
class D : public virtual A, private B { };

void g() {
D d;
B* bp = (Bx)&d; // cast needed to break protection
Ax ap = &d; // public derivation, no cast needed
D& dr = dynamic_cast<D&>(*bp); // fails
ap = dynamic_cast<A*>(bp); // fails
bp = dynamic_cast<B*>(ap); // fails
ap = dynamic_cast<A*>(&d); // succeeds
bp = dynamic_cast<B*>(&d); // ill-formed (not a runtime check)
}

class E : public D, public B { };
class F : public E, public D { };

void h() {
F f;
Ax ap = &f; // succeeds: finds unique A
D* dp = dynamic_cast<D*>(ap); // fails: yields null; £ has two D subobjects
Ex ep = (Ex)ap; // error: cast from virtual base
E* epl = dynamic_cast<Ex>(ap); // succeeds
}

— end example]

[Note 1: Subclause 11.9.5 describes the behavior of a dynamic_cast applied to an object under construction or
destruction. — end note]

7.6.1.8 Type identification [expr.typeid]

The result of a typeid expression is an lvalue of static type const std: :type_info (17.7.3) and dynamic type
const std: :type_info or const name where name is an implementation-defined class publicly derived from
std: :type_info which preserves the behavior described in 17.7.3.5% The lifetime of the object referred to by
the lvalue extends to the end of the program. Whether or not the destructor is called for the std: :type_info
object at the end of the program is unspecified.

55) The recommended name for such a class is extended_type_info.

§76.1.8 127

©ISO/IEC N4944

If the type of the expression or type-id operand is a (possibly cv-qualified) class type or a reference to (possibly
cv-qualified) class type, that class shall be completely defined.

When typeid is applied to a glvalue whose type is a polymorphic class type (11.7.3), the result refers to a
std: :type_info object representing the type of the most derived object (6.7.2) (that is, the dynamic type)
to which the glvalue refers. If the glvalue is obtained by applying the unary * operator to a pointer®® and
the pointer is a null pointer value (6.8.4), the typeid expression throws an exception (14.2) of a type that
would match a handler of type std: :bad_typeid exception (17.7.5).

When typeid is applied to an expression other than a glvalue of a polymorphic class type, the result
refers to a std: :type_info object representing the static type of the expression. Lvalue-to-rvalue (7.3.2),
array-to-pointer (7.3.3), and function-to-pointer (7.3.4) conversions are not applied to the expression. If the
expression is a prvalue, the temporary materialization conversion (7.3.5) is applied. The expression is an
unevaluated operand (7.2.3).

When typeid is applied to a type-id, the result refers to a std: :type_info object representing the type of
the type-id. If the type of the type-id is a reference to a possibly cv-qualified type, the result of the typeid
expression refers to a std: :type_info object representing the cv-unqualified referenced type.

[Note 1: The type-id cannot denote a function type with a cv-qualifier-seq or a ref-qualifier (9.3.4.6). — end note]

If the type of the expression or type-id is a cv-qualified type, the result of the typeid expression refers to a
std: :type_info object representing the cv-unqualified type.

[Ezample 1:
class D { /* ... %/ };
D di;
const D d2;
typeid(dl) == typeid(d2); // yields true
typeid(D) == typeid(const D); // yields true
typeid(D) == typeid(d2); // yields true
typeid(D) == typeid(const D&); // yields true

— end example]

The type std: :type_info (17.7.3) is not predefined; if a standard library declaration (17.7.2, 16.4.2.4) of
std: :type_info does not precede (6.5.1) a typeid expression, the program is ill-formed.

[Note 2: Subclause 11.9.5 describes the behavior of typeid applied to an object under construction or destruction.
— end note]

7.6.1.9 Static cast [expr.static.cast]

The result of the expression static_cast<T>(v) is the result of converting the expression v to type T. If T
is an lvalue reference type or an rvalue reference to function type, the result is an lvalue; if T is an rvalue
reference to object type, the result is an xvalue; otherwise, the result is a prvalue. The static_cast operator
shall not cast away constness (7.6.1.11).

An lvalue of type “cvl B”, where B is a class type, can be cast to type “reference to cv2 D”, where D is a
class derived (11.7) from B, if cv2 is the same cv-qualification as, or greater cv-qualification than, cvi. If
B is a virtual base class of D or a base class of a virtual base class of D, or if no valid standard conversion
from “pointer to D” to “pointer to B” exists (7.3.12), the program is ill-formed. An xvalue of type “cvi B”
can be cast to type “rvalue reference to cv2 D” with the same constraints as for an lvalue of type “cv1 B”. If
the object of type “cvi B” is actually a base class subobject of an object of type D, the result refers to the
enclosing object of type D. Otherwise, the behavior is undefined.

[Example 1:

struct B { };
struct D : public B { };

D d;
B &br = d;
static_cast<D&>(br); // produces lvalue denoting the original d object

— end ezample]

56) If p is an expression of pointer type, then *p, (*p), *(p), ((*p)), *((p)), and so on all meet this requirement.

§76.1.9 128

10

11

©ISO/IEC N4944

An lvalue of type T1 can be cast to type “rvalue reference to T2” if T2 is reference-compatible with T1 (9.4.4).
If the value is not a bit-field, the result refers to the object or the specified base class subobject thereof;
otherwise, the lvalue-to-rvalue conversion (7.3.2) is applied to the bit-field and the resulting prvalue is used
as the operand of the static_cast for the remainder of this subclause. If T2 is an inaccessible (11.8) or
ambiguous (6.5.2) base class of T1, a program that necessitates such a cast is ill-formed.

An expression E can be explicitly converted to a type T if there is an implicit conversion sequence (12.2.4.2)
from F to T, if overload resolution for a direct-initialization (9.4) of an object or reference of type T from E
would find at least one viable function (12.2.3), or if T is an aggregate type (9.4.2) having a first element x
and there is an implicit conversion sequence from FE to the type of x. If T is a reference type, the effect is the
same as performing the declaration and initialization

T t(E);
for some invented temporary variable t (9.4) and then using the temporary variable as the result of the
conversion. Otherwise, the result object is direct-initialized from FE.

[Note 1: The conversion is ill-formed when attempting to convert an expression of class type to an inaccessible or
ambiguous base class. — end note]

[Note 2: If T is “array of unknown bound of U”, this direct-initialization defines the type of the expression as U[1].
— end note]

Otherwise, the static_cast shall perform one of the conversions listed below. No other conversion shall be
performed explicitly using a static_cast.

Any expression can be explicitly converted to type cv void, in which case the operand is a discarded-value
expression (7.2).

[Note 8: Such a static_cast