Allowing allocation in static initialization

Document #: P2639R0

Date: 2022-09-12

Project: Programming Language C++
Audience: EWG, LEWG

Reply-to: Torben Thaysen

<thaysentorben@gmail.com >

Contents

Contents 1
1 Introduction L 1
2 Allowing Deletions e 2
3 User Replacements o e 2

References 5

1 Introduction

Probably the most severe limitation to compile time computation in C++ is that the result of
the computation can not contain any dynamic allocations. The obvious solution would be to
allow non-transient constexpr allocations. However these have a serious problem with ensuring
consistency in the destructor of the allocated objects as they might have been modified at runtime.
For this reason the feature was removed from its initial proposal [P0784R7]. [P1974R0] proposed
a solution using propconst but at the cost of a significant extension of the type system. At the
same time not all use cases would be served with these proposals, in particular the ability to modify
these allocations at runtime is very limited. For example if we had a constexpr std::vector and
wanted to modify or insert even a single element, we would have to make a dynamically allocated
copy of it. This is very undesirable particularly for embedded applications.

Thus it is proposed to allow non-transient allocations during constant initialization of non-constexpr
variables of static storage duration. Since the distinguishing feature of such allocations is that they
are created during static initialization they will be referred to as static allocations in this proposal.
The proposed model for static allocations is such that they are indistinguishable from ordinary
allocations to all runtime code. This inparticular requires that deleting them at runtime must be
well defined.

Currently constant initialization is required to be a constant expression except that it may invoke
constructors of non-literal types. This proposal adds to that by allowing creation of non-transient
allocations aswell. The rules for constant expressions however remain unaltered.

For an example suppose we have a constexpr function compute_my_vector () that can be evaluated
at compile time:

std: :vector<int> my_vector = compute_my_vector();
With this proposal my_vector could be statically initialized where currently it could not. At the

same time the implementation is not required to perform constant initialization is this case. To
force that behaviour constinit can be added to the definition.

mailto:thaysentorben@gmail.com

2 Allowing Deletions

Several models should be considered for the deletion of these allocations. One approach would be
to not allow deletion at all. This would be the simplest method but would encourage the (harmful)
practice of creating types that allocate memory in the constructor that is never freed. That could
be made more acceptable by introducing an allocation function specifically for static allocations.
But that has the problem that the existing containers can not be used and completely new types
have to be created.

A different approach could be to allow deletion only in the destructor. The idea would be that
because the variable has static storage duration the destructor is only called when the program
terminates and thus we could avoid calling it as long as it does not have sideeffects. But there would
be no easy safeguard against accidentally invoking a method that ends up deleting the allocation at
runtime and using standard containers in this manner would therefore be quite brittle.

However when it is specified that static allocations can be deleted this feature becomes very robust:
To all runtime code a static allocation would be indistinguishable from an allocation created during
dynamic initialization, which is exactly the property that static initialization should have.

3 User Replacements

3.1 Minimal solution

The main difficulty with allowing deletions is that user replacements of delete need to be able to
handle such calls (see 3.3). A minimal solution to this would be to introduce a library function that
checks whether an address represents a static allocation:

namespace std {

bool is_static_allocation(void* address);

}

This could then be used by user replacements to identify and ignore such delete calls. Practically
is_static_allocation could be efficiently implemented by comparing address against the bounds
of the data segment.

3.2 Transparent solution

However it might be preferable to allow the existing logic of user replacements to handle static
allocations gracefully, which could even enable reallocating the space later. For this a more
customisable and transparent approach is suggested that consists of two tools: The first allows the
user to insert padding before and after the allocation that can be used to store metadata created at
runtime or compile time. While the second tool grants the program a complete view of all static
allocations at runtime.

3.2.1 Allocation Wrapper

To store metadata with a static allocation the user may declare a template of the form:

namespace std {
template<std::size_t size, std::size_t alignment, bool array>
struct static_allocation_wrapper;

3

The size and alignment parameter provide the size and alignment requirements of the allocation,
while the array parameter indicates whether an array allocation function was used. A typical
implementation of the template would have some members that contain metadata about the
allocation as well as an appropriately sized buffer to hold the actual allocation.

It is unspecified when this template is instantiated, in particular for allocations that are not
referenced at runtime it might not be instantiated at all. Every instantiation of this template must
be default constructable and the result of default construction should be a constant expression.

Additionally the template must define a const member function named construct_at with no
parameters that returns a const void*. This function indicates to the compiler where in the
wrapper to place the allocation and should also result in a constant expression. For this the previously
default constructed instance of the template is considered to have static storage duration and to be
usable in a constant expression, but not to have begun its lifetime in the same constant expression.
This ensures that the instance can be read from but not written to. If the address returned by
construct_at is not inside the wrapper, not properly aligned or executing an appropriate placement
new at that address would not be allowed, the program is ill-formed.

3.2.2 Runtime Information

The following type is proposed to provide runtime information about static allocations:

namespace std {
class static_allocation_info {
public:
void* allocation_begin() const;
void* allcoation_end() const;
size_t allocation_alignment() const;
size_t allocation_size() const;
bool user_wrapped() const;
void* wrapper_begin() const;
void* wrapper_end() const;
size_t wrapper_alignment() const;
size_t wrapper_size() const;
};
}
Where the user_wrapped function indicates whether the allocation was wrapped with a user supplied
std::static_allocation_wrapper, if it returns false the values returned by the wrapper_-
functions are implementation defined. If the allocation is user wrapped the memory accessible
through all pointers is specified to be writable.

Note that unlike user replaced allocation functions the std: :static_allocation_wrapper template
must be defined in every translation unit that creates static allocations. For a program that relies
on all allocations being wrapped with the template it defines, the user_wrapped function provides
a simple way to validate this at program startup.

To iterate the allocations the following is proposed:

namespace std {
class static_allocation_range {
public:
using iterator = implementation-defined;
iterator begin() const;
iterator end() const;
};
extern const static_allocation_range static_allocations;

}

A likely approach to be adopted by compilers to facilitate this iteration, is to emit the required
information into a separate section that is then iterated at runtime. Because the linker would
concatenate these sections and the data sections of the allocations in the same order the iteration
would be naturally ordered by the address of the allocation. And since this behaviour is likely to be
very useful to some programs, this proposal recommends specifying the order of iteration.

3.3 Example

I will illustrate the contents of this section by considering a (very) contrived example. Suppose we
have a user replacement for the allocation functions that stores an abstract AllocationManager
right before the allocation. The replacement for operator delete could then look like:

void operator delete(void* ptr) throw() {
AllocationManager* manager = static_cast<AllocationManager**>(ptr) [-1];
manager->deallocate(ptr);

}

Now when a static allocation is deleted and a pointer to it is passed to this function the behaviour
would be undefined and the program would likely crash in practice.

Using std::is_static_allocation from 3.1 this could be avoided:

void operator delete(void* ptr) throw() {
if (std::is_static_allocation(ptr))
return;
AllocationManager* manager = static_cast<AllocationManager**>(ptr) [-1];
manager->deallocate(ptr);

}

And using the the allocation wrappers from 3.2 the static allocations could be made to work with
existing logic of the user replacement:

template<std::size_t size, std::size_t alignment, bool array>
struct std::static_allocation_wrapper {
// there needs to be padding here for alignment > sizeof(void*)
static_assert(alignment <= sizeof(voidx));
AllocationManager* manager = nullptr;

// this needs to be initialized, otherwise default construction
// will not result in a constant expression
std: :byte storage alignas(alignment) [size] = {};

const void* construct_at() const { return storage; }

};

// called somewhere at startup
void setup_static_allocation_manager (AllocationManager* manager) {
for (const auto& alloc_info : std::static_allocations) {
if (lalloc_info.user_wrapped())
// generate error here
static_cast<AllocationManager**>(alloc_info.wrapper_begin()) [0] = manager;
}
}

// mo modification needed here

void operator delete(void* ptr) throw() {
AllocationManager* manager = static_cast<AllocationManager**>(ptr) [-1];
manager->deallocate(ptr);

}

References

[PO784R7] Peter Dimov, Louis Dionne, Nina Ranns, Richard Smith, and Daveed Vandevoorde.
More constexpr containers. http://wg21.1ink/p0784r7, 2019.

[P1974R0] Jeff Snyder, Louis Dionne, and Daveed Vandevoorde. Non-transient constexpr allocation
using propconst. http://wg21.1ink/p1974r0, 2020.

http://wg21.link/p0784r7
http://wg21.link/p1974r0

	Contents
	1 Introduction
	2 Allowing Deletions
	3 User Replacements

	References

