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Revisions 
R1 Rebase wording on P1885R9. Remove proposed normative guidance. Fully specify 

wording changes. Rework wording to decouple exposition-only  
from the  enumeration.  

Introduction 
As currently proposed [1],  refers only to the Internet Assigned Numbers Authority 

(IANA) Character Sets database [2].  This registry is known to be incomplete and, in some respects, 

does not provide a perfect match to the requirements of C++ [2]. It is possible that future 

enhancements to  may wish to refer to additional/alternative registries. 

Alter the names of  facilities that directly map IANA database data to explicitly 

reference .  

Design 

Do not rename  
The  member function currently returns a range of alternative names 

for a particular . Although this range is required to include the aliases registered with 

IANA, it may also include additional, implementation-defined aliases. 

This means that there is no need to rename this to ; the contract is already 

sufficiently wide to accommodate aliases from other registries. 

Normative guidance for future compatibility 
Currently, the exposition-only member variables of  contain only a 

 without scope for disambiguation of IDs or the capacity for representing non-

IANA IDs, if required in the future. 

This is adequate for now. Ideally we should provide normative guidance that implementors should 

consider the possibility of additional/alternative text encoding registries being used in the future and 

make accommodations in the layout of , but anticipated theoretical future changes 

to an API are not implementable. 

Instead, introduce an exposition only private enumeration type which represents an 

implementation-defined numeric identifier scheme which  maps to 

. 

As a slight specification cleanup, define almost all operations on a  in terms of calls to 

, with only  making reference the exposition-only  member variable.  
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Proposed wording 

Editing notes 
All wording is relative to P1885R9 [4]. 

Update [text.encoding]: 

 

 

A registered character encoding is a character encoding scheme in the IANA Character Sets registry. 

[ Note: The IANA Character Sets registry refers to character sets rather than character encodings. — 

end note ] 

The set of known registered character encoding contains every registered character encoding 

specified in the IANA Character Sets registry except for the following: 
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• NATS-DANO (33) 

• NATS-DANO-ADD (34) 

Each known registered character encoding is identified by an enumerator in 

, has a unique primary name and has a set of zero or more aliases. The 

primary name of a registered character encoding is the name of that encoding specified in the IANA 

Character Sets registry. 

The set of aliases of a registered character encoding is an implementation-defined superset of the 

aliases specified in the IANA Character Sets registry. No two registered character encodings share 

any identical alias when compared by . 

[ Note: The   enumeration contains an enumerator for each known 

registered character encoding. For each encoding, the corresponding enumerator is derived from 

the alias beginning with ”cs”, as follows 

• the ”cs” prefix is removed from each name 

•  is mapped to   

•  is mapped to   

— end note ] 

How a  object is determined to be representative of a character encoding scheme 

implemented in the translation or execution environment is implementation-defined. 

An object e of type text_encoding maintains the following invariants: 

•  is true if and only if  

 is true. 

•   is true if  

 is true. 

Recommended practice: 

• Implementations should not consider registered encodings to be interchangeable [Example: 

Shift_JIS and Windows-31J denote different encodings]. 

• Implementations should not refer to a registered encoding to describe another similar yet 

different non-registered encoding unless there is a precedent on that implementation 

(Example: Big5). 

Let  be a function that returns true if the two 

strings a and b encoded in the ordinary literal encoding are equal ignoring, from left-to-right, 

• all elements which are not digits or letters [character.seq.general], 

• character case, and 

• any sequence of one or more ’0’ character not immediately preceded by a sequence 

consisting of a digit in the range [1-9] optionally followed by one or more elements which 

are not digits or letters. 

[ Note: This comparison is identical to the ”Charset Alias Matching” algorithm described in the 

Unicode Technical Standard 22. — end note ] 

[ Example: 
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— end example ] 

Postconditions: 

•  is true 

•  is true 

Preconditions: 

•  represents a string in the ordinary literal encoding, 

• all elements in  are in the basic source character set, 

•  is true, and 

•  is false. 

Postconditions: 

• If there exists a primary name or alias a of a known registered character encoding such 

that  is true,  returns mib_ has the value of the 

enumerator of  associated with that registered character encoding. Otherwise, 

is true. 

•  is true 

Preconditions:  has the value of one of the enumerators of . 

Postconditions: 

•  is true. 

• If  is true, 

 is true. Otherwise, 

. 

Returns: The value of the enumerator of  corresponding to . 

[ … unchanged content omitted … ] 

Returns: environment() == id_ 

Update [text.encoding.comp]: 

Returns: 
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If   

is true, then  

Otherwise, a.  == b. . 

Returns: encoding.  == mib. 

Remarks: This operator induces an equivalence relation on its arguments if and only if 

 is true. 
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