
1

Document Number: P2444r0

Date: 2021-09-15

Reply To Christopher Kohlhoff <chris@kohlhoff.com>

The Asio asynchronous model

1 Introduction
The networking domain has long employed event-driven and asynchronous programming designs to develop
efficient, scalable, network-oriented software. The use of a proactor-based event model, which consists of
asynchronous operations with continuations, offers a good conceptual model for abstraction and composition.
Asynchronous operations may be chained, with each continuation initiating the next operation. The composed
operations may then be abstracted away behind a single, higher level asynchronous operation with its own
continuation.

However, as asynchronous compositions grow, a purely callback-based approach can increase apparent code
complexity and harm readability. Programmers reach for alternative composition mechanisms such as state
machines, fibers, and, as of C++20, language-based coroutines to improve code clarity while retaining the
benefits of an asynchronous implementation. There is no one-size-fits-all approach to composition.

This paper presents a high-level overview of the asynchronous model at the core of the Asio library. This
model enshrines asynchronous operations as the fundamental building block of asynchronous composition,
but in a way that decouples them from the composition mechanism. The asynchronous operations in Asio
support callbacks, futures (both eager and lazy), fibers, coroutines, and approaches yet to be imagined. This
allows the application programmer to select an approach based on appropriate trade-offs.

The same asynchronous operation
used with a lambda…

socket.async_read_some(buffer,
 [](error_code e, size_t)
 {
 // ...
 }
);

… in a coroutine …

awaitable<void> foo()
{
 size_t n =
 co_await socket.async_read_some(
 buffer, use_awaitable
);

 // ...
}

… with a future …

future<size_t> f =
 socket.async_read_some(
 buffer, use_future
);

// ...

size_t n = f.get();

… or in a fiber.

void foo()
{
 size_t n = socket.async_read_some(
 buffer, fibers::yield
);

 // ...
}

P2444r0 – The Asio asynchronous model

2

2 Motivation

2.1 Synchronous operations as inspiration
The simplest network programs sometimes employ a thread-per-connection approach. Take for example a
basic echo server, written purely in terms of synchronous operations:
void echo(tcp::socket s)
{
 try
 {
 char data[1024];
 for (;;)
 {
 std::size_t n = s.read_some(buffer(data));
 write(s, buffer(data, n));
 }
 }
 catch (const std::exception& e)
 {
 }
}

void listen(tcp::acceptor a)
{
 for (;;)
 {
 std::thread(echo, a.accept()).detach();
 }
}

int main()
{
 asio::io_context ctx;
 listen({ctx, {tcp::v4(), 55555}});
}

This structure and flow of this program is clear, as synchronous operations are just functions. This inherently
imbues them with several beneficial syntactic and semantic properties, including:

• Compositions can use the language to manage control flow (i.e. for, if, while, etc.).
• Compositions may be refactored to use child functions that run on the same thread (i.e. are simply

called) without altering functionality.
• If a synchronous operation requires a temporary resource (such as memory, a file descriptor, or a

thread), this resource is released before returning from the function.
• When a synchronous operation is generic (i.e. a template) the return type is deterministically derived

from the function and its arguments.
• The lifetime of arguments to be passed to a synchronous operation is clear, including the ability to

safely pass temporaries.

However, the use of a thread-per-connection approach has several issues that limits its applicability in general.

2.2 Limited scalability of threads
Thread-per-connection designs, as the name suggests, employ a separate thread to handle each connection.
For servers that handle thousands, or perhaps millions, of concurrent connections this represents significant
resource usage within the program, although in more recent years the widespread availability of 64-bit
operating systems has mitigated this.

For performance sensitive use cases, however, the cost of context switching between threads may be a more
important consideration. The cost of a context switch between general purpose OS threads is measured in

P2444r0 – The Asio asynchronous model

3

thousands of cycles. When runnable threads outnumber execution resources (like CPUs), queuing occurs and
the last task to be queued is delayed by the cost of many context switches:

Even when a network server appears to be lightly loaded overall, temporal correlation of events can still
produce queuing. For example, in financial markets all participants are processing and responding to the same
market data streams, and consequently it is highly likely that more than one participant will respond to the
same stimulus by sending a transaction to the server. This queueing increases the average latency and jitter
experienced by the participants.

For comparison, a scheduler designed specifically for event handling can “context switch” between tasks one-
to-two orders of magnitude faster, in tens to hundreds of cycles. Queueing may still occur, but the overhead
associated with processing the queue is substantially reduced.

Finally, we must also note that our thread-per-connection echo server was extremely simple in that each
thread, once launched, is able to operate independently. In real-world use cases, the server program may need
to access shared data to respond to clients, resulting in synchronisation costs, data movement between CPUs,
and increased code complexity.

2.3 Half-duplex vs full-duplex protocols
A thread-per-connection approach may be suitable for simple protocols like the echo server shown above, as
this is a half-duplex protocol. The server is either sending or receiving, but never both at the same time.

However, many real-world application protocols are full duplex, meaning that data may be transmitted in
either direction at any time. As an example, consider some of the message exchange scenarios applicable to
the FIX protocol:

Application code
generates an
unsolicited message

Application code
responds to
message from the
peer.

Application code

Protocol
implementation

Message
store

Peer
1b

1a

2. Outgoing message

Outbound

Inbound

Application code

Protocol
implementation

Message
store

Peer
3b

3a

2a

2b
4. Response

Outbound

1. Incoming message

Inbound

CPU 1

CPU 0
Last thread in

queue is delayed by
context switches for

the five before it

P2444r0 – The Asio asynchronous model

4

No message
received from peer
for a period,
generate a
TestRequest.

No message sent to
peer for a period,
generate a
Heartbeat.

TestRequest
received from peer,
respond with
Heartbeat.

ResendRequest
received from peer,
asynchronously
retrieve stored
messages and
resend.

As you can see, protocols like these necessitate responding to events from many different sources. This has
several implications:

• Different parts of the protocol logic, that are executing concurrently, may need to access shared state.
• The complex event handling may not be easily represented in linear form (such as that enabled by a

thread-per-connection design, or indeed even when using coroutines).

Consequently, we often find authors of these protocols utilising other composition mechanisms, such as state
machines, as a way to manage the complexity and ensure correctness.

2.4 Eager execution matters for performance
Some network applications require the delivery of a single message to many consumers. One such example is
the dissemination of market data, in real-time, to all participants. When delivering this information
asynchronously, a common approach is to wrap the message in a reference counted pointer (such as
shared_ptr) that keeps the memory valid until it has been transmitted to all.

However, for efficiency, each of these transmission operations attempts a speculative send. The happy path,
which statistically occurs almost all the time (due to efforts in ensuring that all hardware and software is
correctly sized based on expected loads), is that this speculative send succeeds and the data is transmitted
immediately. If this occurs, it is not necessary to maintain a valid shared pointer any longer. This avoids the
overhead of ticking the reference count up and down.

For comparison, atomic reference counting cost is measured in tens of cycles, compared to the transmission
system call itself which is measured in the hundreds. Avoiding this additional cost can represent an efficiency
gain of 5-10% in practice.

Application code

Message
store

Peer

2a

Inbound

2b. TestRequest

Outbound

Protocol
implementation

1. Timeout

Application code

Message
store

Peer

2a

Inbound

2b. Heartbeat

Outbound

Protocol
implementation

1. Timeout

Application code

Protocol
implementation

Message
store

Peer

2a
2b. Heartbeat

Outbound

1. Test request

Inbound

Application code

Protocol
implementation

Message
store

Peer

2

1. ResendRequest

Inbound

4. Resent messages

Outbound 3

P2444r0 – The Asio asynchronous model

5

A lazy execution model is unable to avoid this cost, as it must copy the shared data when the operation is first
invoked.

2.5 Design philosophy
The concerns described above motivate the following design philosophy for an asynchronous model:

• Be flexible in supporting composition mechanisms, since the appropriate choice depends on the
specific use case.

• Aim to support as many of the semantic and syntactic properties of synchronous operations as
possible, since they enable simpler composition and abstraction.

• Application code should be largely shielded from the complexity of threads and synchronisation, due
to the complexity of handling events from different sources.

3 Model

3.1 Asynchronous operations

An asynchronous operation is the basic unit of composition in the Asio asynchronous model. Asynchronous
operations represent work that is launched and performed in the background, while the user’s code that
initiated the work can continue with other things.

Conceptually, the lifecycle of an asynchronous operation can be described in terms of the following events
and phases:

An initiating function is a function which may be called by the user to start an asynchronous operation.

A completion handler is a user-provided, move-only function object that will be invoked, at most once, with the
result of the asynchronous operation. The invocation of the completion handler tells the user about something
that has already happened: the operation completed, and the side effects of the operation were established.

The initiating function and completion handler are incorporated into the user’s code as follows:

Asynchronous
operation

Initiating
function

Completion
handler

st
ar

te
d

by
 calls on

com
pletion

Event: The externally
observable side effects, if
any, are fully established.
The completion handler is

queued for execution.

Event: The completion
handler is called with the
results of the operation.

Phase 1: The asynchronous operation is outstanding. Phase 2: The asynchronous operation is completed.

Event: The asynchronous
operation is started by a call

to the initiating function

P2444r0 – The Asio asynchronous model

6

Synchronous operations, being embodied as single functions, have several inherent semantic properties as a
consequence. Asynchronous operations adopt some of these semantic properties from their synchronous
counterparts, in order to facilitate flexible and efficient composition.

Property of synchronous operations Equivalent property of asynchronous operations

When a synchronous operation is generic (i.e. a
template) the return type is deterministically
derived from the function and its arguments.

When an asynchronous operation is generic, the
completion handler’s arguments’ types and order
are deterministically derived from the initiating
function and its arguments.

If a synchronous operation requires a temporary
resource (such as memory, a file descriptor, or a
thread), this resource is released before returning
from the function.

If an asynchronous operation requires a temporary
resource (such as memory, a file descriptor, or a
thread), this resource is released before calling the
completion handler.

The latter is an important property of asynchronous operations, in that it allows a completion handler to
initiate further asynchronous operations without overlapping resource usage. Consider the trivial (and
relatively common) case of the same operation being repeated over and over in a chain:

By ensuring that resources are released before the completion handler runs, we avoid doubling the peak
resource usage of the chain of operations.

Call to initiating function

Us
er

 co
de

Asynchronous
operation

Completion handler

Us
er

 co
de

Asynchronous
operation

Completion handler

Call to initiating function

Us
er

 co
de

P2444r0 – The Asio asynchronous model

7

3.2 Asynchronous agents

An asynchronous agent is a sequential composition of asynchronous operations. Every asynchronous operation
is considered to run as a part of an asynchronous agent, even if that agent contains only that single operation.
An asynchronous agent is an entity that may perform work concurrently with other agents. Asynchronous
agents are to asynchronous operations as threads are to synchronous operations.

However, an asynchronous agent is a purely notional construct that allows us to reason about the context for,
and composition of, asynchronous operations in a program. The name “asynchronous agent” does not appear
in the library, nor is it important which concrete mechanism1 is used to compose the asynchronous operations
in an agent.

We can visualise an asynchronous agent as follows:

Asynchronous agents alternately wait for an asynchronous operation to complete, and then run a completion
handler for that operation. Within the context of an agent, these completion handlers represent indivisible
units of schedulable work.

3.3 Associated characteristics and associators
An asynchronous agent has associated characteristics that specify how asynchronous operations should behave
when composed as part of that agent, such as:

• An allocator, which determines how the agent’s asynchronous operations obtain memory resources.
• A cancellation slot, which determines how the agent’s asynchronous operations support cancellation.

1 Such as chains of lambdas, coroutines, fibers, state machines, etc.

Asynchronous
agent

Asynchronous
operation

Initiating
function

Completion
handler

Cancellation
slot

Executor Allocator

 Associated
characteristics

composes
has

uses

is
-a

is-
a is-a st

ar
te

d
by

associated with calls on

com
pletion

Asynchronous
operation

Call to initiating function Asynchronous
operation

Completion handler

Call to initiating function Asynchronous
operation

Completion handler

Call to initiating function

P2444r0 – The Asio asynchronous model

8

• An executor, which determines how the agent’s completion handlers will be queued and run.

When an asynchronous operation is run within an asynchronous agent, its implementation may query these
associated characteristics and use them to satisfy the requirements or preferences they represent. The
asynchronous operation performs these queries by applying associator traits to the completion handler. Each
characteristic has a corresponding associator trait.

An associator trait may be specialised for concrete completion handler types to:

• accept the default characteristic supplied by the asynchronous operation, returning this default as-is
• return an unrelated implementation of the characteristic, or
• adapt the supplied default to introduce additional behaviour required by the completion handler.

Specification of an associator

Given an associator trait named2 associated_R, having:

• a source value s of type S, in this case the completion handler and its type,
• a set of type requirements (or a concept) R that define the syntactic and semantic requirements of

the associated characteristic, and
• a candidate value c of type C that meets the type requirements R, which represents a default

implementation of the associated characteristic, supplied by the asynchronous operation

the asynchronous operation uses the associator trait to compute:

• the type associated_R<S, C>::type, and
• the value associated_R<S, C>::get(s, c)

that meet the requirements defined in R. For convenience, these are also accessible via type alias
associated_R_t<S, C> and free function get_associated_R(s, c), respectively.

The trait’s primary template is specified such that:

• if S::R_type is well-formed, defines a nested type alias type as S::R_type, and a static member
function get that returns s.get_R()

• otherwise, if associator<associated_R, S, C>::type is well-formed and denotes a type, inherits
from associator<associated_R, S, C>

• otherwise, defines a nested type alias type as C, and a static member function get that returns c.

3.4 Child agents
The asynchronous operations within an agent may themselves be implemented in terms of child agents.3 As
far as the parent agent is concerned, it is waiting for the completion of a single asynchronous operation. The
asynchronous operations that constitute the child agent run in sequence, and when the final completion
handler runs the parent agent is resumed.

2 The associator traits are named associated_allocator, associated_executor, and associated_cancellation_slot.
3 In Asio these asynchronous operations are referred to as composed operations.

P2444r0 – The Asio asynchronous model

9

As with individual asynchronous operations, the asynchronous operations built on child agents must release
their temporary resources prior to calling the completion handler. We may also think of these child agents as
resources that end their lifetimes before the completion handler is invoked.

When an asynchronous operation creates a child agent, it may propagate4 the associated characteristics of the
parent agent to the child agent. These associated characteristics may then be recursively propagated through
further layers of asynchronous operations and child agents. This stacking of asynchronous operations
replicates another property of synchronous operations.

Property of synchronous operations Equivalent property of asynchronous operations

Compositions of synchronous operations may be
refactored to use child functions that run on the
same thread (i.e. are simply called) without altering
functionality.

Asynchronous agents may be refactored to use
asynchronous operations and child agents that share
the associated characteristics of the parent agent,
without altering functionality.

Finally, some asynchronous operations may be implemented in terms of multiple child agents that run
concurrently. In this case, the asynchronous operation may choose to selectively propagate the associated
characteristics of the parent agent.

3.5 Executors
Every asynchronous agent has an associated executor. An agent’s executor determines how the agent’s
completion handlers are queued and ultimately run.

Example uses of executors include:

• Coordinating a group of asynchronous agents that operate on shared data structures, ensuring that
the agents’ completion handlers never run concurrently5.

• Ensuring that agents are run on specified execution resource (e.g. a CPU) that is proximal to data or
an event source (e.g. a NIC).

• Denoting a group of related agents, and so enabling dynamic thread pools to make smarter scheduling
decisions (such as moving the agents between execution resources as a unit).

• Queuing all completion handlers to run on a GUI application thread, so that they may safely update
user interface elements.

4 Typically, by specialising the associator trait and forwarding to the outer completion handler.
5 In Asio, this kind of executor is called a strand.

Call to initiating function Asynchronous
operation

Completion handler

Call to initiating function Asynchronous
operation

Completion handler

Call to completion handler

Call to initiating function

Completion handler

Us
er

 co
de

Us
er

 co
de

Asynchronous operation with a single child agent

P2444r0 – The Asio asynchronous model

10

• Returning an asynchronous operation’s default executor as-is, to run completion handlers as close as
possible to the event that triggered the operation’s completion.

• Adapting an asynchronous operation’s default executor, to run code before and after every
completion handler, such as logging, user authorisation, or exception handling.

• Specifying a priority for an asynchronous agent and its completion handlers.

The asynchronous operations within an asynchronous agent use the agent’s associated executor to:

• Track the existence of the work that the asynchronous operation represents, while the operation is
outstanding.

• Enqueue the completion handler for execution on completion of an operation.
• Ensure that completion handlers do not run re-entrantly, if doing so might lead to inadvertent

recursion and stack overflow.

Thus, an asynchronous agent’s associated executor represents a policy of how, where, and when the agent
should run, specified as a cross-cutting concern to the code that makes up the agent.

3.6 Allocators
Every asynchronous agent has an associated allocator. An agent’s allocator is an interface used by the agent’s
asynchronous operations to obtain per-operation stable memory resources (POSMs). This name reflects the fact
that the memory is per-operation because the memory is only retained for the lifetime of that operation, and
stable, because the memory is guaranteed to be available at that location throughout the operation.

Asynchronous operations may utilise POSMs in a number of different ways:

• The operation doesn’t require any POSMs. For example, the operation wraps an existing API that
performs its own memory management, or is copying the long lived state into existing memory like a
circular buffer.

• The operation uses a single, fixed-size POSM for as long as the operation is outstanding. For example,
the operation stores some state in a linked list.

• The operation uses a single, runtime-sized POSM. For example, the operation stores a copy of a user-
supplied buffer, or a runtime-sized array of iovec structures.

• The operation uses multiple POSMs concurrently. For example, a fixed size POSM for a linked list
plus a runtime-sized POSM for a buffer.

• The operation uses multiple POSMs serially, which may vary in size.

Associated allocators allow users to treat POSM optimisation as a cross-cutting concern to the composition of
asynchronous operations. Furthermore, using allocators as the interface to obtain POSMs grant substantial
flexibility to both the implementers and users of asynchronous operations:

• Users can ignore the allocator and accept whatever default strategy is employed by the application.
• Implementers can ignore the allocator, especially if the operation is not considered performance-

sensitive.
• Users can co-locate POSMs for related asynchronous operations, for better locality of reference.
• For compositions that involve serial POSMs of different sizes, memory usage need only be as great as

the currently extant POSM. For example, consider a composition that contains a short-lived operation
that uses large POSMs (connection establishment and handshake) followed by a long-lived operation
that uses small POSMs (transferring data to and from the peer).

As noted previously, all resources must be released prior to calling the completion handler. This enables
memory to be recycled for subsequent asynchronous operations within an agent. This allows applications with
long-lived asynchronous agents to have no hot-path memory allocations, even though the user code is
unaware of associated allocators.

P2444r0 – The Asio asynchronous model

11

3.7 Cancellation
In Asio, many objects, such as sockets and timers, support object-wide cancellation of outstanding
asynchronous operations via their close or cancel member functions. However, certain asynchronous
operations also support individual, targeted cancellation. This per-operation cancellation is enabled by
specifying that every asynchronous agent has an associated cancellation slot.

To support cancellation, an asynchronous operation installs a cancellation handler into the agent’s slot. The
cancellation handler is a function object that will be invoked when a cancellation signal is emitted by the user
into the slot. Since a cancellation slot is associated with a single agent, the slot holds at most one handler at a
time, and installing a new handler will overwrite any previously installed handler. Thus, the same slot is
reused for subsequent asynchronous operations within the agent.

Cancellation is particularly useful when an asynchronous operation contains multiple child agents. For
example, one child agent may be complete and the other is then cancelled, as its side effects are no longer
required.

3.8 Completion tokens

A key goal of Asio’s asynchronous model is to support multiple composition mechanisms. This is achieved
via a completion token, which the user passes to a asynchronous operations’ initiating function to customise the
API surface of the library. By convention, the completion token is the final argument to an asynchronous
operation’s initiating function.

For example, if the user passes a lambda (or other function
object) as the completion token, the asynchronous
operation behaves as previously described: the operation
begins, and when the operation completes the result is
passed to the lambda.

socket.async_read_some(buffer,
 [](error_code e, size_t)
 {
 // ...
 }
);

Asynchronous
operation

Initiating
function

Completion
handler

Completion
token

Completion
signature

async_result
trait

 Concrete
completion tokens

st
ar

te
d

by
 calls on

com
pletion

 async_result
specialisations

pr
od

uc
es

sp
ec

ifi
es

uses

accepts as argument

P2444r0 – The Asio asynchronous model

12

When the user passes the use_future completion token,
the operation behaves as though implemented in terms of
a promise and future pair. The initiating function does not
just launch the operation, but also returns a future that
may be used to await the result.

future<size_t> f =
 socket.async_read_some(
 buffer, use_future
);
// ...
size_t n = f.get();

Similarly, when the user passes the use_awaitable
completion token, the initiating function behaves as
though it is an awaitable-based coroutine6. However, in
this case the initiating function does not launch the
asynchronous operation directly. It only returns the
awaitable, which in turn launches the operation when it
is co_await-ed.

awaitable<void> foo()
{
 size_t n =
 co_await socket.async_read_some(
 buffer, use_awaitable
);

 // ...
}

Finally, the fibers::yield completion token causes the
initiating function to behave as a fiber-aware synchronous
operation. It not only begins the asynchronous operation,
but blocks the fiber until it is complete. From the point of
the fiber, it is a synchronous operation.

void foo()
{
 size_t n = socket.async_read_some(
 buffer, fibers::yield
);

 // ...
}

All of these uses are supported by a single implementation of the async_read_some initiating function.

To achieve this, an asynchronous operation must first specify a completion signature (or, possibly, signatures)
that describes the arguments that will be passed to its completion handler.

Then, the operation’s initiating function takes the completion signature, completion token, and its internal
implementation and passes them to the async_result trait. The async_result trait is a customisation point that
combines these to first produce a concrete completion handler, and then launch the operation.

6 The awaitable class template is included with the Asio library as a return type for C++20 coroutines. These coroutines can be trivially
implemented in terms of other awaitable-based coroutines.

template </*...*/, class CompletionToken>
DEDUCED async_read_some(/*…*/, CompletionToken&& token>;

Completion signature: void(error_code, size_t);

User calls async_read_some and
supplies a concrete completion token

async_result trait

async_read_some initiating
function provides internal

implementation

ReturnType async_read_some(/*…*/, ConcreteToken&& token>;

P2444r0 – The Asio asynchronous model

13

To see this in practice, let’s use a detached thread to adapt a synchronous operation into an asynchronous
one:7
template <class CompletionToken>
auto async_read_some(tcp::socket& s, const mutable_buffer& b, CompletionToken&& token)
{
 auto init = [](
 auto completion_handler,
 tcp::socket* s,
 const mutable_buffer& b)
 {
 std::thread(
 [](
 auto completion_handler,
 tcp::socket* s,
 const mutable_buffer& b
)
 {
 error_code ec;
 size_t n = s->read_some(b, ec);
 std::move(completion_handler)(ec, n);
 },
 std::move(completion_handler),
 s,
 b
).detach();
 };

 return async_result<
 decay_t<CompletionToken>,
 void(error_code, size_t)
 >::initiate(
 init,
 std::forward<CompletionToken>(token),
 &s,
 b
);
}

We can think of the completion token as a kind of proto completion handler. In the case where we pass a
function object (like a lambda) as the completion token, it already satisfies the completion handler
requirements. The async_result primary template handles this case by trivially forwarding the arguments
through:
template <class CompletionToken, completion_signature... Signatures>
struct async_result
{
 template <
 class Initiation,
 completion_handler_for<Signatures...> CompletionHandler,
 class... Args>
 static void initiate(
 Initiation&& initiation,
 CompletionHandler&& completion_handler,
 Args&&... args)
 {
 std::forward<Initiation>(initiation)(
 std::forward<CompletionHandler>(completion_handler),
 std::forward<Args>(args)...);
 }
};

7 For illustrative purposes only. Not recommended for real world use!

Define a function object that contains the code to launch the asynchronous
operation. This is passed the concrete completion handler, followed by any
additional arguments that were passed through the async_result trait.

The body of the function object spawns a new thread to perform the operation.

Once the operation completes, the completion handler is passed the result.

The async_result trait is passed the (decayed) completion token type, and the
completion signatures of the asynchronous operation.

Call the trait’s initiate member function, first passing the function object that
launches the operation.

Next comes the forwarded completion token. The trait implementation will
convert this into a concrete completion handler.

Finally, pass any additional arguments for the function object. Assume that
these may be decay-copied and moved by the trait implementation.

P2444r0 – The Asio asynchronous model

14

We can see here that this default implementation avoids copies of all arguments, thus ensuring that eager
initiation is as efficient as possible.

On the other hand, a lazy completion token (such as use_awaitable above) may capture these arguments for
deferred launching of the operation. For example, a specialisation for a trivial deferred token (that simply
packages the operation for later) might look something like this:
template <completion_signature... Signatures>
struct async_result<deferred_t, Signatures...>
{
 template <class Initiation, class... Args>
 static auto initiate(Initiation initiation, deferred_t, Args... args)
 {
 return [
 initiation = std::move(initiation),
 arg_pack = std::make_tuple(std::move(args)...)
](auto&& token) mutable
 {
 return std::apply(
 [&](auto&&... args)
 {
 return async_result<decay_t<decltype(token)>, Signatures...>::initiate(
 std::move(initiation),
 std::forward<decltype(token)>(token),
 std::forward<decltype(args)>(args)...
);
 },
 std::move(arg_pack)
);
 };
 }
};

3.9 Summary of library elements

• completion_signature concept – defines valid completion signature forms.
• completion_handler_for concept – determines whether a completion handler is callable with a given

set of completion signatures.
• async_result trait – converts a completion signature and completion token into a concrete completion

handler, and launches the operation.
• async_initiate function – helper function to simplify use of the async_result trait.
• associator trait – automatically propagates all associators through layers of abstraction.
• associated_executor trait – defines an asynchronous agent’s associated executor.
• associated_executor_t template type alias
• get_associated_executor function
• associated_allocator trait – defines an asynchronous agent’s associated allocator.
• associated_allocator_t template type alias
• get_associated_allocator function
• associated_cancellation_slot trait – defies an asynchronous agent’s associated cancellation slot.
• associated_cancellation_slot_t template type alias
• get_associated_cancellation_slot function

P2444r0 – The Asio asynchronous model

15

3.10 Higher level abstractions

The asynchronous model presented in this paper provides a basis for defining higher level abstractions, but
specifying these is considered beyond the scope of this paper. Instead, its scope is limited to specifying the
asynchronous operations that are the building blocks of this composition.

However, the Asio library already builds on this core model to provide these additional facilities, such as:

• I/O object such as sockets and timers that expose asynchronous operations on top of this model.
• Concrete executors, such as the io_context executor, thread_pool executor, and the strand adapter

which guarantees non-concurrent execution of completion handlers.
• Completion tokens that facilitate different composition mechanisms, such as coroutines, fibers,

futures, and deferred operations.
• High level support for C++ coroutines that combines support executors and cancellation slots to allow

for easy coordination of concurrent asynchronous agents.

4 Examples
Many examples that build on this core asynchronous model can be found as part of the Asio library
distribution, as well as in the many applications and libraries that are build on top of Asio. However, to
illustrate how high-level compositions can be built on top of this model, the following examples utilise the
C++20 coroutine support that is included with Asio.

Asynchronous
agent

Asynchronous
operation

Initiating
function

Completion
handler

Completion
token

Completion
signature

async_result
trait

Cancellation
slot

Executor Allocator

 Concrete
executors

 Concrete
allocators

 Concrete
cancellation slots

 Concrete
completion tokens

 Associated
characteristics

composes
has

uses

is
-a

is-
a is-a st

ar
te

d
by

associated with calls on

com
pletion

 async_result
specialisations

pr
od

uc
es

sp
ec

ifi
es

uses

accepts as argument

P2444r0 – The Asio asynchronous model

16

To begin, let’s compare our original thread-per-connection echo server with a coroutine-based one.

Thread-per-connection echo server Coroutine echo server

#include <asio.hpp>

using asio::buffer;
using asio::ip::tcp;

void echo(tcp::socket s)
{
 try
 {
 char data[1024];
 for (;;)
 {
 std::size_t n =
 s.read_some(
 buffer(data)
);

 write(
 s,
 buffer(data, n)
);

 }
 }
 catch (const std::exception& e)
 {
 }
}

void listen(tcp::acceptor a)
{
 for (;;)
 {
 std::thread(
 echo,
 a.accept()
).detach();

 }
}

int main()
{
 asio::io_context ctx;

 listen({ctx, {tcp::v4(), 55555}});

}

#include <asio.hpp>

using asio::awaitable;
using asio::buffer;
using asio::detached;
using asio::ip::tcp;
using asio::use_awaitable;

awaitable<void> echo(tcp::socket s)
{
 try
 {
 char data[1024];
 for (;;)
 {
 std::size_t n =
 co_await s.async_read_some(
 buffer(data),
 use_awaitable
);

 co_await async_write(
 s,
 buffer(data, n),
 use_awaitable
);
 }
 }
 catch (const std::exception& e)
 {
 }
}

awaitable<void> listen(tcp::acceptor a)
{
 for (;;)
 {
 co_spawn(
 a.get_executor(),
 echo(co_await a.async_accept(use_awaitable)),
 detached
);
 }
}

int main()
{
 asio::io_context ctx;

 co_spawn(
 ctx,
 listen({ctx, {tcp::v4(), 55555}}),
 detached
);

 ctx.run();
}

This demonstrates how coroutine support can leverage the model to replicate both the semantic and syntactic
properties of synchronous operations.

P2444r0 – The Asio asynchronous model

17

The next example is a snippet from a simple TCP socket proxy. It demonstrates how coroutines can combine
with cancellation support to provide elegant coordination of concurrent asynchronous agents, and efficient
timeout support:

constexpr auto use_nothrow_awaitable = as_tuple(use_awaitable);

awaitable<void> transfer(tcp::socket& from, tcp::socket& to, steady_clock::time_point& deadline)
{
 std::array<char, 1024> data;

 for (;;)
 {
 deadline = std::max(deadline, steady_clock::now() + 5s);

 auto [e1, n1] = co_await from.async_read_some(buffer(data), use_nothrow_awaitable);
 if (e1)
 co_return;

 auto [e2, n2] = co_await async_write(to, buffer(data, n1), use_nothrow_awaitable);
 if (e2)
 co_return;
 }
}

awaitable<void> watchdog(steady_clock::time_point& deadline)
{
 steady_timer timer(co_await this_coro::executor);

 auto now = steady_clock::now();
 while (deadline > now)
 {
 timer.expires_at(deadline);
 co_await timer.async_wait(use_nothrow_awaitable);
 now = steady_clock::now();
 }
}

awaitable<void> proxy(tcp::socket client, tcp::endpoint target)
{
 tcp::socket server(client.get_executor());
 steady_clock::time_point deadline{};

 auto [e] = co_await server.async_connect(target, use_nothrow_awaitable);
 if (!e)
 {
 co_await (
 transfer(client, server, deadline) ||
 transfer(server, client, deadline) ||
 watchdog(deadline)
);
 }
}

awaitable<void> listen(tcp::acceptor& acceptor, tcp::endpoint target)
{
 for (;;)
 {
 auto [e, client] = co_await acceptor.async_accept(use_nothrow_awaitable);
 if (e)
 break;

 auto ex = client.get_executor();
 co_spawn(ex, proxy(std::move(client), target), detached);
 }
}

P2444r0 – The Asio asynchronous model

18

Finally, a snippet that illustrates a connect-by-name implementation. This coroutine-based algorithm attempts
connections to multiple hosts in parallel. As soon as one succeeds, the remaining operations are automatically
cancelled.
tcp::socket selected(std::variant<tcp::socket, tcp::socket> v)
{
 switch (v.index())
 {
 case 0:
 return std::move(std::get<0>(v));
 case 1:
 return std::move(std::get<1>(v));
 default:
 throw std::logic_error(__func__);
 }
}

awaitable<tcp::socket> connect(ip::tcp::endpoint ep)
{
 auto sock = tcp::socket(co_await this_coro::executor);
 co_await sock.async_connect(ep, use_awaitable);
 co_return std::move(sock);
}

awaitable<tcp::socket> connect_range(
 tcp::resolver::results_type::const_iterator first,
 tcp::resolver::results_type::const_iterator last)
{
 assert(first != last);

 auto next = std::next(first);
 if (next == last)
 co_return co_await connect(first->endpoint());
 else
 co_return selected(co_await(connect(first->endpoint()) || connect_range(next, last)));
}

awaitable<tcp::socket> connect_by_name(std::string host, std::string service)
{
 auto resolver = tcp::resolver(co_await this_coro::executor);
 auto results = co_await resolver.async_resolve(host, service, use_awaitable);
 co_return co_await connect_range(results.begin(), results.end());
}

P2444r0 – The Asio asynchronous model

19

5 Sample implementation
The following implementation of the core asynchronous model is derived from the Asio source code. For
clarity, it has been updated to use C++20 features, and to remove backwards feature compatibility.
// completion_signature concept

template <class T>
struct __is_completion_signature : false_type {};

template <class R, class... Args>
struct __is_completion_signature<R(Args...)> : true_type {};

template <class T>
concept completion_signature = __is_completion_signature<T>::value;

template <class T, class Signature>
struct __is_completion_handler_for : false_type {};

// completion_handler_for concept

template <class T, class R, class... Args>
struct __is_completion_handler_for<T, R(Args...)> : is_invocable<decay_t<T>&&, Args...> {};

template <class T, class... Signatures>
concept completion_handler_for = (completion_signature<Signatures> && ...)
 && (__is_completion_handler_for<T, Signatures>::value && ...);

// async_result trait

template <class CompletionToken, completion_signature... Signatures>
struct async_result
{
 template <
 class Initiation,
 completion_handler_for<Signatures...> CompletionHandler,
 class... Args>
 static void initiate(
 Initiation&& initiation,
 CompletionHandler&& completion_handler,
 Args&&... args)
 {
 std::forward<Initiation>(initiation)(
 std::forward<CompletionHandler>(completion_handler),
 std::forward<Args>(args)...);
 }
};

// async_initiate helper function

template <
 class CompletionToken,
 completion_signature... Signatures,
 class Initiation,
 class... Args>
auto async_initiate(
 Initiation&& initiation,
 type_identity_t<CompletionToken>& token,
 Args&&... args)
 -> decltype(
 async_result<decay_t<CompletionToken>, Signatures...>::initiate(
 std::forward<Initiation>(initiation),
 std::forward<CompletionToken>(token),
 std::forward<Args>(args)...))
{

P2444r0 – The Asio asynchronous model

20

 return async_result<decay_t<CompletionToken>, Signatures...>::initiate(
 std::forward<Initiation>(initiation),
 std::forward<CompletionToken>(token),
 std::forward<Args>(args)...);
}

// completion_token_for concept

template <class... Signatures>
struct __initiation_archetype
{
 template <completion_handler_for<Signatures...> CompletionHandler>
 void operator()(CompletionHandler&&) const {}
};

template <class T, class... Signatures>
concept completion_token_for = (completion_signature<Signatures> && ...)
 && requires(T&& t)
 {
 async_initiate<T, Signatures...>(__initiation_archetype<Signatures...>{}, t);
 };

// associator trait

template <template <class, class> class Associator, class S, class C>
struct associator {};

// associated_executor trait

template <class S, class C>
struct associated_executor
{
 static auto __get(const S& s, const C& c) noexcept
 {
 if constexpr (requires { typename S::executor_type; })
 return s.get_executor();
 else if constexpr (requires { typename associator<associated_executor, S, C>::type; })
 return associator<associated_executor, S, C>::get(s, c);
 else
 return c;
 }

 using type = decltype(associated_executor::__get(declval<const S&>(), declval<const C&>()));

 static type get(const S& s, const C& c) noexcept
 {
 return __get(s, c);
 }
};

template <class S, class C>
using associated_executor_t = typename associated_executor<S, C>::type;

template <class S, class C>
associated_executor_t<S, C> get_associated_executor(const S& s, const C& c) noexcept
{
 return associated_executor<S, C>::get(s, c);
}

// associated_allocator trait

template <class S, class C>
struct associated_allocator
{
 static auto __get(const S& s, const C& c) noexcept
 {

P2444r0 – The Asio asynchronous model

21

 if constexpr (requires { typename S::allocator_type; })
 return s.get_allocator();
 else if constexpr (requires { typename associator<associated_allocator, S, C>::type; })
 return associator<associated_allocator, S, C>::get(s, c);
 else
 return c;
 }

 using type = decltype(associated_allocator::__get(declval<const S&>(), declval<const C&>()));

 static type get(const S& s, const C& c) noexcept
 {
 return __get(s, c);
 }
};

template <class S, class C>
using associated_allocator_t = typename associated_allocator<S, C>::type;

template <class S, class C>
associated_allocator_t<S, C> get_associated_allocator(const S& s, const C& c) noexcept
{
 return associated_allocator<S, C>::get(s, c);
}

// associated_cancellation_slot trait

template <class S, class C>
struct associated_cancellation_slot
{
 static auto __get(const S& s, const C& c) noexcept
 {
 if constexpr (requires { typename S::cancellation_slot_type; })
 return s.get_cancellation_slot();
 else if constexpr (requires { typename associator<associated_cancellation_slot, S, C>::type; })
 return associator<associated_cancellation_slot, S, C>::get(s, c);
 else
 return c;
 }

 using type = decltype(associated_cancellation_slot::__get(declval<const S&>(), declval<const C&>()));

 static type get(const S& s, const C& c) noexcept
 {
 return __get(s, c);
 }
};

template <class S, class C>
using associated_cancellation_slot_t = typename associated_cancellation_slot<S, C>::type;

template <class S, class C>
associated_cancellation_slot_t<S, C> get_associated_cancellation_slot(const S& s, const C& c) noexcept
{
 return associated_cancellation_slot<S, C>::get(s, c);
}

6 Acknowledgements
The author would like to thank Klemens Morgenstern, Richard Hodges, and Jamie Allsop for providing
feedback on this paper. The author would also like to acknowledge Richard Hodges as the author of one of
the examples included above.

