
On the ignorability of standard attributes

Timur Doumler (papers@timur.audio)

Document #: P2552R0
Date: 2022-02-15
Project: Programming Language C++
Audience: Evolution Working Group, Core Working Group

Abstract

There is a general notion in C++ that standard attributes should be “ignorable”. However,
currently there does not seem to be a common understanding of what this means exactly. This
paper is proposing a definition that could be useful as a design guide for future language feature
proposals.

1 Motivation
Whenever proposals for new C++ attributes or attribute-like language features are considered,
there is usually a discussion around the idea that attributes should be “ignorable”, and that new
attributes should be compatible with this principle. However, there does not seem to be a common
understanding of what this means exactly. The principle of ignorability of standard attributes in
C++ is currently some kind of “gentlemen’s agreement” that has its origin in the standardisation
of attribute syntax for C++11 [N2761]. However, this “agreement” is not codified anywhere and is
therefore often misunderstood.
Does it mean that an implementation can choose to ignore any standard attribute and still be conform-
ing? That doesn’t sound right: a malformed attribute-specifier, for example, [[fallthrough(42)]],
should result in a compilation error (and all major C++ compilers issue one). Rather than just
saying that attributes are “ignorable”, a better rule seems to be: if the program is well-defined
with the attribute, then ignoring the attribute should not change the observable behaviour of that
program. But that does not quite work either: if an implementation implements the functionality
of the [[no_unique_address]] attribute, its effects are clearly observable, as it can change the
layout of a type. So what is the rule then?
The purpose of this proposal is to clearly define what we mean by “ignorability” of standard
attributes. The goal is to avoid such discussions in the future and to guide future C++ language
proposals by helping to decide whether or not a particular new language feature could or should be
specified as an attribute.
Further, attributes are a design space that C++ shares with C. The C standard actually does define
what the common semantics of all its standard attributes are (see 3.5). We should seek to be as
compatible with this as reasonably possible.

1

mailto:papers@timur.audio


2 Proposed rule
We propose to define the semantics of standard attributes as follows:

Given a well-formed program with well-defined behaviour, omitting all occurrences of a
particular standard attribute shall result in a well-formed program whose observable behaviour
is consistent with a correct execution of the original program.

It is not entirely clear whether the C++ standard itself is the ideal place to codify such a definition.
On the one hand, the C standard does something similar (see 3.5). On the other hand, the C++
standard does not typically try to constrain future evolution of the language, only to define what is
and isn’t conforming with the current standard. So, alternatively, such a definition could instead be
published in a new standing document containing design principles for new core language features.
We would like to seek guidance from the C++ committee on this point.
Our own position is that this definition should go into the C++ standard itself (in [dcl.attr]), so it
would formally only apply to the attributes that are already currently in the standard, and not
add any new information per se. However, the existence of such an explicit rule in the standard
would force any new attribute proposal that doesn’t want to follow the above principle to carve
out an explicit exception for itself. We believe this would be a strong enough motivation for future
proposals to stick to the rule in order to avoid introducing inconsistencies to the standard.
Another question is whether such a rule should apply only to true standard attributes (i.e. those
following the attribute-specifier grammar), or also to hypothetical new language features that are
“attribute-like” (i.e. using double square brackets but a novel syntax), such as attribute-like syntax
for contract annotations [P2461R1]. Again, we believe that it is enough to spell out the rule for
existing attributes in the standard, and then “attribute-like” proposals will be likely to follow suit
in order to be consistent.

3 Discussion

3.1 Well-formedness

In order for the above “ignorability” rule to apply, the program has to be well-formed with the
attribute, i.e. the implementation is not allowed to ignore ill-formed standard attributes. The
standard says:

The attribute-token determines additional requirements on the attribute-argument-clause (if
any). Each attribute-specifier-seq is said to appertain to some entity or statement, identified by
the syntactic context where it appears ([stmt.stmt], [dcl.dcl], [dcl.decl]). If an attribute-specifier-
seq that appertains to some entity or statement contains an attribute or alignment-specifier
that is not allowed to apply to that entity or statement, the program is ill-formed.

In other words, an attribute can only be “ignorable” if it is well-formed, i.e. if the attribute
appertains to an entity that it is allowed to appertain to, and if the attribute-argument-clause
has the correct shape. Otherwise, the program is ill-formed, and the compiler is required to issue
a diagnostic. All major C++ compilers follow this rule and emit an error if the user tries to
use the wrong type of argument ([[deprecated(42)]]), use an argument where none is allowed
([[noreturn("x")]]), use an attribute in the wrong place ([[fallthrough]] int x;), etc.
Currently, all standard attributes either have no arguments, or a single string literal as an argument,
so verifying the well-formedness of an attribute-argument-clause is trivial. However, new proposals
such as [[assume(expr )]] [P1774R6] and [[trivially_relocatable(expr )]] [P1144R5] pro-
pose attributes with an expression as an argument. This has the consequence that even if an
implementation chooses not to implement the functionality of such an attribute, it will have to
parse the expression inside the attribute-argument-clause and issue a diagnostic if the expression

2



is ill-formed. Further, parsing the expression might trigger template instantiations, and again the
implementation will have to issue a diagnostic in case this fails. This is fully compatible with the
above “ignorability” rule.
According to Jens Maurer, one of the original authors of standard attributes [N2761], it was
always intended that a conforming compiler needs to syntax-check all attributes specified in the
standard. After having done so, the compiler may choose to ignore the attribute, i.e. ignore the
“recommended practice” sections for the attribute. This means that the sentence “The attribute-token
determines additional requirements on the attribute-argument-clause (if any)” is always in force for
attributes specified in the standard. The standard already implies this today, but in order to make
it unambiguous, we should change the wording

For an attribute-token (including an attribute-scoped-token) not specified in this document,
the behavior is implementation-defined. Any attribute-token that is not recognized by the
implementation is ignored.

to
For an attribute-token (including an attribute-scoped-token) not specified in this document,
the behavior is implementation-defined; any such attribute-token that is not recognized by
the implementation is ignored.

Jens Maurer suggested to open a Core issue for this; however, we might as well just roll this wording
tweak into the present paper.
As should be clear from the above, the requirement of well-formedness should apply only to standard
attributes. We do not propose to introduce any restrictions for non-standard attributes such
as [[gnu::unused]] or [[omp::directive (parallel for, schedule(static))]]. They are
truly ignorable in the sense that if implementation does not recognise them, it can completely
skip them. The existing rule that the attribute-argument-clause can be any balanced-token-seq was
created specifically to allow implementations to cleanly ignore non-standard attributes whose details
(structure of arguments) are unknown to the implementation.

3.2 Well-definedness

In order for the above “ignorability” rule to apply, the program must not have undefined behaviour
with the attribute. This means that the addition of an attribute is allowed to introduce undefined
behaviour, however the removal of an attribute is not allowed to do that.
This is compatible with the existing standard attribute [[noreturn]] as well as the proposed new
attribute [[assume(expr )]] [P1774R6], both of which can introduce undefined behaviour into an
otherwise valid program. On the other hand, this means that new language features that turn
undefined behaviour into well-defined behaviour cannot be attributes.

3.3 Omission of all occurrences

The above “ignorability” rule works by considering omission of all occurrences of a particular
standard attribute token, such as noreturn, regardless of whether it occurs in its own double square
brackets or as part of an attribute-list such as [[noreturn, deprecated]]. We are not interested
in considering the consequences of omitting some but not all occurrences of noreturn in a given
program.

3.4 Consistency with original program

Attributes are allowed to have effects that cause a change in the observable behaviour of a program;
notably, [[no_unique_address]] does so by altering the memory layout of a class. However, any
such effects need to be optional. This is what we mean by “ignorability”: not that ignoring the

3



attribute will not change the behaviour of the program, but that the program you get without the
attribute is a valid and conforming version of the original program with the attribute. Note that
the effects of [[no_unique_address]] are optional. The non-static data member marked with
[[no_unique_address]] can share the address of another non-static data member or that of a
base class, but it doesn’t have to; therefore, an implementation could choose to not implement
the functionality of [[no_unique_address]] and still be conforming. If [[no_unique_address]]
would cause a mandatory change in class layout rather than an optional one, it could not be an
attribute.
By the same token, the existing feature alignas cannot be an attribute, because its effects on the
alignment of an object are mandatory, not optional. Indeed, alignas was initially proposed as an
attribute, but this was later reverted before C++11 was finalised [N3190].
Any core language feature that does not influence the observable behaviour of a program at
all, but affects only “non-behavioural” things like warnings or providing information to the
back-end is a good candidate for a standard attribute. Most existing standard attributes fall
into this category: [[carries_dependency]], [[deprecated]], [[fallthrough]], [[likely]],
[[unlikely]], [[maybe_unused]], and [[nodiscard]].

3.5 Compatibility with C

The C standard specifies the following rule for standard attributes:

A strictly conforming program using a standard attribute remains strictly conforming in the
absence of that attribute. [...] Standard attributes specified by this document can be parsed
but ignored by an implementation without changing the semantics of a correct program; the
same is not true for attributes not specified by this document.

The existing wording for C++, together with the additional wording we propose here, would create
a rule that is compatible with the above, but arguably more precise.

4 Wording
Modify [dcl.attr.grammar] as follows:

Given a well-formed program with well-defined behaviour, omitting all occurrences of an
attribute-token specified in this document shall result in a well-formed program whose observable
behaviour is consistent with a correct execution of the original program.
For an attribute-token (including an attribute-scoped-token) not specified in this document,
the behavior is implementation-defined. Any; any such attribute-token that is not recognized
by the implementation is ignored.

References

[N2761] Jens Maurer and Michael Wong. Towards support for attributes in C++ (Revision
6). http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2761.pdf, 2008-
09-18.

[N3190] Lawrence Crowl and Daveed Vandevoorde. C and C++ Alignment Compatibility. http:
//www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3190.htm, 2008-09-18.

[P1144R5] Arthur O’Dwyer. Object relocation in terms of move plus destroy. http://www.
open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1144r5.html, 2020-03-01.

4

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2761.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3190.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3190.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1144r5.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1144r5.html


[P1774R6] Timur Doumler. Portable assumptions. http://www.open-std.org/jtc1/sc22/wg21/
docs/papers/2022/p1774r6.pdf, 2022-02-15.

[P2461R1] Andrzej Krzemieński. Attribute-like syntax for contract annotations. http://www.
open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2487r0.html, 2021-11-12.

5

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p1774r6.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p1774r6.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2487r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2487r0.html

	1 Motivation
	2 Proposed rule
	3 Discussion
	4 Wording
	References

