
Portable assumptions

Timur Doumler (papers@timur.audio)

Document #: P1774R6
Date: 2022-02-15
Project: Programming Language C++
Audience: Core Working Group

Abstract

We propose a standard facility providing the semantics of existing compiler built-ins such as
__builtin_assume (Clang) and __assume (MSVC, ICC). It gives the programmer a way to
allow the compiler to assume that a given C++ expression is true, without evaluating it, and to
optimise based on this assumption. This is very useful for high-performance and low-latency
applications in order to generate both faster and smaller code.

1 Motivation
All major compilers offer built-ins that give the programmer a way to allow the compiler to assume
that a given C++ expression is true, and to optimise based on this assumption. They are very useful
for high-performance and low-latency applications in order to generate both faster and smaller code.
Use cases include more efficient code generation for mathematical operations, better vectorisation
of loops, elision of unnecessary branches, function calls, and more.
Consider the following function (example from [Regehr2014]), using a Clang compiler built-in:

int divide_by_32(int x) {
__builtin_assume(x >= 0);
return x/32;

}

Without the assumption, the compiler has to generate code that works correctly for all possible
input values. With the assumption, there is no need to generate code that handles the case of a
negative numerator. The calculation can therefore be performed using a single instruction (shift
right by 5 bits). Here is the output generated by Clang with -O3:

Without __builtin_assume:
mov eax, edi
sar eax, 31
shr eax, 27
add eax, edi
sar eax, 5
ret

With __builtin_assume:
mov eax, edi
shr eax, 5
ret

1

mailto:papers@timur.audio

Assumptions are a useful expert-level feature and have been existing practice in C++ for many
years. All major compilers offer this functionality by providing the following built-ins:

— MSVC and ICC have __assume(expr);

— Clang has __builtin_assume(expr);

— GCC does not have an assumption built-in, but it can be emulated as follows:
if (expr) {} else { __builtin_unreachable(); }

Macros like this are currently used in an attempt to make assumptions portable:

#if defined(__clang__)
#define ASSUME(expr) __builtin_assume(expr)

#elif defined(__GNUC__) && !defined(__ICC)
#define ASSUME(expr) if (expr) {} else { __builtin_unreachable(); }

#elif defined(_MSC_VER) || defined(__ICC)
#define ASSUME(expr) __assume(expr)

#endif

Unfortunately, this has slightly different semantics on all compilers. On GCC, this will evaluate1

expr , while on the other compilers, expr is not evaluated, only ODR-used; Clang’s built-in will
error out if expr contains a top-level comma, while on the other compilers, it won’t; Clang and ICC
will ignore non-constant expressions inside the built-in during constant evaluation, while MSVC
errors out on them; and so on. And of course, there are also all the problems associated with
macros. Most importantly, while compiler documentation gives us an idea of how to work with the
assumption built-ins, the exact semantics of assumptions are not properly defined anywhere.
The goal of this proposal is to standardise assumptions in order to make them portable. We propose
a unified standard syntax for assumptions as well as unified, precisely defined semantics, in a
way that fits well into the existing C++ standard and is compatible with all existing compiler
implementations (including compilers that do not have an assumption facility).
Examples of how assumptions affect code generation on existing compilers are given in section 2. In
section 3, we discuss the proposed syntax (considered, but not proposed alternatives are listed in
section 3.2). Section 4 is dedicated to the proposed semantics and all its subtleties. In section 5, we
summarise the history of standardising assumptions and discuss related work such as contracts,
assertions, and std::unreachable. Previous WG21 subgroup polls on this proposal are listed in
section 6. Section 7 contains the proposed wording.

2 Examples
Many basic examples for assumption usage can be found in [Regehr2014] and [P2064R0], including
elimination of loop branches and more efficient instructions generated for mathematical expressions.
We won’t repeat those here, but we will add a couple other interesting examples.
All examples in this section have been tested on Compiler Explorer with the latest2 trunk versions
of MSVC, ICC, Clang and GCC, using the highest optimisation setting available (/O2 and -O3,
respectively) and the ASSUME macro shown above.

1At least notionally; in practice, if the evaluation of expr has no side effects, it will often get optimised out.
2At the time of writing.

2

2.1 Limiter

Consider looping over a range of floats and clamping all values to the range [-1, 1]. This operation
is often used in audio processing and is known as a limiter :

void limiter(float* data, size_t size) {
for (size_t i = 0; i < size; ++i)

data[i] = std::clamp(data[i], -1.0f, 1.0f);
}

Often, such data is subject to invariants which are guaranteed to hold, but this information is
invisible to the optimiser (for example because the code is too complex for the optimiser to see
through, there is a TU boundary in between, or the invariants are properties of the file format or
network protocol used). We can inject such invariants via assumptions. In this example, we inject
the knowledge that data buffers contain at least 32 frames and the buffer size is a multiple of 32 (a
common scenario in audio processing), and that the data does not contain NaNs or infinity:

void limiter(float* data, size_t size) {
ASSUME(size > 0);
ASSUME(size % 32 == 0);

for (size_t i = 0; i < size; ++i) {
ASSUME(std::isfinite(data[i]));
data[i] = std::clamp(data[i], -1.0f, 1.0f);

}
}

On all compilers except ICC, using ASSUME leads to significantly less code being emitted (see Figure
1, left panel). With the injected assumptions about the array size, we get a better optimised
vectorised loop with the prologue and epilogue eliminated. Additionally, both MSVC and GCC
manage to eliminate unnecessary code inside std::clamp.
However, interestingly, on GCC (the only surveyed compiler that lacks an assumption built-in), for
some reason the assumption containing std::isfinite interferes with the auto-vectoriser, and as
a result SIMD is no longer used inside the loop if this assumption is present. This is actually a
good argument for standardising assumptions, because evidently, the emulation we can achieve on
GCC today with __builtin_unreachable() is suboptimal3.

Figure 1: Number of instructions generated by each compiler with and without assumptions.

3Thanks to Peter Dimov for pointing this out.

3

2.2 Refcounted smart pointer

Here is another, somewhat less obvious example, contributed by Peter Dimov:
void destroy() noexcept;

struct Sp {
int* pn;

Sp (const Sp& r) noexcept : pn(r.pn) {
ASSUME(*pn >= 1);
++*pn;

}

~Sp() {
if (--*pn == 0)
destroy();

}
};

void g1(Sp p) {}

void g2(Sp p) {
g1(p);

}

where Sp is a reference-counted smart pointer.
In the copy constructor we know that there is at least one reference, namely r, so we can assume
that the reference count is at least one. This assumption enables the compiler to optimise out the
reference count increments and decrements and the conditional calls to destroy entirely. Both GCC
and Clang perform this optimisation, while on MSVC and ICC the assumptions don’t significantly
change the emitted code (see Figure 1, right panel).

3 Syntax

3.1 Proposed

We propose to spell assumptions as an attribute:
[[assume(expr)]];

First of all, we propose that the word “assume” is used in the spelling this feature. This is the name
already used in existing built-ins, therefore choosing it means standardising existing practice. This
name will be least surprising and most self-explanatory to the user.
Using standard attribute syntax means that assumptions are backwards-compatible with a compiler
that does not support this feature.
Making assumptions an attribute makes it clear that assumptions share an important property with
the other C++ attributes: given a valid C++ program that contains the attribute, ignoring it does
not change the observable semantics of such a program (see [P2552R0] for a thorough discussion of
the ignorability of standard attributes).
It is further consistent with existing optimisation-related attributes ([[likely]], [[unlikely]],
[[carries_dependency]]) as well as existing attributes that increase the space of undefined
behaviour in a C++ program ([[noreturn]]). More generally, attributes tend to target the
back-end of the compiler and/or other tools in the C++ ecosystem, rather than the front-end. This
is true for assumptions as well, which are targeting the optimiser. Therefore, assumptions should
be an attribute.

4

Attribute syntax has the least impact on the existing core language as opposed to the alternatives
discussed below, as it avoids adding any new syntax or grammar and therefore does not add more
complexity to the language.
Finally, the attribute syntax would also allow to add this feature to the C language with the same
spelling (SG22 voted in favour of this; see polls in Section 6). Note that the existing assumption
built-ins work in C in the same way they do in C++.
Herb Sutter argues in [P2064R0] against this attribute syntax, saying that it would “make assumes
awkward to write in the one place they should appear, which is a statement”, and that it “would
allow assumes to be written outside of function bodies”. Neither of these are true. We specify
[[assume(expr)]] to be an attribute that can only be applied to a null statement, just like we
already do with [[fallthrough]]. The effect of this is that it can only appear on its own, as a
statement, followed by a semicolon, and only inside a function body, which is exactly the intended
use.

3.2 Alternatives considered (not proposed)

3.2.1 New syntax

We explored syntax involving a colon, such as [[assume: expression]], the syntax used in
[P0542R5] for contracts, and other variations that deviate from existing C++ attribute grammar.
We do not see any benefit of introducing a novel syntax to C++ over using existing attribute
syntax. New syntax would increase the complexity of C++ and require otherwise unnecessary
changes to the C++ grammar, making it harder to add assumptions to existing code due to lack of
backwards-compatibility, while not giving us anything that we can’t do just as well with attribute
syntax (however, see discussion in section 4.7).
In addition, using syntax too similar to that used by contracts-related proposals is actively harmful:
assumptions are a feature completely separate from contracts (see section 5.1) and assertions (see
section 5.3), and the syntax should therefore be separate from them as well.

3.2.2 Keyword

An assumption could be described as an operator, somewhat similar to decltype(expr), where
decltype is a keyword and expr is an unevaluated operand. We therefore considered to add a new
keyword for assumptions, so that the spelling becomes:

assume(expression)

We could also spell such a keyword differently. [P2064R0] suggests the spelling unsafe_assume to
highlight that this is a narrow, low-level, expert-only feature, with the potential to inject undefined
behaviour into an otherwise valid program, and should therefore be used with great care.
However, for exactly this reason, we believe that a new keyword is not the right approach. Adding
a new keyword is a very significant change to the language. A narrow, expert-only feature that will
only be used by a small fraction of developers does not justify a new keyword.

3.2.3 Macro

Instead of introducing a keyword, we could introduce an assume macro, analogous to how assert
is already defined as a macro (and again, we could spell it in different ways). However, macros are
known to cause many problems. Their lack of scoping can lead to name clashes, the preprocessor
grammar makes it impossible to use curly braces inside the expression, etc. For these and other
reasons, modern C++ tries to minimise the use of macros. We don’t see any good reason to deviate
from this principle.

5

3.2.4 “Magic” library function

At first glance, it seems very attractive if we could spell an assumption as a “magic” library function:
std::assume(expression);

Herb Sutter [P2064R0] and John Lakos (personal communication, 2019) have both argued for such
an approach. However, a deeper analysis reveals that this is not a viable route. Making assumptions
a function would introduce a weird novelty into the C++ language: something that is syntactically
a function call, yet does not evaluate its argument. This would be very different in nature to all
existing “magic” library functions. Apart from not evaluating the argument of the function call,
such a function would differ from other C++ language functions in many other ways. It would
look like a standard C++ function, but it would behave like built-ins such as __builtin_assume
behave today: the only thing that you can do with them is to directly call them. You can’t take
their address, you can’t assign them to a function pointer, etc. By making assumptions a function,
we would essentially be saying that it’s a function but it’s so special that the only properties it
shares with an actual function is that it has a name and an argument list. It would effectively be a
namespaced keyword.
Significant core language changes would be needed to make such a novelty work, adding more
complexity to a fundamental part of the core language (what is a function call?). We do not believe
that assumptions come anywhere close to justifying such changes to the language. The proposed
attribute syntax avoids all this complexity by using a mechanism that already exists in the language.
It has been pointed out that the spelling std::assume would be consistent with the related
std::assume_aligned, which was adopted for C++20. However, as should be clear from the above
discussion, they are fundamentally different. For std::assume_aligned, unlike for an assumption,
the argument may be evaluated, just like for any other function call in C++. The problem described
above does therefore not arise for std::assume_aligned (or any other existing “magic” library
function in C++).

4 Proposed semantics
We corresponded with compiler engineers from MSVC, GCC, Clang, ICC, and EDG, to make
sure that the semantics proposed here for standard C++ are implementable on all these compilers
and are compatible with the de-facto semantics of all the existing assumption built-ins. We also
incorporated feedback from all previous rounds of EWG review as well as discussions on the WG21
reflectors.

4.1 Constraints on the attribute argument clause

The argument clause of an assume attribute must be present and must contain a single expression
contextually convertible to bool. The proposed specification requires this expression to be an
assignment-expression, rather than the top-level expression grammar production. This has the effect
that top-level commas are not allowed.
There are three reasons for this. First, if we were to allow writing [[assume(expr1, expr2)]], a
user might erroneously read this as “expr1 and expr2 are both assumed”, whereas in reality, only
expr2 is assumed.
Second, what [[assume(expr1, expr2)]] is actually saying is “assume expr2 after expr1 has
been evaluated just for its side effects”. Since assumed expressions are not actually evaluated,
reasoning about side effects can get confusing (see discussion in section 4.5) and such assumptions
should be used with special care. It is therefore preferable to make this more explicit and more
difficult to spell by requiring an extra pair of parentheses.

6

Third, there is no consistent existing practice to allow top-level commas. Clang does not accept
them in its __builtin_assume, while MSVC and ICC do accept them in their __assume. However,
according to Gabriel Dos Reis, “the ‘acceptance’ by MSVC is a parser accident – don’t use it as
existing practice to standardise”, and we decided to follow his advice.
In [P2507R1], Peter Brett argues that we could go down one more level in the grammar production
and require the expression to be a conditional-expression. This would additionally exclude expressions
containing an assignment operator, such as [[assume(x = 1)]], as well as yield-expressions4.
We are currently not aware of any use case where assuming the result of an assignment expression
would be useful: it would most likely be a typo for [[assume(x == 1)]]. So on the one hand,
excluding this case seems like a good idea (even though the user would still have plenty of other
ways to write nonsensical expressions inside an assumption).
On the other hand, unlike with top-level commas, there is consistent existing practice to make
this well-formed: __builtin_assume(x = 1) will compile on Clang, and __assume(x = 1) will
compile on both MSVC and ICC, and all three behave correctly5. Choosing assignment-expression
(proposed here) over conditional-expression therefore follows existing practice. Moreover, it is at
least hypothetically conceivable that there could be a use case for [[assume(co_yield value)]]6.
We do not see a good reason to exclude cases like this by making the grammar of assumptions more
specific than it has to be.

4.2 The expression is not evaluated

The expression inside an assumption is unevaluated, like for example the operand of decltype.
This is a fundamental property of assumptions and followed by all existing assumption built-ins.
The expression is assumed without checking it.
Expressions with side effects are allowed inside an assumption, but any such side effects will not
be executed and will not affect the behaviour of the program. This is compatible with both the
semantics of attributes in C++ and the semantics of existing assume built-ins (for an in-depth
discussion of assumptions with side effects, see section 4.5).
GCC is currently the only major compiler that doesn’t have an assumption built-in and therefore
doesn’t provide a way to express assumptions with unevaluated expression semantics. In GCC, we
currently have to emulate assumptions like this:

if (expr) {} else { __builtin_unreachable(); }

which evaluates expr. However, there is an easy path for GCC to implement conforming assumption
semantics using their existing facilities. The strategy is as follows. First, it can check whether expr
can have side effects if evaluated (GCC has a facility for this). If it can prove that it cannot, it means
that evaluation of the expression won’t affect the observable behaviour of the program. Under the
as-if rule, it can then express the assumption in terms of its existing __builtin_unreachable().
Instructions emitted for evaluating the expression will typically be optimised out again. If it cannot
prove that expr is free of side effects, it can simply ignore the assumption.
Ignoring assumptions altogether is also a conforming implementation. A trivial implementation of
assumptions is therefore possible on any C++ compiler. The only requirement is that the assumed
expression is checked for well-formedness (see section 4.7).

4Note that throw-expression, the other possible grammar production under assignment-expression, is already
excluded due to the requirement that the expression shall be contextually convertible to bool.

5__assume(x = 1) is a tautology, since evaluating this expression would always return 1, and therefore equivalent
to __assume(true), i.e. a null statement. Conversely, __assume(x = 0) is equivalent to __assume(false), which in
turn is equivalent to __builtin_unreachable(). In both cases, x is not actually being modified.

6Thanks to Mathias Stearn for pointing this out.

7

4.3 Assumptions that would not evaluate to true cause undefined behaviour

The expression inside the argument clause of an assumption is not evaluated, however the optimiser
may analyse it, and deduce information from that analysis that it can use to optimise the program.
The crucial property of an assumption is that if the expression would evaluate to true at the point
where the assumption appears, the assumption has no effect, otherwise the behaviour is undefined.
This gives the compiler the freedom to optimise away any code path that could be reached if
the assumption were not true. This includes so-called “time travel” optimisation. Consider the
following function (example from [P2064R0]):

int f(int j) {
int i = 42;
if (j == 0)

i = 0;

[[assume(j != 0)]];
return i;

}

The proposed semantics allow the optimiser to assume that j != 0 was already true before the
code reached the assumption, since j was not modified. It can therefore remove the branch before
the assumption, and reduce the whole function to return 42. This is merely specifying existing
practice: both GCC and Clang actually perform this optimisation.
Because the expression is never evaluated, it is never checked. This is a common misconception
about the semantics of assumptions. The implementation will not try to determine whether or not
the expression would evaluate to true; there is no “hypothetical evaluation” of the unevaluated
expression or anything along those lines. Instead, it will assume that the expression would evaluate
to true at the point where the assumption appears, and optimise based on that assumption.
There is a subtle difference between behaviour being undefined if the expression would evaluate to
false, or if the expression would not evaluate to true. The latter (proposed here) also includes
the assumption that the expression would actually return a value, not throw an exception, and not
exhibit undefined behaviour if it were evaluated. This enlarges the space of assumptions that can
be stated by the programmer7. Undefined behaviour inside the assumed expression is therefore
effectively allowed to escape the assumption, despite the fact that the expression is not evaluated.

4.4 Assumptions ODR-use their argument

At first glance, this requirement seems unnecessary. If the argument of an assumption is not
evaluated, only analysed, why would we want to specify that it is ODR-used? ODR-use means
that, even if the assumption is otherwise ignored, the assumed expression will trigger template
instantiations.
The reason is that all existing implementations of assumptions require ODR-use, Implementing
assumptions without ODR-use of the argument would be extremely difficult, and to our knowledge,
such an implementation does not exist.
MSVC, ICC, and Clang all follow the same basic principle to implement assumptions. The compiler
actually generates intermediate representation for the expression inside the assumption (which
requires ODR-use). This code is then used during optimisation of the program. At a later stage of
the optimiser, the assumption-related code is then stripped out again (the exact mechanics of this
vary from compiler to compiler).
In practice, this should not have any negative impact. “Stateful metaprogramming” that depends
on template instantiations is discouraged, and CWG has plans to make it ill-formed in the future.

7Thanks to Joshua Berne for pointing this out.

8

Note also that ODR-using the expression means you cannot use functions in an assumption that
have a declaration but no definition.

4.5 Semantics of side effects

Assuming expressions with side effects is occasionally useful (consider [[assume(++ptr != end)]]).
MSVC, Clang, and ICC all allow to write such assumptions, and at least MSVC uses them for some
optimisations. But at first glance, it does not seem obvious how to formally define the semantics of
such an assumption in terms of the C++ abstract machine. If ptr is not actually incremented at
the point where the assumption occurs, how can we reason about a counterfactual world in which
ptr is incremented, and make assumptions about the program (in which ptr is not incremented
at that point) based on that? It seems that we would need to introduce some novel concept of
“hypothetical evaluation” of an unevaluated expression in the standard, requiring herculean efforts.
As we will show below, in fact no such thing is needed to understand the semantics of assumptions.
We begin by categorising all expressions that could appear in an assumption into three categories:

— Category 1. The assumed expression has no side effects when evaluated.

— Category 2. The assumed expression may have side effects, but they are deterministic.

— Category 3. The assumed expression may have non-deterministic side effects.

Let us now discuss the semantics of each category.
Category 1. This is the most common type of assumptions and the most straightforward. Consider
the following minimal example:

int f(int i) {
[[assume(i == 42)]];
return i;

}

The implementation can assume that i == 42 evaluates to true, and optimise based on this
assumption. The evaluation of this expression has no side effects, therefore it doesn’t actually
matter if the expression is evaluated: any instructions emitted for such an evaluation won’t affect
the observable behaviour of the program and can be optimised away afterwards. This is the only
category of assumptions that can be emulated by GCC’s __builtin_unerachable() and similar
constructs. An implementation is allowed to either ignore the assumption, or optimise f as follows:

int f(int i) {
return 42;

}

Category 2. Let us now consider the following, slightly different example:
int f(int i) {

[[assume(++i == 43)]];
return i;

}

This assumption has a side effect: evaluating the expression would modify i. The implementation
is not allowed to do this. However, it is allowed to “analyse the form of the expression and deduce
information used to optimise the program”. Note that since the semantics of integer increment are
known and deterministic, the statement ++i == 43, which would have side effects if evaluated, can
be transformed to an equivalent statement that does not have side effects if evaluated: i == 42.
Assuming this new statement is equivalent to assuming the original statement. This program is
therefore equivalent to the one in the previous example.

9

In other words, the statement about a hypothetical program in which i would be incremented can
be reduced to a statement about the real program, in which i is not being incremented, at the
point where the assumption occurs. The resulting statement is a Category 1 assumption, which has
well-defined semantics. Since we know that the side effects are deterministic, such a reduction to a
Category 1 assumption is always possible, at least theoretically.
Of course, real-world compilers won’t be able to perform the required transformation in all cases.
This is not a problem, since a compiler is allowed to just ignore the assumption if it cannot derive
any useful information from it.
Category 3. Let us now consider the following pathological example (from Martin Uecker and
Aaron Ballman):

int f(int i) {
[[assume((std::cin >> i, i == 42))]];
std::cin >> i;
return i;

}

Of course, nobody should ever write such an assumption, as it obviously does not express an invariant
of the program and therefore cannot serve a useful purpose. But nevertheless we need to be able to
determine what assumption this code expresses and what semantics it has. The crucial difference to
a Category 2 assumption is that the input value received from std::cin is non-deterministic. We
cannot determine whether the assumption holds and the program is well-defined by analysing the
expression, only by actually calling std::cin, but we are not allowed to do that, since an assumed
expression is unevaluated.
At first glance, this may seem like a paradox, and various contradicting interpretations seem possible,
including:

— There is no useful information that can be derived from this assumption, therefore it should
have no effect. The compiler must translate the program as written ignoring the assumption.

— The compiler cannot actually call std::cin inside the assumption, since assumptions are
unevaluated. It is therefore impossible to determine what the value of the expression would be.
Since it does not “evaluate to true”, the program is undefined behaviour, and the compiler is
allowed to optimise out the whole function f and all code paths leading to it.

— The compiler can assume that a call to std::cin at the point of the assumption would read
the number 42. Since there is no change in program state between this point and the point
where std::cin is actually called (on the next line), the compiler is allowed to optimise out
the call to std::cin and replace the code with int f(int) { return 42; }

It seems that we cannot answer which of these interpretations is correct without specifying the
semantics further, in particular without specifying what it means to have an unevaluated expression
whose value nevertheless affects the program semantics. However, as it turns out, this is not
necessary. It is actually straightforward to reason about assumptions, using the specification in this
proposal, as soon as we give up this idea of “hypothetical evaluation”. This is fundamentally the
wrong mental model to reason about assumptions. Remember that the expression is never checked,
only assumed, therefore there is no need to determine what it would evaluate to.
If we follow the correct reasoning, it turns out that actually all three of the above interpretations
are incorrect. It goes as follows.
First of all, note that we do not need to consider the behaviour on any system where the above
assumption does not hold, since the specification does not put any constraints on the behaviour of
such a system. Therefore, we only need to consider systems where the assumption does hold, i.e.
where std::cin, if executed at the place where the assumption appears, would always read in the

10

number 42. This can be, for example, a computer controlled by a robot which is programmed to
always enter the number 42 when prompted. On this system, the assumption is doing exactly what
it is intended to do: it expresses an invariant of the system8 (the robot will always type 42) which
the C++ compiler cannot see (as it is unaware of the robot).
Now, on such a system where the assumption holds, its semantics are precisely defined: it has no
effect. The program therefore must call std::cin, as this is an observable side effect; the compiler
is not allowed to optimise out the call. However, under the as-if rule, it is allowed to throw out the
value read by std::cin, as it knows that it will always be 42. Therefore, the compiler can either
ignore the assumption, or optimise f as follows:

int f(int) {
int tmp;
std::cin >> tmp;
return 42;

}

In other words, any Category 3 assumption (i.e. an assumption containing a non-deterministic
expression) can be reduced to a Category 2 assumption by considering only systems where the
assumption expresses an actual, real invariant of the program (because that is the only thing that
assumptions are ever allowed to express). Therefore, the expression is not actually non-deterministic.
On such systems, the assumption has no effect, making the semantics of the program well-defined.
On all other systems, the behaviour is undefined.
To give yet another example of assumptions with side effects, let us consider the following code
(from Gašper Ažman):

int f(ForwardIterator auto almost_last, ForwardIterator auto last) {
[[assume(++almost_last == last)]];
// do something...

}

Let us start by categorising this assumption as above. The first question is whether incrementing
the forward iterator and then comparing it to the other iterator is deterministic.
If ForwardIterator is e.g. std::forward_list<int>::iterator, the expression is deterministic
and the assumption is therefore in Category 2. Compared to our previous Category 2 exam-
ple [[assume(++i == 43)]], we now cannot easily derive an equivalent side-effect-free equality
expression like [[assume(i == 42)]] by reversing the increment, because operator++ on a For-
wardIterator is not reversible. However, we are never incrementing it in the first place, as the
assumed expression is not evaluated (not even “hypothetically evaluated”), only analysed. We could
therefore perform the reduction to Category 1 by transforming the assumption into a side-effect-free
statement about almost_last and last, such as: if node is the linked list node associated with the
object that almost_last points to, then we can assume node->next == last. It doesn’t matter if
node is an implementation detail of std::forward_list, .next is a private member, and f isn’t
allowed to access them: the expression is not being evaluated, only analysed, and the implementation
can analyse whatever it chooses.
If on the other hand, ForwardIterator is e.g. std::istream_iterator<char>, then the behaviour
is non-deterministic, we are in Category 3, and we can apply the same reasoning as in the std::cin
example (and the assumption is most likely nonsensical).
It is important to remember that the above reasoning only serves to understand the semantics of
expressions inside assumptions as formally defined in the proposed wording. In practice, the compiler
is allowed to use a completely different strategy, including simply discarding the assumption, as
long as it is compatible with these semantics.

8Although it is not actually useful even on such a system: a more efficient approach is to simply not read the
input at all, since we already know the result.

11

4.6 Behaviour of assumptions during constant evaluation

What should happen if an assumption is encountered during constant evaluation? This is unlikely
to occur in practice, since assumptions are inherently a run-time utility, but for completeness’ sake
we need to specify this as well. Consider the following code:

constexpr int f() {
return 0;

}

constexpr int g() {
[[assume(f() == 1)]]; // assumption doesn’t hold
return 1;

}

int main() {
return g();

}

We propose that, if such an assumption would not evaluate to true, it is implementation-defined
whether the program is ill-formed or not. This way, we leave freedom for implementations to conduct
such an analysis at compile time and emit a compiler error for a failed assumption (which can be
useful), while not requiring an implementation to do so (because it might be difficult to implement
for all cases, and currently none of MSVC, GCC, or Clang implement this check with __assume
and __builtin_assume, respectively: the code above passes on all of them).
If an assumption holds during constant evaluation, this should have no effect.
Another subtlety is the question what should happen if inside a constexpr function we encounter
an assumption that would evaluate to true, but can not be evaluated during constant evaluation?
Currently, there is implementation divergence. MSVC rejects the following code when using its
assumption built-in instead of the attribute, while ICC and Clang accept it:

int foo() { // not a constexpr function
return 0;

}

constexpr int bar() {
[[assume(foo() == 0)]]; // this assumption holds but isn’t constexpr
return 1;

}

int main() {
return bar();

}

We propose that this code should be well-formed. If an assumption cannot be checked at compile
time, the assumption should simply be ignored, rather than making the whole program ill-formed.
Otherwise, in order to be able to make the function constexpr, the user would have to branch on
std::is_constant_evaluated() just for the purpose of using such an assumption, which does not
seem reasonable.

4.7 Ill-formed expressions need to be diagnosed

The C++ standard specifies that attributes not recognised by an implementation can be ignored.
However, this does not extend to attributes that are part of the C++ standard itself. For the latter,
the standard imposes constraints on both the argument clause of the attribute (e.g. [[noreturn]]
must have none, [[deprecated]] can have one but it must be a string literal, and so on) and what
entities the attribute may appertain to. If these constraints are violated, the program is ill-formed

12

and the compiler must issue a diagnostic (see [P2552R0] for a thorough discussion of the ignorability
of standard attributes).
Since assumptions as proposed are attributes, the same applies. A conforming compiler doesn’t
have to implement an assumption facility, and is free to ignore a well-formed assumption. However,
if the assume attribute is written in the wrong place, or doesn’t have an expression as its argument,
or the expression is not contextually convertible to bool or ill-formed, the compiler must detect this
and issue a diagnostic. Further, an assumed expression is ODR-used, which can trigger template
instantiations. If any of these instantiations makes the program ill-formed, for example by containing
a static_assert that does not evaluate to true, this needs to be diagnosed as well.
A concern about this was voiced by Gabriel Dos Reis. The MSVC compiler currently does not parse
the argument of a standard attribute, but treats it as balanced token soup. This approach works
well as long as the argument of the attribute is either absent or just a string literal (which is the
case for the attributes that currently exist in C++20), but breaks down as soon as the attribute
contains something more complex like an expression, which needs to be parsed in order to check
for well-formedness. This would be quite difficult for MSVC to change. Dos Reis suggested that
therefore, assumptions should not be attributes, but use the novel syntax [[assume: expr]].
First of all, we do not believe that any non-attribute syntax for assumptions would be viable (see
Section 3.2) and could get consensus. But most importantly, the issue raised by Dos Reis is in no way
specific to this proposal, but concerns the design space of C++ attributes in general. The grammar
for C++ attributes explicitly allows expressions as arguments. In fact, it allows any balanced token
sequence and says that each attribute can define its own constraints on what arguments it accepts.
The standard does not say that this should be limited to arguments that do not need parsing, and
to the best of our knowledge such a limitation was never intended.
There are other proposals for standard C++ currently in flight that use expressions inside attributes,
such as [[trivially_relocatable(expr)]] [P1144R5]. The OpenMP specification ([OpenMP5.1]
section 2.1, “Directive Format”) already mandates the support of attribute argument clauses that
require parsing. Finally, both GCC9 and Clang10 are capable of parsing expressions inside attributes,
and both use this for existing functionality (e.g. gnu attributes require parsing expressions, as well
as many other existing third-party attributes). EDG also has this capability11.
MSVC therefore seems to be unique in the sense that they currently do not parse C++ inside
attributes. It is however interesting that MSVC has no problem parsing C++ inside other “attribute-
like” constructs like alignas and __declspec that don’t use double square brackets, and that the
double square brackets themselves don’t seem to be a problem either (since the [[assume: expr]]
syntax was suggested as an alternative).
In conclusion, we do appreciate that this proposal would mean significant work for one particular
compiler vendor, but at the same time, unless we want to cut off a significant segment of C++
design space and ignore a large body of existing practice in this space, we should move towards
requiring conforming C++ implementations to support parsing C++ inside an attribute. There
seems to be at least no fundamental implementability issue.

4.8 Pack expansion

The grammar for C++ attributes allows an attribute to be followed by an ellipsis. [dcl.attr.grammar]
specifies: “In an attribute-list, an ellipsis may appear only if that attribute’s specification permits
it. An attribute followed by an ellipsis is a pack expansion.”
We could therefore hypothetically permit the assume attribute to directly support pack expansion:

9Thanks to Nathan Sidwell for confirming this.
10Thanks to Arthur O’Dwyer for pointing this out.
11Thanks to Daveed Vandevoorde for pointing this out.

13

template <int... args>
void f() {

[[assume(args >= 0)...]];
}

However, we do not propose this. It would require substantial additional work for a very rare use
case. Note that this can instead be expressed with a fold expression, which is equivalent to the
above and works out of the box without any extra effort:

template <int... args>
void f() {

[[assume(((args >= 0) && ...))]];
}

4.9 Appertaining to non-null statements

In theory, we do not have to limit assumptions to appertain to a null statement, and could allow
them to appertain to other statements, for example such that it would be well-formed to write

[[assume(x >= 0)]] f(x);

However, we do not propose this, as there is no existing practice for it: all existing assumption
built-ins can only be used as a single statement followed by a semicolon. We are also not aware of
any use case that could not be spelled equivalently with the syntax proposed here.

5 History and related work

5.1 N4425 and pre-C++20 contracts proposals

Adding portable assumptions was already proposed in [N4425]12 and discussed by EWG in 2015 in
Lenexa13. The paper was rejected. EWG’s guidance was that this functionality should be provided
within the proposed contracts facility, and not as a separate feature.
Ironically, contracts as merged into the C++20 working draft in June 2018 in Rapperswil [P0542R5],
actually failed to provide the functionality of assumptions [P1773R0]. And later, in July 2019 in
Cologne, contracts were pulled from C++20 altogether. Progress on assumptions had been blocked
for no good reason at all.

5.2 Current work on contracts

More recent proposals for adding contracts to C++ [P2388R4], [P2461R1], [P2487R0] no longer
include the possibility to assume contracts for purposes of optimisation. Contracts will also need
more development time. Assumptions are useful, well-understood, existing practice, and we should
standardise them now, rather than waiting for progress on contracts.
Contracts and assumptions are very different features. The purpose of contracts is to find and
avoid bugs, and to document pre- and postconditions in code; they are meant to be used at API
boundaries; they are primarily targeting the front-end of the compiler (or a static analyser); and
they are a “cross-cutting” feature that is meant to be used widely throughout a codebase by many
developers. By contrast, the purpose of assumptions is to make specific invariants of your code
visible to the optimiser; they are meant to be an implementation detail; they are primarily targeting
the back-end of the compiler; and they are a “local” feature that will only be used rarely, at specific
locations in performance bottlenecks, and by experts only.

12The syntax proposed then was different: true(expr) and false(expr), but the semantics were essentially the
same as in this proposal.

13https://cplusplus.github.io/EWG/ewg-closed.html#179

14

https://cplusplus.github.io/EWG/ewg-closed.html#179

Further, the expressions that are typical for assumptions tend to look very different from the ones
typically found in contracts. Assumptions are practically always either statements about a bool, or
very simple mathematical expressions involving a single number or pointer. By contrast, contract
preconditions and postconditions can contain significantly more complicated statements about the
program, even including lambdas.
Standardising the existing practice of a low-level assumptions facility that is independent of contracts
is not closing off future work. In case contracts or other higher-level features will incorporate
assumptions in some form in the future, this can be specified and implemented using the low-level
facility proposed here as a building block.

5.3 Assertions vs. assumptions

Assertions (whether as a subset of contracts or as a standalone feature) and assumptions are
fundamentally different in nature. We are not aware of any study that could conclusively show that
there is a measurable performance benefit from turning assertions into assumptions throughout a
codebase. [P2064R0] found that it actually degrades performance, while [Amini2021] found that it
makes no statistically significant difference at all. There are cases where injecting (formally correct)
assumptions can actually degrade performance, which is also true for other C++ features interacting
with the optimiser such as [[likely]] and [[unlikely]].
Therefore, we should not combine assertions and assumptions in the same language feature, we
should make the syntax of assertions look different from assumptions, and we should especially
not introduce a generic way to assume assertions. Instead, we should use assumptions explicitly in
the few cases where it provably matters for performance. Assertions, on the other hand, should
be a “safe-to-use” feature that primarily exists to find and avoid bugs. They should not be able
to degrade performance of optimised code or inject undefined behaviour and “time travel” into an
otherwise valid program.
For a much more detailed discussion of assertions vs. assumptions, see [P2064R0].

5.4 std::unreachable

[P0627R6] is a related paper proposing a function std::unreachable(), standardising GCC’s
__builtin_unreachable(): a function that has undefined behaviour when called, and therefore
can be used to mark unreachable code paths.
It is important to recognise that the functionality provided by std::unreachable() is a strict
subset of the functionality provided by assumptions as proposed here. std::unreachable() has
the exact same semantics as [[assume(false)]]. Assuming an expression without side effects
can be expressed with either assume or std::unreachable (although the latter is significantly
more verbose), while assuming an expression with side effects can only be expressed with assume.
Therefore, assume is the more general feature, and the one that should be standardised first.
That being said, the possibility to spell [[assume(false)]] as std::unreachable might still
be desirable. If what the user wants to do is to mark unreachable control flow (unreachable
branches, unreachable switch cases etc.), for example to avoid compiler warnings, then the spelling
std::unreachable better communicates that intent. We therefore do not see a problem with both
features coexisting.

6 Previous polls
Below are the polls taken by WG21 subgroups on previous revisions of this paper, in chronological
order.

15

EWG, Belfast (November 2019)

1.. P1774 with [[assume(expr)]] syntax.
SF F N A SA
15 5 1 0 0

2. P1774 with std::assume(expr) syntax.
SF F N A SA
1 3 4 10 4

EWG, Prague (February 2020)

1. We want assumptions now and independent of future contract facilities.
SF F N A SA
18 5 1 3 3

2. We like the proposed semantics for assumptions.
SF F N A SA
18 5 4 2 0

3. We want exploration on a mode which can check assumptions, including side effects.
SF F N A SA
1 0 9 9 5

4. We like the proposed attribute syntax [[assume(expr)]]

SF F N A SA
9 8 5 5 1

5. We’d like more exploration on macro assume, like assert
SF F N A SA
0 0 1 10 16

6. We’d like more exploration on keyword such as one of unsafe_assume / assume / __assume /
_Assume / . . .

SF F N A SA
5 7 9 5 2

7. We’d like more exploration on magic library function such as std::assume(expr).
SF F N A SA
0 0 0 9 14

SG21, Prague (February 2020)

Assumptions should proceed independently of contracts.
SF F N A SA
9 8 5 6 5

EWG, online telecon (2021-12-02)

1. In D1774R5, we should spell the assume as [[assume: expr]].
SF F N A SA
0 0 1 12 5 Consensus against

16

2. In D1774R5, we prefer assume’s parameter to be just an “attribute-grammar-conforming token
soup”, not an expression.

SF F N A SA
0 0 2 8 6 Consensus against

3. Send D1774R5 to electronic polling for forwarding to CWG for inclusion in C++23, in Bucket 2.
SF F N A SA
6 8 5 0 0 Consensus

EWG electronic poll (January 2022)

Forward P1774R5 “Portable assumptions” to Core for C++23.
SF F N A SA
14 17 3 4 0 Consensus

Abstain: 7

SG22, online telecon (2022-02-11)

Does SG22 encourage proposing the functionality in P1774R5 to WG14?
Committee For Against Abstain
WG14 6 1 1 Consensus
WG21 8 1 2 Consensus

7 Proposed wording
Add the following sub-clause to [dcl.attr]:

Assumption attribute [dcl.attr.assume]

The attribute-token assume may be applied to a null statement; such a statement is an
assumption. An attribute-argument-clause shall be present and shall have the form:

(assignment-expression)

The expression shall be contextually convertible to bool [conv.general]. The expression is
not evaluated. If the converted expression would evaluate to true at the point where the
assumption appears, the assumption has no effect. Otherwise, the behavior is undefined.
[Note: The expression is potentially evaluated [basic.ref.odr]. The use of assumptions is
intended to allow implementations to analyze the form of the expression and deduce information
used to optimize the program. —end note]
[Example:

int divide_by_32(int x) {
[[assume(x >= 0)]];
return x/32; // The instructions produced for the division

// may omit handling of negative values
}

int f(int y) {
[[assume(++y == 43)]]; // y is not incremented
return y; // Statement may be replaced with return 42;

}

—end example]

17

Modify [expr.const] as follows:

If E satisfies the constraints of a core constant expression, but evaluation of E would evaluate an
operation that has undefined behavior as specified in [library] through [thread] of this document,
a statement with an assumption ([dcl.attr.assume]) whose converted assignment-expression
would not evaluate to true, or an invocation of the va_start macro ([cstdarg.syn]), it is
unspecified whether e is a core constant expression.
For the purposes of determining whether an expression E is a core constant expression,
the evaluation of a call to a member function of std::allocator<T> as defined in [alloca-
tor.members], where T is a literal type, does not disqualify E from being a core constant
expression, even if the actual evaluation of such a call would otherwise fail the requirements
for a core constant expression. Similarly, the evaluation of a call to std::construct_at or
std::ranges::construct_at does not disqualify E from being a core constant expression un-
less the first argument, of type T*, does not point to storage allocated with std::allocator<T>
or to an object whose lifetime began within the evaluation of E, or the evaluation of the
underlying constructor call disqualifies E from being a core constant expression. Further,
a statement with an assumption ([dcl.attr.assume]) whose converted assignment-expression
is itself not a core constant expression does not disqualify E from being a core constant
expression.

Document history

— R0, 2019-06-17: Initial version.

— R1, 2019-10-06: Updated text to reflect removal of Contracts from C++20; made proposed
attribute syntax backwards-compatible by replacing colon with parentheses.

— R2, 2019-11-25: Changed title to “Portable assumptions”; changed semantics from UB if
expression would evaluate to false to UB if expression would not evaluate to true; changed
syntax section to propose attribute-syntax only, dropping “magic” library function syntax as
a viable alternative.

— R3, 2020-01-13: Updated text to clarify the discussion of the proposed semantics and syntax.

— R4, 2021-11-15: Added wording. Added polls. Added code size measurement results. Updated
and restructured text, adding discussion of proposed semantics and recent related work.

— R5, 2021-12-09: Updated wording (removed feature-test macro, allowed duplicate attributes,
added clarifications). Updated and restructured text, expanding semantics section to reflect
discussion in EWG and on the WG21 reflectors. Added Peter Dimov’s refcounted smart
pointer code example.

— R6, 2022-02-15: Updated polls; minor fixes.

18

Acknowledgements
Many thanks to Herb Sutter, Chandler Carruth, Joshua Berne, Michael Spencer, Jonathan Caves,
Hal Finkel, Erich Keane, Judy Ward, Inbal Levi, Eric Brumer, Nathan Sidwell, Daveed Vandevoorde,
Jens Maurer, Gašper Ažman, Peter Dimov, Gabriel Dos Reis, Arthur O’Dwyer, Aaron Ballman,
Martin Uecker, and Peter Brett for their help with this proposal.

References

[Amini2021] Parsa Amini. Asserting Your Way To Faster Programs. CppCon talk, 2021-10-28.

[N4425] Hal Finkel. Generalized Dynamic Assumptions. http://www.open-std.org/jtc1/
sc22/wg21/docs/papers/2015/n4425.pdf, 2015-04-07.

[OpenMP5.1] OpenMP Application Programming Interface, Version 5.1. https://www.openmp.
org/wp-content/uploads/OpenMP-API-Specification-5-1.pdf, 2020-11.

[P0542R5] G. Dos Reis, J. D. Garcia, J. Lakos, A. Meredith, N. Myers, and B. Stroustrup. Support
for contract based programming in C++. http://www.open-std.org/jtc1/sc22/wg21/
docs/papers/2018/p0542r5.html, 2018-06-08.

[P0627R6] Melissa Mears and Jens Maurer. Function to mark unreachable code. http://www.
open-std.org/jtc1/sc22/wg21/docs/papers/2021/p0627r6.pdf, 2021-10-15.

[P1144R5] Arthur O’Dwyer. Object relocation in terms of move plus destroy. http://www.
open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1144r5.html, 2020-03-01.

[P1773R0] Timur Doumler. Contracts have failed to provide a portable “assume”. http://www.
open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1773r0.pdf, 2019-06-17.

[P2064R0] Herb Sutter. Assumptions. http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2020/p2064r0.pdf, 2020-01-13.

[P2388R4] Andrzej Krzemieński and Gašper Ažman. Minimum Contract Support: either No_-
eval or Eval_and_abort contracts. http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2021/p2388r4.html, 2021-11-15.

[P2461R1] Andrzej Krzemieński. Attribute-like syntax for contract annotations. http://www.
open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2487r0.html, 2021-11-12.

[P2487R0] Gašper Ažman, Caleb Sunstrum, and Bronek Kozicki. Closure-Based Syntax for
Contracts. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2461r1.
pdf, 2021-11-15.

[P2507R1] Peter Brett. Limit [[assume]] to conditional-expressions. http://www.open-std.org/
jtc1/sc22/wg21/docs/papers/2022/p2507r1.pdf, 2021-12-15.

[P2552R0] Timur Doumler. On the ignorability of standard attributes. http://www.open-std.
org/jtc1/sc22/wg21/docs/papers/2022/p2552r0.pdf, 2022-02-15.

[Regehr2014] John Regehr. Assertions Are Pessimistic, Assumptions Are Optimistic. https:
//blog.regehr.org/archives/1096, 2014-02-05.

19

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4425.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4425.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-1.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0542r5.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0542r5.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p0627r6.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p0627r6.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1144r5.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1144r5.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1773r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1773r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2064r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2064r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2388r4.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2388r4.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2487r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2487r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2461r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2461r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2507r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2507r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2552r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2552r0.pdf
https://blog.regehr.org/archives/1096
https://blog.regehr.org/archives/1096

	1 Motivation
	2 Examples
	3 Syntax
	4 Proposed semantics
	5 History and related work
	6 Previous polls
	7 Proposed wording
	References

