
Document Number: D2545R0
Date: 2022-02-11
Revises: None
Reply to: Paul E. McKenney

Meta
paulmckrcu@gmail.com

Why RCU Should be in C++26

Authors:
Paul McKenney, Michael Wong, Maged M. Michael, Andrew Hunter, Daisy Hollman, JF Bastien, Hans

Boehm, David Goldblatt, Frank Birbacher, Erik Rigtorp, Tomasz Kamiński

email:
paulmckrcu@fb.com, michael@codeplay.com, maged.michael@acm.org, andrewhhunter@gmail.com,

dhollman@google.com, cxx@jfbastien.com, hboehm@google.com, davidtgoldblatt@gmail.com,
frank.birbacher@gmail.com, erik@rigtorp.se, tomaszkam@gmail.com

© ISO/IEC D2545R0

Contents
1 Introduction 1

1.1 Proposed Entry to C++26 IS . 1
1.2 History . 1
1.3 Source-Code Access . 2
1.4 Acknowledgments . 2

2 Safe reclamation 3
2.1 General . 3
2.2 Read-copy update (RCU) . 4

Contents ii

© ISO/IEC D2545R0

1 Introduction
We propose RCU for inclusion into C++26. This paper contains proposed rationale to support RCU into
C++26 as well as the interface and wording for RCU, a technique for safe deferred reclamation.

1.1 Proposed Entry to C++26 IS
A near-superset of this proposal is implemented in the Folly RCU library. This library has used in production
for several years, so we have good implementation experience for the proposed variant of RCU.
This proposal is identical to that in Concurrency TS 2. We expect that the proposal in Concurrency TS 2
will change over time, for example, adding some of the features that are present in the Folly RCU library or
in the Linux kernel. Such features might include:

1. Multiple RCU domains. For example, SRCU provides these in the Linux kernel. However, RCU was in
the Linux for four years before this was needed, so it is not yet in the TS nor is it in the proposal for
C++26.

2. Special-purpose RCU implementations. For example, the Linux kernel has specialized implementations
for preemptible environments, single-CPU systems, as well as three additional implementations required
by the Linux kernel’s tracing and extended Berkeley Packet Filter (eBPF) use cases. However, none
of these seem applicable to userspace applications, so none of them are yet in the TS or yet in in the
proposal for C++26.

3. Polling grace-period-wait APIs. These allow non-blocking algorithms to interface with RCU grace
periods, for example, in the Linux kernel, they allow NMI handlers to do RCU updates. (NMI handlers
could do RCU readers from the get-go.) However, RCU was in the Linux kernel for more than a decade
before such APIs were needed, so they are not yet in the TS nor are they in the proposal for C++26.

4. Numerous efficiency-oriented APIs. For but one example, the Linux kernel has an alternative rcu_-
access_pointer() that can be used in place of rcu_dereference() (Linux-kernelese for “consume
load”) when the resulting pointer will not be dereferenced (for example, when it is only going to be
compared to NULL). But it is not clear which (if any) of these would be accepted into the Linux kernel
today, given the properties of modern computer hardware. Therefore, these are not yet in the TS nor
are they in the proposal for C++26.

The snapshot library described in P0561R5 (“RAII Interface for Deferred Reclamation”) provides an easy-to-
use deferred-reclamation facility applying only to a single object which is intended to be based upon either
RCU or Hazard Pointers. It cannot replace either RCU or Hazard Pointers.
The Hazard Pointers library described in D2530R0 (“Why Hazard Pointers Should Be in C++26”). As a very
rough rule of thumb, Hazard Pointers can be considered to be a scalable replacement for reference counters
and RCU can be considered to be a scalable replacement for reader-writer locking. A high-level comparison
of reference counting, Hazard Pointers, and RCU is displayed in Table 1.
Note that we are making this working paper available before Concurrency TS2 been published, which some
might feel is unconventional. On the other hand, Paul was asked to begin this effort in 2014, it is now 2022,
and C++ implementations have been used in production for some time, perhaps most notably the Folly RCU
library.

1.2 History
This paper is derived from N4895, which was in turn based on P1122R4.

Property Reference Counting Hazard Pointers RCU

Readers Slow and unscalable Fast and scalable Fast and scalable
Unreclaimed Objects Bounded Bounded Unbounded
Traversal Retries? If object deleted If object deleted Never
Reclamation latency? Fast Slow Slow

Table 1: High-Level Comparison of Deferred-Reclamation Techniques

§ 1.2 1

© ISO/IEC D2545R0

P1122R4 is a successor to the RCU portion of P0566R5, in response to LEWG’s Rapperswil 2018 request
that the two techniques be split into separate papers.
This is proposed wording for Read-Copy-Update [P0461], which is a technique for safe deferred resource
reclamation for optimistic concurrency, useful for lock-free data structures. Both RCU and hazard pointers
have been progressing steadily through SG1 based on years of implementation by the authors, and are in
wide use in MongoDB (for Hazard Pointers), Facebook, and Linux OS (RCU).
We originally decided to do both papers’ wording together to illustrate their close relationship, and similar
design structure, while hopefully making it easier for the reader to review together for this first presentation.
As noted above, they have been split on request.
This wording is based P0566r5, which in turn was based on that of on n4618 draft [N4618].

1.3 Source-Code Access
The Folly library is open source, and its RCU implementation may be accessed here:

— https://github.com/facebook/folly/blob/main/folly/synchronization/Rcu.h
— https://github.com/facebook/folly/blob/main/folly/synchronization/Rcu-inl.h
— https://github.com/facebook/folly/blob/main/folly/synchronization/Rcu.cpp

There is an additional reference implementation of this proposal. Unlike the Folly library’s version, this
reference implementation is not production quality. However, it is quite a bit simpler, having delegated the
difficult parts to the C-language userspace RCU library:
— https://github.com/paulmckrcu/RCUCPPbindings/tree/master/Test/paulmck
— https://liburcu.org

1.4 Acknowledgments
We owe special thanks to Jens Maurer, Arthur O’Dwyer, and Geoffrey Romer for their many contributions to
this effort.

§ 1.4 2

© ISO/IEC D2545R0

2 Safe reclamation [saferecl]
2.1 General [saferecl.general]
This clause adds safe-reclamation techniques, which are most frequently used to straightforwardly resolve
access-deletion races.

§ 2.1 3

© ISO/IEC D2545R0

2.2 Read-copy update (RCU) [saferecl.rcu]
2.2.1 General [saferecl.rcu.general]

1 RCU is a synchronization mechanism that can be used for linked data structures that are frequently read, but
seldom updated. RCU does not provide mutual exclusion, but instead allows the user to schedule specified
actions such as deletion at some later time.

2 A class type T is rcu-protectable if it has exactly one public base class of type rcu_obj_base<T,D> for some D
and no base classes of type rcu_obj_base<X,Y> for any other combination X, Y. An object is rcu-protectable
if it is of rcu-protectable type.

3 An invocation of unlock U on an rcu_domain dom corresponds to an invocation of lock L on dom if L is
sequenced before U and either
—(3.1) no other invocation of lock on dom is sequenced after L and before U or
—(3.2) every invocation of unlock U ′ on dom such that L is sequenced before U ′ and U ′ is sequenced before U

corresponds to an invocation of lock L′ on dom such that L is sequenced before L′ and L′ is sequenced
before U ′.

[Note 1 : This pairs nested locks and unlocks on a given domain in each thread. —end note]
4 A region of RCU protection on a domain dom starts with a lock L on dom and ends with its corresponding

unlock U .
5 Given a region of RCU protection R on a domain dom and given an evaluation E that scheduled another

evaluation F in dom, if E does not strongly happen before the start of R, the end of R strongly happens
before evaluating F .

6 The evaluation of a scheduled evaluation is potentially concurrent with any other such evaluation. Each
scheduled evaluation is evaluated at most once.

2.2.2 Header <rcu> synopsis [saferecl.rcu.syn]
namespace std::experimental::inline concurrency_v2 {

// 2.2.3, class template rcu_obj_base
template<class T, class D = default_delete<T>>

class rcu_obj_base;

// 2.2.4, class rcu_domain
class rcu_domain;

// 2.2.5, rcu_default_domain
rcu_domain& rcu_default_domain() noexcept;

// 2.2.6, rcu_synchronize
void rcu_synchronize(rcu_domain& dom = rcu_default_domain()) noexcept;

// 2.2.7, rcu_barrier
void rcu_barrier(rcu_domain& dom = rcu_default_domain()) noexcept;

// 2.2.8, rcu_retire
template<class T, class D = default_delete<T>>

void rcu_retire(T* p, D d = D(), rcu_domain& dom = rcu_default_domain());
}

2.2.3 Class rcu_obj_base [saferecl.rcu.base]
Objects of type T to be protected by RCU inherit from a specialization of rcu_obj_base<T,D>.

template<class T, class D = default_delete<T>>
class rcu_obj_base {
public:

void retire(D d = D(), rcu_domain& dom = rcu_default_domain()) noexcept;
protected:

rcu_obj_base() = default;
private:

D deleter ; // exposition only
};

§ 2.2.3 4

© ISO/IEC D2545R0

1 A client-supplied template argument D shall be a function object type C++20 §20.14 for which, given a value
d of type D and a value ptr of type T*, the expression d(ptr) is valid and has the effect of disposing of the
pointer as appropriate for that deleter.

2 The behavior of a program that adds specializations for rcu_obj_base is undefined.
3 D shall meet the requirements for Cpp17DefaultConstructible and Cpp17MoveAssignable.
4 T may be an incomplete type.
5 If D is trivially copyable, all specializations of rcu_obj_base<T,D> are trivially copyable.

void retire(D d = D(), rcu_domain& dom = rcu_default_domain()) noexcept;

6 Mandates: T is an rcu-protectable type.
7 Preconditions: *this is a base class subobject of an object x of type T. The member function rcu_-

obj_base<T,D>::retire was not invoked on x before. The assignment to deleter does not throw an
exception. The expression deleter (addressof(x)) has well-defined behavior and does not throw an
exception.

8 Effects: Evaluates deleter = std::move(d) and schedules the evaluation of the expression delet-
er(addressof(x)) in the domain dom.

9 Remarks: It is implementation-defined whether or not scheduled evaluations in dom can be invoked by
the retire function.
[Note 1 : If such evaluations acquire resources held across any invocation of retire on dom, deadlock can occur.
—end note]

2.2.4 Class rcu_domain [saferecl.rcu.domain]
This class meets the requirements of Cpp17BasicLockable C++20 §32.2.5.2 and provides regions of RCU
protection.
[Example 1 :

std::scoped_lock<rcu_domain> rlock(rcu_default_domain());

—end example]
class rcu_domain {
public:

rcu_domain(const rcu_domain&) = delete;
rcu_domain& operator=(const rcu_domain&) = delete;

void lock() noexcept;
void unlock() noexcept;

};

The functions lock and unlock establish (possibly nested) regions of RCU protection.

2.2.4.1 rcu_domain::lock [saferecl.rcu.domain.lock]

void lock() noexcept;

1 Effects: Opens a region of RCU protection.
2 Remarks: Calls to the function lock do not introduce a data race (C++20 §6.9.2.1) involving *this.

2.2.4.2 rcu_domain::unlock [saferecl.rcu.domain.unlock]

void unlock() noexcept;

1 Preconditions: A call to the function lock that opened an unclosed region of RCU protection is
sequenced before the call to unlock.

2 Effects: Closes the unclosed region of RCU protection that was most recently opened.
3 Remarks: It is implementation-defined whether or not scheduled evaluations in *this can be invoked

by the unlock function.
[Note 1 : If such evaluations acquire resources held across any invocation of unlock on *this, deadlock can
occur. —end note]

Calls to the function unlock do not introduce a data race involving *this.

§ 2.2.4.2 5

© ISO/IEC D2545R0

[Note 2 : Evaluation of scheduled evaluations can still cause a data race. —end note]

2.2.5 rcu_default_domain [saferecl.rcu.default.domain]
rcu_domain& rcu_default_domain() noexcept;

1 Returns: A reference to the default object of type rcu_domain. A reference to the same object is
returned every time this function is called.

2.2.6 rcu_synchronize [saferecl.rcu.synchronize]
void rcu_synchronize(rcu_domain& dom = rcu_default_domain()) noexcept;

1 Effects: If the call to rcu_synchronize does not strongly happen before the lock opening an RCU
protection region R on dom, blocks until the unlock closing R happens.

2 Synchronization: The unlock closing R strongly happens before the return from rcu_synchronize.

2.2.7 rcu_barrier [saferecl.rcu.barrier]
void rcu_barrier(rcu_domain& dom = rcu_default_domain()) noexcept;

1 Effects: May evaluate any scheduled evaluations in dom. For any evaluation that happens before the
call to rcu_barrier and that schedules an evaluation E in dom, blocks until E has been evaluated.

2 Synchronization: The evaluation of any such E strongly happens before the return from rcu_barrier.

2.2.8 Template rcu_retire [saferecl.rcu.retire]
template<class T, class D = default_delete<T>>
void rcu_retire(T* p, D d = D(), rcu_domain& dom = rcu_default_domain());

1 Mandates: is_move_constructible_v<D> is true.
2 Preconditions: D meets the Cpp17MoveConstructible and Cpp17Destructible requirements. The ex-

pression d1(p), where d1 is defined below, is well-formed and its evaluation does not exit via an
exception.

3 Effects: May allocate memory. It is unspecified whether the memory allocation is performed by invoking
operator new. Initializes an object d1 of type D from std::move(d). Schedules the evaluation of
d1(p) in the domain dom.
[Note 1 : If rcu_retire exits via an exception, no evaluation is scheduled. —end note]

4 Throws: Any exception that would be caught by a handler of type bad_alloc. Any exception thrown
by the initialization of d1.

5 Remarks: It is implementation-defined whether or not scheduled evaluations in dom can be invoked by
the rcu_retire function.
[Note 2 : If such evaluations acquire resources held across any invocation of rcu_retire on dom, deadlock can
occur. —end note]

§ 2.2.8 6

	1 Introduction
	1.1 Proposed Entry to C++26 IS
	1.2 History
	1.3 Source-Code Access
	1.4 Acknowledgments

	2 Safe reclamation
	2.1 General
	2.2 Read-copy update (RCU)
	2.2.1 General
	2.2.2 Header <rcu> synopsis
	2.2.3 Class rcu_obj_base
	2.2.4 Class rcu_domain
	2.2.4.1 rcu_domain::lock
	2.2.4.2 rcu_domain::unlock

	2.2.5 rcu_default_domain
	2.2.6 rcu_synchronize
	2.2.7 rcu_barrier
	2.2.8 Template rcu_retire

