Structured naming for function object and CPO values
Draft Proposal

Document #: DO000RO

Date: 2021-11-01

Project: Programming Language C++
Audience: LEWG Library Evolution
Reply-to: Kirk Shoop

<kirk.shoop@gmail.com>

Contents
1 Changes 1
1.1 RO . e 1
2 Introduction 1
3 Motivation 2
4 Proposals 3
4.1 Fold . . . o e e 3
4.2 Concepts and CPOs . . . . . . . . . e 4
5 Q&A 4
5.1 Q: does this propose replacing every _ in every name of every new function object witha .7 . . . 4
5.2 Q: if an object for a name (like fold) is claimed for one purpose, must an unrelated object with
the prefix fold_ become a member? . . . . . . . ..o 4
5.3 Q: should all namespaces become objects (eg. should views have been an object instead of a
namespace, given this proposal)? . . . . . ... L 5
6 Conclusion 5
7 References 5

1 Changes
1.1 RO

— first revision

2 Introduction

There was a discussion of naming for the set of fold algorithms in [P2322R5]. Naming conversations are
particularly fraught because names veer into the subjective and the technical aspects of naming get obscured by
the subjective aspects of naming.

I submitted a novel way to name sets of function object values (like CPO sets and other function object sets
such as fold). This is novel only for function naming, it is established practice for naming of other entities such
as: namespace, class, struct, union, etc..


mailto:kirk.shoop@gmail.com

I submitted this very late. I agree that this proposal was not something that should block [P2322R5] from being
forwarded. I am under the impression that this name change proposal can be applied after it arrives in LWG. I
was asked to write a paper describing the motivation and reasoning behind this naming proposal. This is that
paper.

3 Motivation

Statement: Naming sets of things is made much easier by adding nested structure.

structured name unstructured name
std: :vector<T> std_vector<T>
std::vector<T>::value_type std_vector_value_type<T>
std::1ist<T> std_list<T>
std::1ist<T>::const_iterator std_list_const_iterator<T>
std: :chrono std_chrono
std::chrono: :steady_clock std_chrono_steady_clock
std::chrono: :steady_clock::time_point std_chrono_steady_clock_time_point

The examples of unstructured naming in this table are probably perceived as an absurd straw-man. I would
suggest that this reaction is due to an expectation of naming structure that we have unconsciously assumed was
inviolate and obvious. I suggest that much of the committee agrees that structured naming, where it is possible,
is necessary and any unstructured alternative is generally considered absurd.

[P2322R5] was forwarded to electronic polling with this poll:

POLL: Forward P2322R5: ranges::fold with the name set in option D to LWG for C++23 (to be confirmed with
electronic poll) priority 2

Strongly
Strongly Favor Weakly Favor Neutral Weakly Against Against

8 4 2 1 0

The names in [P2322R5] option D:

name

fold_left()
fold_left_first()
fold_right()
fold_right_last()

These names are roots. The suffix _with_iter is applied to expand to the full set of names selected by option
D in [P2322R5)

name

fold_left()
fold_left_first()
fold_right()
fold_right_last()
fold_left_with_iter()



name

fold_left_first_with_iter()

We are used to function names being unstructured. When these were plain functions, unstructured naming was
very hard to avoid. [P2322R5] as I understand it, is proposing that the names in the above table, be implemented
as function objects. There are also other proposals that are creating names for function objects and CPOs, that
could be structured, but are not.

An excerpt from [P2322R5] indicates that more fold functions are forthcoming:
The problem going past that is that we end up with this combinatorial explosion of algorithms based on a

lot of orthogonal choices:

iterator pair or range

left or right fold

initial value or no initial value
short-circuit or not short-circuit
return T or (iterator, T)

Which would be... 32 distinct functions (under 16 different names) if we go all out. And these really are
basically orthogonal choices. Indeed, a short-circuiting fold seems even more likely to want the iterator that
the algorithm stopped at! Do we need to provide all of them? Maybe we do!

4 Proposals

Given that many new functions are being specified as namespaced function objects and CPOs, there is a struc-
tured naming option available.

Observation: function objects and CPOs can have nested function objects and CPOs as members.

This observation provides the option for using structured names for sets of nested functions that would historically
use unstructured naming.

4.1 Fold

An example of structured names as an alternative for the names in [P2322R5] option D:

structured name unstructured name
fold.left() fold_left()
fold.left.with_iter() fold_left_with_iter()
fold.left.first() fold_left_first()
fold.left.first.with_iter() fold_left_first_with_iter()
fold.right () fold_right ()
fold.right.last() fold_right_last()

The concrete proposal for this paper is that structured names be applied to fold for C++423.

Additionally, I propose that any other set of function object and CPO names that are using
unstructured naming and that are being added in C++23 should adopt structured names for

C++23.



4.2 Concepts and CPOs

The core observation of this paper can also be applied to structure other names being proposed for C++23:

structured name unstructured name
std::execution: :receiver.set_value() std::execution::set_value()
std::execution: :receiver.set_error() std: :execution: :set_error()
std: :execution: :receiver.set_done() std: :execution: :set_done()
std: :execution: : sender.connect () std: :execution: :connect ()

NOTE: receiver and sender are already defined as concepts today which cannot have members.

The challenge to this naming approach for concepts and structured CPOs today is that without some structured
naming solution for concept definitions, we will waste a huge amount of time in LEWG trying to name concepts
and their structured CPOs in a way that does not conflict.

NOTE: If I might speculate wildly here. It would be exceptionally useful for the receiver and sender objects
to be able to define template<class... TN> operator concept<TN...>() = ..; that would operate as a
concept when receiver<T> and sender<T> were used. This could be an avenue for resolving the naming
discussions in LEWG between concepts and their structured CPO names. I expect that some disambigua-
tor would be needed - like o::template m<> is today - for objects that have template arguments and an
operator concept<> definition. Perhaps by attempting to follow existing practice o<>: :concept <> would
be an option. Obviously, I do not expect that a change like this could be applied in C++23.

5 Q&A

5.1 Q: does this propose replacing every _ in every name of every new function
object with a .7

Nope. I think this is subjective. I do not consider with in with_iter to represent a space that would contain
iter. I see with_iter as a compound name. In fact, I think that this proposal allows those distinctions to be
expressed by choosing to use . or _ while unstructured naming does not allow those distinctions to be expressed
in the name.

I do not think that structured naming should be blindly applied to every function that is not part of a set. I do
think that there will be cases where a new function is known to be the first of a set that will be proposed over
time and may preemptively be given a structured name even if it is initially the only nested object.

5.2 Q: if an object for a name (like fold) is claimed for one purpose, must an
unrelated object with the prefix fold_ become a member?

Nope. Even [P2322R5] option D can be an example of this question. Is with_iter a valid member of the
fold set, or is it a different algorithm with its own distinct set of structured names? I think that the following
expression of structured names is just as valid as the one derived from Option D in Proposals:

structured name unstructured name
fold.left() fold_left()
fold.left.first() fold_left_first()
fold.right () fold_right ()
fold.right.last( fold_right_last()
fold_with_iter.left() fold_left_with_iter()
fold_with_iter.left.first() fold_left_first_with_iter()




The difference between these two is somewhat subjective IMO and I would expect this to be part of the naming
discussion.

5.3 Q: should all namespaces become objects (eg. should views have been an object
instead of a namespace, given this proposal)?

Nope. I think that views intends to prevent naming conflicts by providing a common prefix name to a set of

functions. The alternative was unstructured names for each function object and CPO that were prefixed with

view_ or suffixed with _view. I think that views would be valid as an object, with nested objects and CPOs, if
its intent was to create a semantic nesting rather than it being intended to use nesting to prevent name conflicts.

The views namespace is an example of the common desire and accepted utility of structured names in C++.

Ultimately intent is subjective, so in practice views might have gone the other way under different circumstances,
but I see the selection of the namespace for views as valid and compatible with this proposal.

6 Conclusion

We have an opportunity to apply the naming structure we love and expect for many entities in C++ to functions
specified as objects and CPOs. We know that structured names have concrete benefits. We prefer structured
names for other things. We should take this opportunity to adopt structured names for function objects and
CPOs going forward.

7 References

[P2322R5] Barry Revzin. 2021-10-18. ranges::fold.
https://wg21.link/p2322r5


https://wg21.link/p2322r5

	Changes
	R0

	Introduction
	Motivation
	Proposals
	Fold
	Concepts and CPOs

	Q&A
	Q: does this propose replacing every _ in every name of every new function object with a .?
	Q: if an object for a name (like fold) is claimed for one purpose, must an unrelated object with the prefix fold_ become a member?
	Q: should all namespaces become objects (eg. should views have been an object instead of a namespace, given this proposal)?

	Conclusion
	References

