
Forward compatibility of text_encoding
with additional encoding registries

Document No. P2498 R1 Date 2022-01-15
Reply To Peter Brett pbrett@cadence.com Audience: SG16, LEWG

Revisions
R1 Rebase wording on P1885R9. Remove proposed normative guidance. Fully specify

wording changes. Rework wording to decouple exposition-only
from the enumeration.

Introduction
As currently proposed [1], refers only to the Internet Assigned Numbers Authority

(IANA) Character Sets database [2]. This registry is known to be incomplete and, in some respects,

does not provide a perfect match to the requirements of C++ [2]. It is possible that future

enhancements to may wish to refer to additional/alternative registries.

Alter the names of facilities that directly map IANA database data to explicitly

reference .

Design

Do not rename
The member function currently returns a range of alternative names

for a particular . Although this range is required to include the aliases registered with

IANA, it may also include additional, implementation-defined aliases.

This means that there is no need to rename this to ; the contract is already

sufficiently wide to accommodate aliases from other registries.

Normative guidance for future compatibility
Currently, the exposition-only member variables of contain only a

 without scope for disambiguation of IDs or the capacity for representing non-

IANA IDs, if required in the future.

This is adequate for now. Ideally we should provide normative guidance that implementors should

consider the possibility of additional/alternative text encoding registries being used in the future and

make accommodations in the layout of , but anticipated theoretical future changes

to an API are not implementable.

Instead, introduce an exposition only private enumeration type which represents an

implementation-defined numeric identifier scheme which maps to

.

As a slight specification cleanup, define almost all operations on a in terms of calls to

, with only making reference the exposition-only member variable.

mailto:pbrett@cadence.com?subject=Re:%20P1892R0%20Extended%20locale-specific%20presentation%20specifiers%20for%20std::format
mailto:pbrett@cadence.com?subject=Re:%20P1892R0%20Extended%20locale-specific%20presentation%20specifiers%20for%20std::format

P2498 R1

2

Proposed wording

Editing notes
All wording is relative to P1885R9 [4].

Update [text.encoding]:

A registered character encoding is a character encoding scheme in the IANA Character Sets registry.

[Note: The IANA Character Sets registry refers to character sets rather than character encodings. —

end note]

The set of known registered character encoding contains every registered character encoding

specified in the IANA Character Sets registry except for the following:

P2498 R1

3

• NATS-DANO (33)

• NATS-DANO-ADD (34)

Each known registered character encoding is identified by an enumerator in

, has a unique primary name and has a set of zero or more aliases. The

primary name of a registered character encoding is the name of that encoding specified in the IANA

Character Sets registry.

The set of aliases of a registered character encoding is an implementation-defined superset of the

aliases specified in the IANA Character Sets registry. No two registered character encodings share

any identical alias when compared by .

[Note: The enumeration contains an enumerator for each known

registered character encoding. For each encoding, the corresponding enumerator is derived from

the alias beginning with ”cs”, as follows

• the ”cs” prefix is removed from each name

• is mapped to

• is mapped to

— end note]

How a object is determined to be representative of a character encoding scheme

implemented in the translation or execution environment is implementation-defined.

An object e of type text_encoding maintains the following invariants:

• is true if and only if

 is true.

• is true if

 is true.

Recommended practice:

• Implementations should not consider registered encodings to be interchangeable [Example:

Shift_JIS and Windows-31J denote different encodings].

• Implementations should not refer to a registered encoding to describe another similar yet

different non-registered encoding unless there is a precedent on that implementation

(Example: Big5).

Let be a function that returns true if the two

strings a and b encoded in the ordinary literal encoding are equal ignoring, from left-to-right,

• all elements which are not digits or letters [character.seq.general],

• character case, and

• any sequence of one or more ’0’ character not immediately preceded by a sequence

consisting of a digit in the range [1-9] optionally followed by one or more elements which

are not digits or letters.

[Note: This comparison is identical to the ”Charset Alias Matching” algorithm described in the

Unicode Technical Standard 22. — end note]

[Example:

P2498 R1

4

— end example]

Postconditions:

• is true

• is true

Preconditions:

• represents a string in the ordinary literal encoding,

• all elements in are in the basic source character set,

• is true, and

• is false.

Postconditions:

• If there exists a primary name or alias a of a known registered character encoding such

that is true, returns mib_ has the value of the

enumerator of associated with that registered character encoding. Otherwise,

is true.

• is true

Preconditions: has the value of one of the enumerators of .

Postconditions:

• is true.

• If is true,

 is true. Otherwise,

.

Returns: The value of the enumerator of corresponding to .

[… unchanged content omitted …]

Returns: environment() == id_

Update [text.encoding.comp]:

Returns:

P2498 R1

5

If

is true, then

Otherwise, a. == b. .

Returns: encoding. == mib.

Remarks: This operator induces an equivalence relation on its arguments if and only if

 is true.

Acknowledgements
Thank you to Tom Honermann for suggesting making the IANA link explicit in identifiers and for

proposing an improved wording strategy, and to Jens Maurer for highlighting the downsides of the

way that IANA registry text encodings are specified.

References

[1] C. Jabot and P. Brett, “P1885R9 Naming Text Encodings to Demystify Them,” 15 Jan 2022.

[Online]. Available: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p1885r9.pdf.

[2] N. Freed and M. Dürst, “Character Sets,” Internet Assigned Numbers Authority, 2021.

[3] J. Maurer, “P2491R0 Text encodings follow-up,” 15 Nov 2021. [Online]. Available:

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2491r0.html.

