Document number: = P2548R4

Date: 2022-11-13

Project: Programming Language C++

Audience: LEWG, LWG

Reply-to: Michael Florian Hava® <mfh.cpp@gmail.com>

copyable_function
Abstract

This paper proposes a replacement for function in the form of a copyable variant of
move_only function.

Tony Table
Before Proposed
auto lambda{[&]() /*const*/ { .. }}; auto lambda{[&]() /*const*/ { .. }};
ifunction<void(void)> func{lambda}; & |copyable function<void(void)> func@{lambda}; %4
const auto & ref{func}; const auto & refe{funce};
func(); « [funce(); <
ref(); « |refo(); //operator() is NOT const! p~4
copyable_function<void(void) const> funcl{lambda}; V4
const auto & refl{funcl};
funcl(); 4
refl(); //operator() is const! 4
auto lambda{[&]() mutable { .. }}; auto lambda{[&]() mutable { .. }};
ifunction<void(void)> func{lambda}; & |copyable_function<void(void)> func{lambda}; 4
const auto & ref{func}; const auto & ref{func};
func(); & [func(); 4
ref(); //operator() is const! I?V ref(); //operator() is NOT const! X
//this is the infamous constness-bug
copyable function<void(void) const> tmp{lambda}; X

Revisions

RO: Initial version
R1:

e Incorporated the changes proposed for move_only functionin [P2511R2].

e Added wording for conversions from copyable function to move only function.
R2:
e Removed changes adopted from [P2511R2] as that proposal didn’t reach consensus in the

2022-10 LEWG electronic polling.
R3: Updates after LEWG Review on 2022-11-08:

e Fixed requirements on callables in the design section — copy-construct-ability is sufficient.
e Removed open question on the deprecation of function.
e Replaced previously proposed conversion operators to move_only function.

1 RISC Software GmbH, Softwarepark 32a, 4232 Hagenberg, Austria, michael.hava@risc-software.at

1

mailto:mfh.cpp@gmail.com
http://wg21.link/P2511R2
http://wg21.link/P2511R2
michael.hava@risc-software.at

e Added section on conversions between standard library polymorphic function wrappers.
e Added section on potential allocator support.

R4: Updates after LEWG Review on 2022-11-11:

e Removed mandatory optimization for conversion to move_only function.

Motivation

C++11 added function, a type-erased function wrapper that can represent any copyable callable
matching the function signature R(Args. ..). Since its introduction, there have been identified several
issues —including the infamous constness-bug — with its design (see [N4159]).

P0288R9] introduced move_only function, a move-only type-erased callable wrapper. In addition to
dropping the copyable requirement, move_only function extends the supported signature to
R(Args...) consto (&|&&%)op Noexceptop and forwards all qualifiers to its call operator, introduces
a strong non-empty precondition for invocation instead of throwing bad_function_call and drops
the dependency to typeid/RTTI (there is no equivalent to function’s target_type() or target()).

Concurrently, [P0792R10] introduced function_ref, a type-erased non-owning reference to any
callable matching a function signature in the form of R(Args...) constop noexceptop. Like
move_only function, it forwards the noexcept-qualifier to its call operator. As function_ref acts
like a reference, it does not support ref-qualifiers and does not forward the const-qualifier to its call
operator.

As a result, function is now the only type-erased function wrapper not supporting any form of
qualifiers in its signature. Whilst amending function with support for ref/noexcept-qualifiers would
be a straightforward extension, the same is not true for the const-qualifier due to the long-standing
constness-bug. Without proper support for the const-qualifier, function would still be inconsistent
with its closest relative.

Therefore, this paper proposes to introduce a replacement to function in the form of
copyable_function, a class that closely mirrors the design of move _only function and adds
copyability as an additional affordance.

Design space

The main goal of this paper is consistency between the move-only and copyable type-erased function
wrappers. Therefore, we follow the design of move_only_ function very closely and only introduce
three extensions:

1. Adding a copy constructor
2. Adding a copy assignment operator
3. Requiring callables to be copy-constructible

Conversions between function wrappers

Given the proliferation of proposals for polymorphic function wrappers, LEWG requested an evaluation
of the ,conversion story” of these types. Note that conversions from function_ref always follow
reference semantics for obvious reasons.

http://wg21.link/N4159
https://wg21.link/P0288R9
http://wg21.link/P0792R10

To

function | move_only_function | copyable_function | function_ref
function
move_only_function x x
copyable_function
function_ref

From

It is recommended that implementors do not perform additional allocations when converting from a
copyable_function instantiation to a compatible move_only function instantiation, but this is left
as quality-of-implementation.

Concerning allocator support

After having reviewed R2, LEWG requested a statement about potential allocator support. As this
proposal aims for feature parity with move_only function (apart from the extensions mentioned
above) and considering the somewhat recent removal of allocator support from function [P0302], we
refrain from adding allocator support to copyable function. We welcome an independent paper
introducing said support to both classes.

Impact on the Standard
This proposal is a pure library addition.

Implementation Experience
The proposed design has been implemented at https://github.com/MFHava/P2548.

Proposed Wording
Wording is relative to [N4910]. Additions are presented like -, removals like -

[version.syn]
In [version.syn], add:

Adjust the placeholder value as needed to denote this proposal’s date of adoption.

[functional.syn]
In [functional.syn], in the synopsis, add the proposed class template:

// 22.10.17.4, move only wrapper
template<class... S> class move_only_ function; // not defined
template<class R, class... ArgTypes>
class move_only_function<R(ArgTypes...) cv ref noexcept(noex)>; // see below

S

// 22.10.18, searchers
template<class ForwardIterator, class BinaryPredicate = equal_to<>>
class default_searcher;

http://wg21.link/P0302
https://github.com/MFHava/P2548
http://wg21.link/N4910

[func.wrap]
In [func.wrap], insert the following section at the end of Polymorphic function wrappers:

Wi

Acknowledgements
Thanks to RISC Software GmbH for supporting this work. Thanks to Peter Kulczycki for proof reading

and discussions. Thanks to Matt Calabrese for helping to get conversions to move_only function to
work.

https://www.risc-software.at/

	Abstract
	Tony Table
	Revisions
	Motivation
	Design space
	Conversions between function wrappers
	Concerning allocator support

	Impact on the Standard
	Implementation Experience
	Proposed Wording
	[version.syn]
	[functional.syn]
	[func.wrap]

	Acknowledgements

