
UB? In My Lexer?
Document #: D2621R0
Date: 2022-07-09
Programming Language C++
Audience: EWG, SG-22
Reply-to: Corentin Jabot <corentin.jabot@gmail.com>

Abstract

The mere act of Lexing c++ can result in undefined behavior. This paper removes that unde-
fined behavior. Further work will be needed to renove all undefined behavior in [cpp].

Motivation

According to the standard, the following examples expose undefined behavior:

int \\ // UB : universal character name accross spliced lines
u\
0\
3\
9\
1 = 0;

#define CONCAT(x, y) x ## y
int CONCAT(\, u0393) = 0; // UB: universal character name formed by macro expansion

// UB: unterminated string
const char * foo = "

It does seem unfortunate that lexing C++ would incur UB. As such, we propose to change the
specification to remove the UB by either well-defining the behavior or making it ill-formed,
closely matching implementations. The status-quo, as well as the proposed changes are
summarized below. The red cell highlights the only impact this paper would have on exiting
implementations.

GCC CLANG EDG MSVC Proposed

Spliced UCN Supported Supported Supported Error Well-formed

UCN Produced BY ## Supported Supported Supported Supported Well-formed

Unterminated ” ot ’ ill-formed ill-formed ill-formed ill-formed ill-formed

1

mailto:corentin.jabot@gmail.com


We propose that spliced UCNs be supported because, in addition of 3/4 of surveyed compilers
supporting it, it falls off naturally of the specification: splicing happends before any other
form of tokenization, and supporting it avoid special casing this oddity.

Wording

�? Phases of translation [lex.phases]

2. Each sequence of a backslash character (\) immediately followed by zero or more whites-
pace characters other than new-line followed by a new-line character is deleted, splicing
physical source lines to form logical source lines. Only the last backslash on any physical
source line shall be eligible for being part of such a splice. Except for splices reverted in
a raw string literal, if a splice results in a character sequence that matches the syntax of a
universal-character-name, the behavior is undefined. A source file that is not empty and that
does not end in a new-line character, or that ends in a splice, shall be processed as if an
additional new-line character were appended to the file.

A preprocessing token is the minimal lexical element of the language in translation phases
3 through 6. In this document, glyphs are used to identify elements of the basic character
set. The categories of preprocessing token are: header names, placeholder tokens pro-
duced by preprocessing import and module directives (import-keyword,module-keyword, and
export-keyword), identifiers, preprocessing numbers, character literals (including user-defined
character literals), string literals (including user-defined string literals), preprocessing opera-
tors and punctuators, and single non-whitespace characters that do not lexically match the
other preprocessing token categories. If a U+0027 APOSTROPHE or a U+0022 QUOTATION
MARK matches the last category, the behavior is undefined program is ill-formed. If any
character not in the basic character set matches the last category, the program is ill-formed.

�? The ## operator [cpp.concat]

A ## preprocessing token shall not occur at the beginning or at the end of a replacement list
for either form of macro definition.

If, in the replacement list of a function-like macro, a parameter is immediately preceded or
followed by a ## preprocessing token, the parameter is replaced by the corresponding argu-
ment’s preprocessing token sequence; however, if an argument consists of no preprocessing
tokens, the parameter is replaced by a placemarker preprocessing token instead. For both
object-like and function-like macro invocations, before the replacement list is reexamined for
more macro names to replace, each instance of a ## preprocessing token in the replacement
list (not from an argument) is deleted and the preceding preprocessing token is concatenated
with the following preprocessing token. Placemarker preprocessing tokens are handled spe-
cially: concatenation of two placemarkers results in a single placemarker preprocessing token,
and concatenation of a placemarker with a non-placemarker preprocessing token results in
the non-placemarker preprocessing token. If the result begins with a sequence matching
the syntax of universal-character-name, the behavior is undefined. [Note: This determination

2



does not consider the replacement of universal-character-name s in translation phase 3. —end
note ] If the result is not a valid preprocessing token, the behavior is undefined. The resulting
token is available for further macro replacement. The order of evaluation of ##

Future work

The reader will have noticed that [cpp] has a few other undefined behaviors. This should
equally be fixed, however this work is best left to someonewith greater preprocessor expertise.

3


	1 Abstract
	2 Motivation
	3 Wording
	4 Phases of translation
	4.1 The ## operator

	5 Future work

