
ISO/IEC JTC1 SC22 WG21 P2416R0
Author: Jens Maurer
Target audience: LWG
2021-07-15

P2416R0: Presentation of requirements in the
standard library

Introduction

This paper suggests a change in presentation of the requirements tables in the standard library.

The existing tables are awkward and frequently do not use established best practice for presenting
requirements.

The following pages present the container and regular expression requirements in a new format for comment.
No semantic changes are intended.

Acknowledgements

Thanks to the project (co)editors for review and assistance.

P2416R0: Presentation of requirements in the standard library file:///home/jmaurer/C++/ISO/2021/d2416r0-head.html

1 of 1 15/07/2021, 12.03

© ISO/IEC Dxxxx

22 Containers library [containers]
22.1 General [containers.general]

1 This Clause describes components that C++ programs may use to organize collections of information.
2 The following subclauses describe container requirements, and components for sequence containers and

associative containers, as summarized in Table 72.

Table 72: Containers library summary [tab:containers.summary]

Subclause Header
22.2 Requirements
22.3 Sequence containers <array>, <deque>, <forward_list>, <list>, <vector>
22.4 Associative containers <map>, <set>
22.5 Unordered associative containers <unordered_map>, <unordered_set>
22.6 Container adaptors <queue>, <stack>
22.7 Views

22.2 Requirements [container.requirements]
22.2.1 Preamble [container.requirements.pre]

1 Containers are objects that store other objects. They control allocation and deallocation of these objects
through constructors, destructors, insert and erase operations.

2 All of the complexity requirements in this Clause are stated solely in terms of the number of operations on
the contained objects.
[Example 1 : The copy constructor of type vector<vector<int>> has linear complexity, even though the complexity
of copying each contained vector<int> is itself linear. —end example]

3 For the components affected by subclause 22.2 that declare an allocator_type, objects stored in these compo-
nents shall be constructed using the function allocator_traits<allocator_type>::rebind_traits<U>::
construct and destroyed using the function allocator_traits<allocator_type>::rebind_traits<U>::
destroy (20.10.8.3), where U is either allocator_type::value_type or an internal type used by the
container. These functions are called only for the container’s element type, not for internal types used by the
container.
[Note 1 : This means, for example, that a node-based container would need to construct nodes containing aligned
buffers and call construct to place the element into the buffer. —end note]

22.2.2 General containers [container.gen.reqmts]
22.2.2.1 General [container.requirements.general]

1 In subclause 22.2.2,
—(1.1) X denotes a container class containing objects of type T,
—(1.2) a and b denote values of type X,
—(1.3) i and j denote values of type (possibly const) X::iterator,
—(1.4) u denotes an identifier,
—(1.5) r denotes a non-const value of type X, and
—(1.6) rv denotes a non-const rvalue of type X.

22.2.2.2 Containers [container.reqmts]
1 A type X meets the container requirements if the following types and expressions are well-formed and have

the specified semantics.
—(1.1) The name X::value_type denotes the type T. T is Cpp17Erasable from X (see 22.2.2.1, below).

§ 22.2.2.2 802

© ISO/IEC Dxxxx

—(1.2) The name X::reference denotes the type T&.
—(1.3) The name X::const_reference denotes the type const T&.
—(1.4) The name X::iterator denotes a type that meets the forward iterator requirements (23.3.5.5) with

value type T. The type X::iterator is convertible to X::const_iterator.
—(1.5) The name X::const_iterator denotes a type that meets the requirements of a constant iterator and

those of a forward iterator with value type T.
—(1.6) The name X::difference_type denotes a signed integer type, identical to the difference type of

X::iterator and X::const_iterator.
—(1.7) The name X::size_type denotes an unsigned integer type that can represent any non-negative value

of difference_type.

X u; and X u = X(); are statements, each with the following properties:
2 Postconditions: u.empty()
3 Complexity: Constant.

X u(a); and X u = a; are statements, each with the following properties:
4 Preconditions: T is Cpp17CopyInsertable into X (see below).
5 Postconditions: u == a
6 Complexity: Linear.

X u(rv); and X u = rv; are statements, each with the following properties:
7 Postconditions: u is equal to the value that rv had before this construction.
8 Complexity: Linear for array and constant for all other standard containers.

a = rv is an expression with the following properties:
9 Result: An lvalue of type X.

10 Effects: All existing elements of a are either move assigned to or destroyed.
11 Postconditions: If a and rv do not refer to the same object, a is equal to the value that rv had before

this assignment.
12 Complexity: Linear.

a.~X() is an expression with the following properties:
13 Result: void
14 Effects: Destroys every element of a; any memory obtained is deallocated.
15 Complexity: Linear.

a.begin() is an expression with the following properties:
16 Result: A prvalue of type iterator; const_iterator for constant a.
17 Value: An iterator referring to the first element in the container.
18 Complexity: Constant.

a.end() is an expression with the following properties:
19 Result: A prvalue of type iterator; const_iterator for constant a.
20 Value: An iterator which is the past-the-end value for the container.
21 Complexity: Constant.

a.cbegin() is an expression with the following properties:
22 Result: A prvalue of type const_iterator.
23 Value: const_cast<X const&>(a).begin()
24 Complexity: Constant.

§ 22.2.2.2 803

© ISO/IEC Dxxxx

a.cend() is an expression with the following properties:
25 Result: A prvalue of type const_iterator.
26 Value: const_cast<X const&>(a).end()
27 Complexity: Constant.

i <=> j is an expression with the following properties:
28 Result: A prvalue of type strong_ordering.
29 Constraints: X::iterator meets the random access iterator requirements.
30 Complexity: Constant.

a == b is an expression with the following properties:
31 Preconditions: T meets the Cpp17EqualityComparable requirements
32 Result: Convertible to bool.
33 Value: equal(a.begin(), a.end(), b.begin(), b.end())

[Note 1 : The algorithm equal is defined in 25.6.11. —end note]
34 Complexity: Constant if a.size() != b.size(), linear otherwise.
35 Remarks: == is an equivalence relation.

a != b is an expression with the following properties:
36 Effects: Equivalent to !(a == b).

a.swap(b) is an expression with the following properties:
37 Result: void
38 Effects: Exchanges the contents of a and b.
39 Complexity: Linear for array and constant for all other standard containers.

swap(a, b) is an expression with the following properties:
40 Effects: Equivalent to a.swap(b).

r = a is an expression with the following properties:
41 Result: An lvalue of type X.
42 Postconditions: r == a.
43 Complexity: Linear.

a.size() is an expression with the following properties:
44 Result: A prvalue of type size_type.
45 Value: distance(a.begin(), a.end()), i.e. the number of elements in the container.
46 Complexity: Constant.
47 Remarks: The number of elements is defined by the rules of constructors, inserts, and erases.

a.max_size() is an expression with the following properties:
48 Result: A prvalue of type size_type.
49 Returns: distance(begin(), end()) for the largest possible container.

Complexity: Constant.

a.empty()

50 Result: Convertible to bool.
51 Value: a.begin() == a.end()
52 Complexity: Constant.
53 Remarks: If the container is empty, then a.empty() is true.

§ 22.2.2.2 804

© ISO/IEC Dxxxx

54 In the expressions
i == j
i != j
i < j
i <= j
i >= j
i > j
i <=> j
i - j

where i and j denote objects of a container’s iterator type, either or both may be replaced by an object of
the container’s const_iterator type referring to the same element with no change in semantics.

55 Unless otherwise specified, all containers defined in this Clause obtain memory using an allocator (see 16.4.4.6).
[Note 2 : In particular, containers and iterators do not store references to allocated elements other than through the
allocator’s pointer type, i.e., as objects of type P or pointer_traits<P>::template rebind<unspecified >, where P
is allocator_traits<allocator_type>::pointer. —end note]

Copy constructors for these container types obtain an allocator by calling allocator_traits<allocator_-
type>::select_on_container_copy_construction on the allocator belonging to the container being copied.
Move constructors obtain an allocator by move construction from the allocator belonging to the container
being moved. Such move construction of the allocator shall not exit via an exception. All other constructors
for these container types take a const allocator_type& argument.
[Note 3 : If an invocation of a constructor uses the default value of an optional allocator argument, then the allocator
type must support value-initialization. —end note]

A copy of this allocator is used for any memory allocation and element construction performed, by these
constructors and by all member functions, during the lifetime of each container object or until the allocator is
replaced. The allocator may be replaced only via assignment or swap(). Allocator replacement is performed
by copy assignment, move assignment, or swapping of the allocator only if
—(55.1) allocator_traits<allocator_type>::propagate_on_container_copy_assignment::value,
—(55.2) allocator_traits<allocator_type>::propagate_on_container_move_assignment::value, or
—(55.3) allocator_traits<allocator_type>::propagate_on_container_swap::value

is true within the implementation of the corresponding container operation. In all container types defined in
this Clause, the member get_allocator() returns a copy of the allocator used to construct the container or,
if that allocator has been replaced, a copy of the most recent replacement.

56 The expression a.swap(b), for containers a and b of a standard container type other than array, shall
exchange the values of a and b without invoking any move, copy, or swap operations on the individual container
elements. Lvalues of any Compare, Pred, or Hash types belonging to a and b shall be swappable and shall be
exchanged by calling swap as described in 16.4.4.3. If allocator_traits<allocator_type>::propagate_-
on_container_swap::value is true, then lvalues of type allocator_type shall be swappable and the
allocators of a and b shall also be exchanged by calling swap as described in 16.4.4.3. Otherwise, the
allocators shall not be swapped, and the behavior is undefined unless a.get_allocator() == b.get_-
allocator(). Every iterator referring to an element in one container before the swap shall refer to the same
element in the other container after the swap. It is unspecified whether an iterator with value a.end() before
the swap will have value b.end() after the swap.

22.2.2.3 Reversible container requirements [container.rev.reqmts]
1 A type X meets the reversible container requirements if X meets the container requirements, the iterator type

of X belongs to the bidirectional or random access iterator categories (23.3), and the following types and
expressions are well-formed and have the specified semantics.
—(1.1) The name X::reverse_iterator denotes the type reverse_iterator<X::iterator>, an iterator type

whose value type is T.
—(1.2) The name X::const_reverse_iterator denotes the type reverse_iterator<X::const_iterator>,

a constant iterator type whose value type is T.

a.rbegin() is an expression with the following properties:
2 Result: reverse_iterator; const_reverse_iterator for constant a

§ 22.2.2.3 805

© ISO/IEC Dxxxx

3 Value: reverse_iterator(end())
4 Complexity: Constant.

a.rend() is an expression with the following properties:
5 Result: reverse_iterator; const_reverse_iterator for constant a
6 Value: reverse_iterator(begin())
7 Complexity: Constant.

a.crbegin() is an expression with the following properties:
8 Result: const_reverse_iterator
9 Value: const_cast<X const&>(a).rbegin()

10 Complexity: Constant.

a.crend() is an expression with the following properties:
11 Result: const_reverse_iterator
12 Value: const_cast<X const&>(a).rend()
13 Complexity: Constant.
14 Unless otherwise specified (see 22.2.7.2, 22.2.8.2, 22.3.8.4, and 22.3.11.5) all container types defined in this

Clause meet the following additional requirements:
—(14.1) if an exception is thrown by an insert() or emplace() function while inserting a single element, that

function has no effects.
—(14.2) if an exception is thrown by a push_back(), push_front(), emplace_back(), or emplace_front()

function, that function has no effects.
—(14.3) no erase(), clear(), pop_back() or pop_front() function throws an exception.
—(14.4) no copy constructor or assignment operator of a returned iterator throws an exception.
—(14.5) no swap() function throws an exception.
—(14.6) no swap() function invalidates any references, pointers, or iterators referring to the elements of the

containers being swapped.
[Note 1 : The end() iterator does not refer to any element, so it can be invalidated. —end note]

15 Unless otherwise specified (either explicitly or by defining a function in terms of other functions), invoking a
container member function or passing a container as an argument to a library function shall not invalidate
iterators to, or change the values of, objects within that container.

16 A contiguous container is a container whose member types iterator and const_iterator meet the
Cpp17RandomAccessIterator requirements (23.3.5.7) and model contiguous_iterator (23.3.4.14).

22.2.2.4 Optional container requirements [container.opt.reqmts]
1 The following operations are provided for some types of containers but not others. Those containers for which

the listed operations are provided shall implement the semantics as described unless otherwise stated. If the
iterators passed to lexicographical_compare_three_way meet the constexpr iterator requirements (23.3.1)
then the operations described below are implemented by constexpr functions.

a <=> b is an expression with the following properties:
2 Result: A prvalue of type synth-three-way-result <X::value_type>.
3 Preconditions: Either <=> is defined for values of type (possibly const) T, or < is defined for values of

type (possibly const) T and < is a total ordering relationship.
4 Value: lexicographical_compare_three_way(a.begin(), a.end(), b.begin(), b.end(),

synth-three-way)
[Note 1 : The algorithm lexicographical_compare_three_way is defined in Clause 25. —end note]

5 Complexity: Linear.

§ 22.2.2.4 806

© ISO/IEC Dxxxx

22.2.2.5 Allocator-aware containers [container.alloc.reqmts]
1 All of the containers defined in Clause 22 and in 21.3.3 except array meet the additional requirements of an

allocator-aware container, as described below.
2 Given an allocator type A and given a container type X having a value_type identical to T and an allocator_-

type identical to allocator_traits<A>::rebind_alloc<T> and given an lvalue m of type A, a pointer p of
type T*, an expression v of type (possibly const) T, and an rvalue rv of type T, the following terms are
defined. If X is not allocator-aware, the terms below are defined as if A were allocator<T> — no allocator
object needs to be created and user specializations of allocator<T> are not instantiated:

—(2.1) T is Cpp17DefaultInsertable into X means that the following expression is well-formed:
allocator_traits<A>::construct(m, p)

—(2.2) An element of X is default-inserted if it is initialized by evaluation of the expression
allocator_traits<A>::construct(m, p)

where p is the address of the uninitialized storage for the element allocated within X.
—(2.3) T is Cpp17MoveInsertable into X means that the following expression is well-formed:

allocator_traits<A>::construct(m, p, rv)

and its evaluation causes the following postcondition to hold: The value of *p is equivalent to the value
of rv before the evaluation.
[Note 1 : rv remains a valid object. Its state is unspecified —end note]

—(2.4) T is Cpp17CopyInsertable into X means that, in addition to T being Cpp17MoveInsertable into X, the
following expression is well-formed:

allocator_traits<A>::construct(m, p, v)

and its evaluation causes the following postcondition to hold: The value of v is unchanged and is
equivalent to *p.

—(2.5) T is Cpp17EmplaceConstructible into X from args, for zero or more arguments args, means that the
following expression is well-formed:

allocator_traits<A>::construct(m, p, args)

—(2.6) T is Cpp17Erasable from X means that the following expression is well-formed:
allocator_traits<A>::destroy(m, p)

[Note 2 : A container calls allocator_traits<A>::construct(m, p, args) to construct an element at p using
args, with m == get_allocator(). The default construct in allocator will call ::new((void*)p) T(args), but
specialized allocators can choose a different definition. —end note]

3 In this subclause,
—(3.1) X denotes an allocator-aware container class with a value_type of T using an allocator of type A,
—(3.2) u denotes a variable,
—(3.3) a and b denote non-const lvalues of type X,
—(3.4) c denotes an lvalue of type const X,
—(3.5) t denotes an lvalue or a const rvalue of type X,
—(3.6) rv denotes a non-const rvalue of type X, and
—(3.7) m is a value of type A.

A type X meets the allocator-aware container requirements if X meets the container requirements and the
following types and expressions are well-formed and have the specified semantics.
—(3.8) X::allocator_type denotes the type A. allocator_type::value_type is the same as X::value_type.

c.get_allocator() is an expression with the following properties:
4 Result: A
5 Complexity: Constant.

X u; and X u = X(); are statements, each with the following properties:
6 Preconditions: A meets the Cpp17DefaultConstructible requirements.

§ 22.2.2.5 807

© ISO/IEC Dxxxx

7 Postconditions: u.empty() returns true, u.get_allocator() == A().
8 Complexity: Constant.

X u(m); is a statement with the following properties:
9 Postconditions: u.empty() returns true, u.get_allocator() == m.

10 Complexity: Constant.

X u(t, m); is a statement with the following properties:
11 Preconditions: T is Cpp17CopyInsertable into X.
12 Postconditions: u == t, u.get_allocator() == m
13 Complexity: Linear.

X u(rv); is a statement with the following properties:
14 Postconditions: u has the same elements as rv had before this construction; the value of u.get_-

allocator() is the same as the value of rv.get_allocator() before this construction.
15 Complexity: Constant.

X u(rv, m); is a statement with the following properties:
16 Preconditions: T is Cpp17MoveInsertable into X.
17 Postconditions: u has the same elements, or copies of the elements, that rv had before this construction,

u.get_allocator() == m.
18 Complexity: Constant if m == rv.get_allocator(), otherwise linear.

a = t is an expression with the following properties:
19 Result: An lvalue of type X.
20 Preconditions: T is Cpp17CopyInsertable into X and Cpp17CopyAssignable.
21 Postconditions: a == t is true.
22 Complexity: Linear.

a = rv is an expression with the following properties:
23 Result: An lvalue of type X.
24 Preconditions: If allocator_traits<allocator_type>::propagate_on_container_move_assign-

ment::value is false, T is Cpp17MoveInsertable into X and Cpp17MoveAssignable.
25 Effects: All existing elements of a are either move assigned to or destroyed.
26 Postconditions: If a and rv do not refer to the same object, a is equal to the value that rv had before

this assignment.
27 Complexity: Linear.

a.swap(b) is an expression with the following properties:
28 Result: void
29 Effects: Exchanges the contents of a and b.
30 Complexity: Constant.
31 The behavior of certain container member functions and deduction guides depends on whether types qualify

as input iterators or allocators. The extent to which an implementation determines that a type cannot be an
input iterator is unspecified, except that as a minimum integral types shall not qualify as input iterators.
Likewise, the extent to which an implementation determines that a type cannot be an allocator is unspecified,
except that as a minimum a type A shall not qualify as an allocator unless it meets both of the following
conditions:
—(31.1) The qualified-id A::value_type is valid and denotes a type (13.10.3).
—(31.2) The expression declval<A&>().allocate(size_t{}) is well-formed when treated as an unevaluated

operand.

§ 22.2.2.5 808

© ISO/IEC Dxxxx

22.2.3 Container data races [container.requirements.dataraces]
1 For purposes of avoiding data races (16.4.6.10), implementations shall consider the following functions to be

const: begin, end, rbegin, rend, front, back, data, find, lower_bound, upper_bound, equal_range, at
and, except in associative or unordered associative containers, operator[].

2 Notwithstanding 16.4.6.10, implementations are required to avoid data races when the contents of the contained
object in different elements in the same container, excepting vector<bool>, are modified concurrently.

3 [Note 1 : For a vector<int> x with a size greater than one, x[1] = 5 and *x.begin() = 10 can be executed
concurrently without a data race, but x[0] = 5 and *x.begin() = 10 executed concurrently can result in a data race.
As an exception to the general rule, for a vector<bool> y, y[0] = true can race with y[1] = true. —end note]

22.2.4 Sequence containers [sequence.reqmts]
1 A sequence container organizes a finite set of objects, all of the same type, into a strictly linear arrangement.

The library provides four basic kinds of sequence containers: vector, forward_list, list, and deque. In
addition, array is provided as a sequence container which provides limited sequence operations because it
has a fixed number of elements. The library also provides container adaptors that make it easy to construct
abstract data types, such as stacks or queues, out of the basic sequence container kinds (or out of other
kinds of sequence containers that the user defines).

2 [Note 1 : The sequence containers offer the programmer different complexity trade-offs. vector is appropriate in most
circumstances. array has a fixed size known during translation. list or forward_list support frequent insertions
and deletions from the middle of the sequence. deque supports efficient insertions and deletions taking place at the
beginning or at the end of the sequence. When choosing a container, remember vector is best; leave a comment to
explain if you choose from the rest! —end note]

3 In this subclause,
—(3.1) X denotes a sequence container class,
—(3.2) a denotes a value of type X containing elements of type T,
—(3.3) u denotes the name of a variable being declared,
—(3.4) A denotes X::allocator_type if the qualified-id X::allocator_type is valid and denotes a type

(13.10.3) and allocator<T> if it doesn’t,
—(3.5) i and j denote iterators that meet the Cpp17InputIterator requirements and refer to elements implicitly

convertible to value_type,
—(3.6) [i, j) denotes a valid range,
—(3.7) il designates an object of type initializer_list<value_type>,
—(3.8) n denotes a value of type X::size_type,
—(3.9) p denotes a valid constant iterator to a,
—(3.10) q denotes a valid dereferenceable constant iterator to a,
—(3.11) [q1, q2) denotes a valid range of constant iterators in a,
—(3.12) t denotes an lvalue or a const rvalue of X::value_type, and
—(3.13) rv denotes a non-const rvalue of X::value_type.
—(3.14) Args denotes a template parameter pack;
—(3.15) args denotes a function parameter pack with the pattern Args&&.

4 The complexities of the expressions are sequence dependent.
5 A type X meets the sequence container requirements if X meets the container requirements and the following

statements and expressions are well-formed and have the specified semantics.

X u(n, t); is a statement with the following properties:
6 Preconditions: T is Cpp17CopyInsertable into X.
7 Effects: Constructs a sequence container with n copies of t.
8 Postconditions: distance(u.begin(), u.end()) == n is true.

§ 22.2.4 809

© ISO/IEC Dxxxx

X u(i, j); is a statement with the following properties:
9 Preconditions: T is Cpp17EmplaceConstructible into X from *i. For vector, if the iterator does not

meet the Cpp17ForwardIterator requirements (23.3.5.5), T is also Cpp17MoveInsertable into X.
10 Effects: Constructs a sequence container equal to the range [i, j). Each iterator in the range [i, j)

is dereferenced exactly once.
11 Postconditions: distance(u.begin(), u.end()) == distance(i, j) is true.

X(il) is an expression with the following properties:
12 Effects: Equivalent to X(il.begin(), il.end()).

a = il is an expression with the following properties:
13 Result: An lvalue of type X.
14 Preconditions: T is Cpp17CopyInsertable into X and Cpp17CopyAssignable.
15 Effects: Assigns the range [il.begin(), il.end()) into a. All existing elements of a are either

assigned to or destroyed.
16 Returns: *this.

a.emplace(p, args) is an expression with the following properties:
17 Result: A prvalue of type iterator.
18 Preconditions: T is Cpp17EmplaceConstructible into X from args. For vector and deque, T is also

Cpp17MoveInsertable into X and Cpp17MoveAssignable.
19 Effects: Inserts an object of type T constructed with std::forward<Args>(args)... before p.

[Note 2 : args can directly or indirectly refer to a value in a. —end note]
20 Returns: An iterator that points to the new element constructed from args into a.

a.insert(p, t) is an expression with the following properties:
21 Result: A prvalue of type iterator.
22 Preconditions: T is Cpp17CopyInsertable into X. For vector and deque, T is also Cpp17CopyAssignable.
23 Effects: Inserts a copy of t before p.
24 Returns: An iterator that points to the copy of t inserted into a.

a.insert(p, rv) is an expression with the following properties:
25 Result: A prvalue of type iterator.
26 Preconditions: T is Cpp17MoveInsertable into X. For vector and deque, T is also Cpp17MoveAssignable.
27 Effects: Inserts a copy of rv before p.
28 Returns: An iterator that points to the copy of rv inserted into a.

a.insert(p, n, t) is an expression with the following properties:
29 Result: A prvalue of type iterator.
30 Preconditions: T is Cpp17CopyInsertable into X and Cpp17CopyAssignable.
31 Effects: Inserts n copies of t before p.
32 Returns: An iterator that points to the copy of the first element inserted into a, or p if n == 0.

a.insert(p, i, j) is an expression with the following properties:
33 Result: A prvalue of type iterator.
34 Preconditions: T is Cpp17EmplaceConstructible into X from *i. For vector and deque, T is also

Cpp17MoveInsertable into X, Cpp17MoveConstructible, Cpp17MoveAssignable, and swappable (16.4.4.3).
Neither i nor j are iterators into a.

35 Effects: Inserts copies of elements in [i, j) before p. Each iterator in the range [i, j) shall be
dereferenced exactly once.

§ 22.2.4 810

© ISO/IEC Dxxxx

36 Returns: An iterator that points to the copy of the first element inserted into a, or p if i == j.

a.insert(p, il) is an expression with the following properties:
37 Effects: Equivalent to a.insert(p, il.begin(), il.end()).

a.erase(q) is an expression with the following properties:
38 Result: A prvalue of type iterator.
39 Preconditions: For vector and deque, T is Cpp17MoveAssignable.
40 Effects: Erases the element pointed to by q.
41 Returns: An iterator that points to the element immediately following q prior to the element being

erased. If no such element exists, a.end() is returned.

a.erase(q1, q2) is an expression with the following properties:
42 Result: A prvalue of type iterator.
43 Preconditions: For vector and deque, T is Cpp17MoveAssignable.
44 Effects: Erases the elements in the range [q1, q2).
45 Returns: An iterator that points to the element pointed to by q2 prior to any elements being erased. If

no such element exists, a.end() is returned.

a.clear() is an expression with the following properties:
46 Result: void
47 Effects: Destroys all elements in a. Invalidates all references, pointers, and iterators referring to the

elements of a and may invalidate the past-the-end iterator.
48 Postconditions: a.empty() is true.
49 Complexity: Linear.

a.assign(i, j) is an expression with the following properties:
50 Result: void
51 Preconditions: T is Cpp17EmplaceConstructible into X from *i and assignable from *i. For vector, if

the iterator does not meet the forward iterator requirements (23.3.5.5), T is also Cpp17MoveInsertable
into X. Neither i nor j are iterators into a.

52 Effects: Replaces elements in a with a copy of [i, j). Invalidates all references, pointers and iterators
referring to the elements of a. For vector and deque, also invalidates the past-the-end iterator. Each
iterator in the range [i, j) shall be dereferenced exactly once.

a.assign(il) is an expression with the following properties:
53 Effects: Equivalent to a.assign(il.begin(), il.end()).

a.assign(n, t) is an expression with the following properties:
54 Result: void
55 Preconditions: T is Cpp17CopyInsertable into X and Cpp17CopyAssignable. t is not a reference into a.
56 Effects: Replaces elements in a with n copies of t. Invalidates all references, pointers and iterators

referring to the elements of a. For vector and deque, also invalidates the past-the-end iterator.
57 For every sequence container defined in this Clause and in Clause 21:

—(57.1) If the constructor
template<class InputIterator>

X(InputIterator first, InputIterator last,
const allocator_type& alloc = allocator_type());

is called with a type InputIterator that does not qualify as an input iterator, then the constructor
shall not participate in overload resolution.

—(57.2) If the member functions of the forms:

§ 22.2.4 811

© ISO/IEC Dxxxx

template<class InputIterator>
return-type F(const_iterator p,

InputIterator first, InputIterator last); // such as insert

template<class InputIterator>
return-type F(InputIterator first, InputIterator last); // such as append, assign

template<class InputIterator>
return-type F(const_iterator i1, const_iterator i2,

InputIterator first, InputIterator last); // such as replace

are called with a type InputIterator that does not qualify as an input iterator, then these functions
shall not participate in overload resolution.

—(57.3) A deduction guide for a sequence container shall not participate in overload resolution if it has an
InputIterator template parameter and a type that does not qualify as an input iterator is deduced
for that parameter, or if it has an Allocator template parameter and a type that does not qualify as
an allocator is deduced for that parameter.

58 The following operations are provided for some types of sequence containers but not others. An implementation
shall implement them so as to take amortized constant time.

a.front() is an expression with the following properties:
59 Result: reference; const_reference for constant a.
60 Returns: *a.begin()
61 Remarks: Required for basic_string, array, deque, forward_list, list, and vector.

a.back() is an expression with the following properties:
62 Effects: Equivalent to:

auto tmp = a.end();
--tmp;
return *tmp;

63 Remarks: Required for basic_string, array, deque, list, and vector.

a.emplace_front(args) is an expression with the following properties:
64 Result: reference
65 Preconditions: T is Cpp17EmplaceConstructible into X from args.
66 Effects: Prepends an object of type T constructed with std::forward<Args>(args)....
67 Returns: a.front().
68 Remarks: Required for deque, forward_list, and list.

a.emplace_back(args) is an expression with the following properties:
69 Result: reference
70 Preconditions: T is Cpp17EmplaceConstructible into X from args. For vector, T is also Cpp17MoveIn-

sertable into X.
71 Effects: Appends an object of type T constructed with std::forward<Args>(args)....
72 Returns: a.back().
73 Remarks: Required for deque, list, and vector.

a.push_front(t) is an expression with the following properties:
74 Result: void
75 Preconditions: T is Cpp17CopyInsertable into X.
76 Effects: Prepends a copy of t.
77 Remarks: Required for deque, forward_list, and list.

§ 22.2.4 812

© ISO/IEC Dxxxx

a.push_front(rv) is an expression with the following properties:
78 Result: void
79 Preconditions: T is Cpp17MoveInsertable into X.
80 Effects: Prepends a copy of rv.
81 Remarks: Required for deque, forward_list, and list.

a.push_back(t) is an expression with the following properties:
82 Result: void
83 Preconditions: T is Cpp17CopyInsertable into X.
84 Effects: Appends a copy of t.
85 Remarks: Required for basic_string, deque, list, and vector.

a.push_back(rv) is an expression with the following properties:
86 Result: void
87 Preconditions: T is Cpp17MoveInsertable into X.
88 Effects: Appends a copy of rv.
89 Remarks: Required for basic_string, deque, list, and vector.

a.pop_front() is an expression with the following properties:
90 Result: void
91 Preconditions: a.empty() is false.
92 Effects: Destroys the first element.
93 Remarks: Required for deque, forward_list, and list.

a.pop_back() is an expression with the following properties:
94 Result: void
95 Preconditions: a.empty() is false.
96 Effects: Destroys the last element.
97 Remarks: Required for basic_string, deque, list, and vector.

a[n] is an expression with the following properties:
98 Result: reference; const_reference for constant a
99 Returns: *(a.begin() + n)

100 Remarks: Required for basic_string, array, deque, and vector.

a.at(n) is an expression with the following properties:
101 Result: reference; const_reference for constant a
102 Returns: *(a.begin() + n)
103 Throws: out_of_range if n >= a.size().
104 Remarks: Required for basic_string, array, deque, and vector.

22.2.5 Node handles [container.node]
22.2.5.1 Overview [container.node.overview]

1 A node handle is an object that accepts ownership of a single element from an associative container (22.2.7)
or an unordered associative container (22.2.8). It may be used to transfer that ownership to another container
with compatible nodes. Containers with compatible nodes have the same node handle type. Elements may
be transferred in either direction between container types in the same row of Table 73.

2 If a node handle is not empty, then it contains an allocator that is equal to the allocator of the container
when the element was extracted. If a node handle is empty, it contains no allocator.

§ 22.2.5.1 813

© ISO/IEC Dxxxx

explicit operator bool() const noexcept;

14 Returns: ptr_ != nullptr.

[[nodiscard]] bool empty() const noexcept;

15 Returns: ptr_ == nullptr.

22.2.5.5 Modifiers [container.node.modifiers]

void swap(node-handle& nh)
noexcept(ator_traits::propagate_on_container_swap::value ||

ator_traits::is_always_equal::value);

1 Preconditions: !alloc_, or !nh.alloc_, or ator_traits::propagate_on_container_swap::value
is true, or alloc_ == nh.alloc_.

2 Effects: Calls swap(ptr_, nh.ptr_). If !alloc_, or !nh.alloc_, or ator_traits::propagate_on_-
container_swap::value is true calls swap(alloc_, nh.alloc_).

22.2.6 Insert return type [container.insert.return]
1 The associative containers with unique keys and the unordered containers with unique keys have a member

function insert that returns a nested type insert_return_type. That return type is a specialization of
the template specified in this subclause.

template<class Iterator, class NodeType>
struct insert-return-type
{

Iterator position;
bool inserted;
NodeType node;

};

2 The name insert-return-type is exposition only. insert-return-type has the template parameters,
data members, and special members specified above. It has no base classes or members other than those
specified.

22.2.7 Associative containers [associative.reqmts]
22.2.7.1 General [associative.reqmts.general]

1 Associative containers provide fast retrieval of data based on keys. The library provides four basic kinds of
associative containers: set, multiset, map and multimap.

2 Each associative container is parameterized on Key and an ordering relation Compare that induces a strict
weak ordering (25.8) on elements of Key. In addition, map and multimap associate an arbitrary mapped type
T with the Key. The object of type Compare is called the comparison object of a container.

3 The phrase “equivalence of keys” means the equivalence relation imposed by the comparison object. That
is, two keys k1 and k2 are considered to be equivalent if for the comparison object comp, comp(k1, k2) ==
false && comp(k2, k1) == false.
[Note 1 : This is not necessarily the same as the result of k1 == k2. —end note]

For any two keys k1 and k2 in the same container, calling comp(k1, k2) shall always return the same value.
4 An associative container supports unique keys if it may contain at most one element for each key. Otherwise,

it supports equivalent keys. The set and map classes support unique keys; the multiset and multimap
classes support equivalent keys. For multiset and multimap, insert, emplace, and erase preserve the
relative ordering of equivalent elements.

5 For set and multiset the value type is the same as the key type. For map and multimap it is equal to
pair<const Key, T>.

6 iterator of an associative container is of the bidirectional iterator category. For associative containers where
the value type is the same as the key type, both iterator and const_iterator are constant iterators. It is
unspecified whether or not iterator and const_iterator are the same type.
[Note 2 : iterator and const_iterator have identical semantics in this case, and iterator is convertible to const_-
iterator. Users can avoid violating the one-definition rule by always using const_iterator in their function
parameter lists. —end note]

§ 22.2.7.1 816

© ISO/IEC Dxxxx

7 In this subclause,
—(7.1) X denotes an associative container class,
—(7.2) a denotes a value of type X,
—(7.3) a2 denotes a value of a type with nodes compatible with type X (Table 73),
—(7.4) b denotes a possibly const value of type X,
—(7.5) u denotes the name of a variable being declared,
—(7.6) a_uniq denotes a value of type X when X supports unique keys,
—(7.7) a_eq denotes a value of type X when X supports multiple keys,
—(7.8) a_tran denotes a possibly const value of type X when the qualified-id X::key_compare::is_transpa-

rent is valid and denotes a type (13.10.3),
—(7.9) i and j meet the Cpp17InputIterator requirements and refer to elements implicitly convertible to

value_type,
—(7.10) [i, j) denotes a valid range,
—(7.11) p denotes a valid constant iterator to a,
—(7.12) q denotes a valid dereferenceable constant iterator to a,
—(7.13) r denotes a valid dereferenceable iterator to a,
—(7.14) [q1, q2) denotes a valid range of constant iterators in a,
—(7.15) il designates an object of type initializer_list<value_type>,
—(7.16) t denotes a value of type X::value_type,
—(7.17) k denotes a value of type X::key_type, and
—(7.18) c denotes a possibly const value of type X::key_compare;
—(7.19) kl is a value such that a is partitioned (25.8) with respect to c(r, kl), with r the key value of e and

e in a;
—(7.20) ku is a value such that a is partitioned with respect to !c(ku, r);
—(7.21) ke is a value such that a is partitioned with respect to c(r, ke) and !c(ke, r), with c(r, ke)

implying !c(ke, r).
—(7.22) A denotes the storage allocator used by X, if any, or allocator<X::value_type> otherwise,
—(7.23) m denotes an allocator of a type convertible to A, and nh denotes a non-const rvalue of type X::node_-

type.
8 A type X meets the associative container requirements if X meets all the requirements of an allocator-aware

container (22.2.2.1) and the following statements and expressions are well-formed and have the specified
semantics, except that for map and multimap, the requirements placed on value_type in 22.2.2.5 apply
instead to key_type and mapped_type.
[Note 3 : For example, in some cases key_type and mapped_type are required to be Cpp17CopyAssignable even though
the associated value_type, pair<const key_type, mapped_type>, is not Cpp17CopyAssignable. —end note]

—(8.1) The name X::key_type denotes the type Key.
—(8.2) For map and multimap only, the name X::mapped_type denotes T.
—(8.3) For set and multiset only, the name X::value_type denotes Key.
—(8.4) For map and multimap only, the name X::value_type denotes pair<const Key, T>.
—(8.5) Preconditions: X::value_type is Cpp17Erasable from X.
—(8.6) The name X::key_compare denotes Compare. Preconditions: key_compare is Cpp17CopyConstructible.
—(8.7) The name X::value_compare denotes a binary predicate type. It is the same as key_compare for set

and multiset; is an ordering relation on pairs induced by the first component (i.e., Key) for map and
multimap.

—(8.8) The name X::node_type denotes a specialization of the node-handle class template (22.2.5), such
that the public nested types are the same types as the corresponding types in X.

§ 22.2.7.1 817

© ISO/IEC Dxxxx

X(c) is an expression with the following properties:
9 Effects: Constructs an empty container. Uses a copy of c as a comparison object.

10 Complexity: Constant.

X u = X(); and X u; are statements, each with the following properties:
11 Preconditions: key_compare meets the Cpp17DefaultConstructible requirements.
12 Effects: Constructs an empty container. Uses Compare() as a comparison object.
13 Complexity: Constant.

X(i, j, c); is an expression with the following properties:
14 Preconditions: value_type is Cpp17EmplaceConstructible into X from *i.
15 Effects: Constructs an empty container and inserts elements from the range [i, j) into it; uses c as a

comparison object.
16 Complexity: N logN in general, where N has the value distance(i, j); linear if [i, j) is sorted

with value_comp().

X(i, j) is an expression with the following properties:
17 Preconditions: key_compare meets the Cpp17DefaultConstructible requirements. value_type is

Cpp17EmplaceConstructible into X from *i.
18 Effects: Constructs an empty container and inserts elements from the range [i, j) into it; uses

Compare() as a comparison object.
19 Complexity: N logN in general, where N has the value distance(i, j); linear if [i, j) is sorted

with value_comp().

X(il, c) is an expression with the following properties:
20 Effects: Equivalent to X(il.begin(), il.end(), c).

X(il) is an expression with the following properties:
21 Effects: Equivalent to X(il.begin(), il.end()).

a = il is an expression with the following properties:
22 Result: X&
23 Preconditions: value_type is Cpp17CopyInsertable into X and Cpp17CopyAssignable.
24 Effects: Assigns the range [il.begin(), il.end()) into a. All existing elements of a are either

assigned to or destroyed.
25 Complexity: N logN in general, where N has the value il.size() + a.size(); linear if [il.begin(),

il.end()) is sorted with value_comp().

b.key_comp() is an expression with the following properties:
26 Result: X::key_compare
27 Returns: The comparison object out of which b was constructed.
28 Complexity: Constant.

b.value_comp() is an expression with the following properties:
29 Result: X::value_compare
30 Returns: An object of value_compare constructed out of the comparison object.
31 Complexity: Constant.

a_uniq.emplace(args) is an expression with the following properties:
32 Result: pair<iterator, bool>
33 Preconditions: value_type is Cpp17EmplaceConstructible into X from args.

§ 22.2.7.1 818

© ISO/IEC Dxxxx

34 Effects: Inserts a value_type object t constructed with std::forward<Args>(args)... if and only
if there is no element in the container with key equivalent to the key of t.

35 Returns: The bool component of the returned pair is true if and only if the insertion takes place, and
the iterator component of the pair points to the element with key equivalent to the key of t.

36 Complexity: Logarithmic.

a_eq.emplace(args) is an expression with the following properties:
37 Result: iterator
38 Preconditions: value_type is Cpp17EmplaceConstructible into X from args.
39 Effects: Inserts a value_type object t constructed with std::forward<Args>(args).... If a range

containing elements equivalent to t exists in a_eq, t is inserted at the end of that range.
40 Returns: An iterator pointing to the newly inserted element.
41 Complexity: Logarithmic.

a.emplace_hint(p, args) is an expression with the following properties:
42 Result: iterator
43 Effects: Equivalent to a.emplace(std::forward<Args>(args)...), except that the element is inserted

as close as possible to the position just prior to p.
44 Returns: An iterator pointing to the element with the key equivalent to the newly inserted element.
45 Complexity: Logarithmic in general, but amortized constant if the element is inserted right before p.

a_uniq.insert(t) is an expression with the following properties:
46 Result: pair<iterator, bool>
47 Preconditions: If t is a non-const rvalue, value_type is Cpp17MoveInsertable into X; otherwise,

value_type is Cpp17CopyInsertable into X.
48 Effects: Inserts t if and only if there is no element in the container with key equivalent to the key of t.
49 Returns: The bool component of the returned pair is true if and only if the insertion takes place, and

the iterator component of the pair points to the element with key equivalent to the key of t.
50 Complexity: Logarithmic.

a_eq.insert(t) is an expression with the following properties:
51 Result: iterator
52 Preconditions: If t is a non-const rvalue, value_type is Cpp17MoveInsertable into X; otherwise,

value_type is Cpp17CopyInsertable into X.
53 Effects: Inserts t and returns the iterator pointing to the newly inserted element. If a range containing

elements equivalent to t exists in a_eq, t is inserted at the end of that range.
54 Complexity: Logarithmic.

a.insert(p, t) is an expression with the following properties:
55 Result: iterator
56 Preconditions: If t is a non-const rvalue, value_type is Cpp17MoveInsertable into X; otherwise,

value_type is Cpp17CopyInsertable into X.
57 Effects: Inserts t if and only if there is no element with key equivalent to the key of t in containers

with unique keys; always inserts t in containers with equivalent keys. t is inserted as close as possible
to the position just prior to p.

58 Returns: An iterator pointing to the element with key equivalent to the key of t.
59 Complexity: Logarithmic in general, but amortized constant if t is inserted right before p.

a.insert(i, j) is an expression with the following properties:
60 Result: void

§ 22.2.7.1 819

© ISO/IEC Dxxxx

61 Preconditions: value_type is Cpp17EmplaceConstructible into X from *i. Neither i nor j are iterators
into a.

62 Effects: Inserts each element from the range [i, j) if and only if there is no element with key equivalent
to the key of that element in containers with unique keys; always inserts that element in containers
with equivalent keys.

63 Complexity: N log(a.size() +N), where N has the value distance(i, j).

a.insert(il) is an expression with the following properties:
64 Effects: Equivalent to a.insert(il.begin(), il.end()).

a_uniq.insert(nh) is an expression with the following properties:
65 Result: insert_return_type
66 Preconditions: nh is empty or a_uniq.get_allocator() == nh.get_allocator() is true.
67 Effects: If nh is empty, has no effect. Otherwise, inserts the element owned by nh if and only if there is

no element in the container with a key equivalent to nh.key().
68 Returns: If nh is empty, inserted is false, position is end(), and node is empty. Otherwise if the

insertion took place, inserted is true, position points to the inserted element, and node is empty; if
the insertion failed, inserted is false, node has the previous value of nh, and position points to an
element with a key equivalent to nh.key().
Complexity: Logarithmic.

a_eq.insert(nh) is an expression with the following properties:
69 Result: iterator
70 Preconditions: nh is empty or a_eq.get_allocator() == nh.get_allocator() is true.
71 Effects: If nh is empty, has no effect and returns a_eq.end(). Otherwise, inserts the element owned by

nh and returns an iterator pointing to the newly inserted element. If a range containing elements with
keys equivalent to nh.key() exists in a_eq, the element is inserted at the end of that range.

72 Postconditions: nh is empty.
73 Complexity: Logarithmic.

a.insert(p, nh) is an expression with the following properties:
74 Result: iterator
75 Preconditions: nh is empty or a.get_allocator() == nh.get_allocator() is true.
76 Effects: If nh is empty, has no effect and returns a.end(). Otherwise, inserts the element owned by

nh if and only if there is no element with key equivalent to nh.key() in containers with unique keys;
always inserts the element owned by nh in containers with equivalent keys. The element is inserted as
close as possible to the position just prior to p.

77 Postconditions: nh is empty if insertion succeeds, unchanged if insertion fails.
78 Returns: An iterator pointing to the element with key equivalent to nh.key().
79 Complexity: Logarithmic in general, but amortized constant if the element is inserted right before p.

a.extract(k) is an expression with the following properties:
80 Result: node_type
81 Effects: Removes the first element in the container with key equivalent to k.
82 Returns: A node_type owning the element if found, otherwise an empty node_type.
83 Complexity: log(a.size())

a.extract(q) is an expression with the following properties:
84 Result: node_type
85 Effects: Removes the element pointed to by q.
86 Returns: A node_type owning that element.

§ 22.2.7.1 820

© ISO/IEC Dxxxx

87 Complexity: Amortized constant.

a.merge(a2) is an expression with the following properties:
88 Result: void
89 Preconditions: a.get_allocator() == a2.get_allocator().
90 Effects: Attempts to extract each element in a2 and insert it into a using the comparison object of a.

In containers with unique keys, if there is an element in a with key equivalent to the key of an element
from a2, then that element is not extracted from a2.

91 Postconditions: Pointers and references to the transferred elements of a2 refer to those same elements
but as members of a. Iterators referring to the transferred elements will continue to refer to their
elements, but they now behave as iterators into a, not into a2.

92 Throws: Nothing unless the comparison object throws.
93 Complexity: N log(a.size()+N), where N has the value a2.size().

a.erase(k) is an expression with the following properties:
94 Result: size_type
95 Effects: Erases all elements in the container with key equivalent to k.
96 Returns: The number of erased elements.
97 Complexity: log(a.size()) + a.count(k)

a.erase(q) is an expression with the following properties:
98 Result: iterator
99 Effects: Erases the element pointed to by q.

Returns: An iterator pointing to the element immediately following q prior to the element being erased.
If no such element exists, returns a.end().

100 Complexity: Amortized constant.

a.erase(r) is an expression with the following properties:
101 Result: iterator
102 Effects: Erases the element pointed to by r.
103 Returns: An iterator pointing to the element immediately following r prior to the element being erased.

If no such element exists, returns a.end().
104 Complexity: Amortized constant.

a.erase(q1, q2) is an expression with the following properties:
105 Result: iterator
106 Effects: Erases all the elements in the range [q1, q2).
107 Returns: An iterator pointing to the element pointed to by q2 prior to any elements being erased. If no

such element exists, a.end() is returned.
108 Complexity: log(a.size()) +N , where N has the value distance(q1, q2).

a.clear() is an expression with the following properties:
109 Effects: Equivalent to a.erase(a.begin(), a.end()).
110 Postconditions: a.empty() is true.
111 Complexity: Linear in a.size().

b.find(k) is an expression with the following properties:
112 Result: iterator; const_iterator for constant b.
113 Returns: An iterator pointing to an element with the key equivalent to k, or b.end() if such an element

is not found.

§ 22.2.7.1 821

© ISO/IEC Dxxxx

114 Complexity: Logarithmic.

a_tran.find(ke) is an expression with the following properties:
115 Result: iterator; const_iterator for constant a_tran.
116 Returns: An iterator pointing to an element with key r such that !c(r, ke) && !c(ke, r) is true,

or a_tran.end() if such an element is not found.
117 Complexity: Logarithmic.

b.count(k) is an expression with the following properties:
118 Result: size_type
119 Returns: The number of elements with key equivalent to k.
120 Complexity: log(b.size()) + b.count(k)

a_tran.count(ke) is an expression with the following properties:
121 Result: size_type
122 Returns: The number of elements with key r such that !c(r, ke) && !c(ke, r).
123 Complexity: log(a_tran.size()) + a_tran.count(ke)

b.contains(k) is an expression with the following properties:
124 Result: bool
125 Effects: Equivalent to: return b.find(k) != b.end();

a_tran.contains(ke) is an expression with the following properties:
126 Result: bool
127 Effects: Equivalent to: return a_tran.find(ke) != a_tran.end();

b.lower_bound(k) is an expression with the following properties:
128 Result: iterator; const_iterator for constant b.
129 Returns: An iterator pointing to the first element with key not less than k, or b.end() if such an

element is not found.
130 Complexity: Logarithmic.

a_tran.lower_bound(kl) is an expression with the following properties:
131 Result: iterator; const_iterator for constant a_tran.
132 Returns: An iterator pointing to the first element with key r such that !c(r, kl), or a_tran.end() if

such an element is not found.
133 Complexity: Logarithmic.

b.upper_bound(k) is an expression with the following properties:
134 Result: iterator; const_iterator for constant b.
135 Returns: An iterator pointing to the first element with key greater than k, or b.end() if such an

element is not found.
136 Complexity: Logarithmic,

a_tran.upper_bound(ku) is an expression with the following properties:
137 Result: iterator; const_iterator for constant a_tran.
138 Returns: An iterator pointing to the first element with key r such that c(ku, r), or a_tran.end() if

such an element is not found.
139 Complexity: Logarithmic.

b.equal_range(k) is an expression with the following properties:
140 Result: pair<iterator, iterator>; pair<const_iterator, const_iterator> for constant b.

§ 22.2.7.1 822

© ISO/IEC Dxxxx

141 Effects: Equivalent to: return make_pair(b.lower_bound(k), b.upper_bound(k));
142 Complexity: Logarithmic.

a_tran.equal_range(ke) is an expression with the following properties:
143 Result: pair<iterator, iterator>; pair<const_iterator, const_iterator> for constant a_tran.
144 Effects: Equivalent to: return make_pair(a_tran.lower_bound(ke), a_tran.upper_bound(ke));
145 Complexity: Logarithmic.
146 The insert and emplace members shall not affect the validity of iterators and references to the container,

and the erase members shall invalidate only iterators and references to the erased elements.
147 The extract members invalidate only iterators to the removed element; pointers and references to the

removed element remain valid. However, accessing the element through such pointers and references while
the element is owned by a node_type is undefined behavior. References and pointers to an element obtained
while it is owned by a node_type are invalidated if the element is successfully inserted.

148 The fundamental property of iterators of associative containers is that they iterate through the containers
in the non-descending order of keys where non-descending is defined by the comparison that was used to
construct them. For any two dereferenceable iterators i and j such that distance from i to j is positive, the
following condition holds:

value_comp(*j, *i) == false

149 For associative containers with unique keys the stronger condition holds:
value_comp(*i, *j) != false

150 When an associative container is constructed by passing a comparison object the container shall not store a
pointer or reference to the passed object, even if that object is passed by reference. When an associative
container is copied, through either a copy constructor or an assignment operator, the target container shall
then use the comparison object from the container being copied, as if that comparison object had been passed
to the target container in its constructor.

151 The member function templates find, count, contains, lower_bound, upper_bound, and equal_range
shall not participate in overload resolution unless the qualified-id Compare::is_transparent is valid and
denotes a type (13.10.3).

152 A deduction guide for an associative container shall not participate in overload resolution if any of the
following are true:
—(152.1) It has an InputIterator template parameter and a type that does not qualify as an input iterator is

deduced for that parameter.
—(152.2) It has an Allocator template parameter and a type that does not qualify as an allocator is deduced

for that parameter.
—(152.3) It has a Compare template parameter and a type that qualifies as an allocator is deduced for that

parameter.

22.2.7.2 Exception safety guarantees [associative.reqmts.except]
1 For associative containers, no clear() function throws an exception. erase(k) does not throw an exception

unless that exception is thrown by the container’s Compare object (if any).
2 For associative containers, if an exception is thrown by any operation from within an insert or emplace

function inserting a single element, the insertion has no effect.
3 For associative containers, no swap function throws an exception unless that exception is thrown by the swap

of the container’s Compare object (if any).

22.2.8 Unordered associative containers [unord.req]
22.2.8.1 General [unord.req.general]

1 Unordered associative containers provide an ability for fast retrieval of data based on keys. The worst-case
complexity for most operations is linear, but the average case is much faster. The library provides four
unordered associative containers: unordered_set, unordered_map, unordered_multiset, and unordered_-
multimap.

§ 22.2.8.1 823

© ISO/IEC Dxxxx

2 Unordered associative containers conform to the requirements for Containers (22.2), except that the expressions
a == b and a != b have different semantics than for the other container types.

3 Each unordered associative container is parameterized by Key, by a function object type Hash that meets the
Cpp17Hash requirements (16.4.4.5) and acts as a hash function for argument values of type Key, and by a
binary predicate Pred that induces an equivalence relation on values of type Key. Additionally, unordered_map
and unordered_multimap associate an arbitrary mapped type T with the Key.

4 The container’s object of type Hash — denoted by hash — is called the hash function of the container. The
container’s object of type Pred — denoted by pred — is called the key equality predicate of the container.

5 Two values k1 and k2 are considered equivalent if the container’s key equality predicate pred(k1, k2) is
valid and returns true when passed those values. If k1 and k2 are equivalent, the container’s hash function
shall return the same value for both.
[Note 1 : Thus, when an unordered associative container is instantiated with a non-default Pred parameter it usually
needs a non-default Hash parameter as well. —end note]

For any two keys k1 and k2 in the same container, calling pred(k1, k2) shall always return the same value.
For any key k in a container, calling hash(k) shall always return the same value.

6 An unordered associative container supports unique keys if it may contain at most one element for each
key. Otherwise, it supports equivalent keys. unordered_set and unordered_map support unique keys.
unordered_multiset and unordered_multimap support equivalent keys. In containers that support equiva-
lent keys, elements with equivalent keys are adjacent to each other in the iteration order of the container.
Thus, although the absolute order of elements in an unordered container is not specified, its elements are
grouped into equivalent-key groups such that all elements of each group have equivalent keys. Mutating
operations on unordered containers shall preserve the relative order of elements within each equivalent-key
group unless otherwise specified.

7 For unordered_set and unordered_multiset the value type is the same as the key type. For unordered_map
and unordered_multimap it is pair<const Key, T>.

8 For unordered containers where the value type is the same as the key type, both iterator and const_-
iterator are constant iterators. It is unspecified whether or not iterator and const_iterator are the
same type.
[Note 2 : iterator and const_iterator have identical semantics in this case, and iterator is convertible to const_-
iterator. Users can avoid violating the one-definition rule by always using const_iterator in their function
parameter lists. —end note]

9 The elements of an unordered associative container are organized into buckets. Keys with the same hash
code appear in the same bucket. The number of buckets is automatically increased as elements are added
to an unordered associative container, so that the average number of elements per bucket is kept below
a bound. Rehashing invalidates iterators, changes ordering between elements, and changes which buckets
elements appear in, but does not invalidate pointers or references to elements. For unordered_multiset and
unordered_multimap, rehashing preserves the relative ordering of equivalent elements.

10 In this subclause,
—(10.1) X denotes an unordered associative container class,
—(10.2) a denotes a value of type X,
—(10.3) a2 denotes a value of a type with nodes compatible with type X (Table 73),
—(10.4) b denotes a possibly const value of type X,
—(10.5) a_uniq denotes a value of type X when X supports unique keys,
—(10.6) a_eq denotes a value of type X when X supports equivalent keys,
—(10.7) a_tran denotes a possibly const value of type X when the qualified-ids X::key_equal::is_transparent

and X::hasher::is_transparent are both valid and denote types (13.10.3),
—(10.8) i and j denote input iterators that refer to value_type,
—(10.9) [i, j) denotes a valid range,
—(10.10) p and q2 denote valid constant iterators to a,
—(10.11) q and q1 denote valid dereferenceable constant iterators to a,
—(10.12) r denotes a valid dereferenceable iterator to a,

§ 22.2.8.1 824

© ISO/IEC Dxxxx

—(10.13) [q1, q2) denotes a valid range in a,
—(10.14) il denotes a value of type initializer_list<value_type>,
—(10.15) t denotes a value of type X::value_type,
—(10.16) k denotes a value of type key_type,
—(10.17) hf denotes a possibly const value of type hasher,
—(10.18) eq denotes a possibly const value of type key_equal,
—(10.19) ke is a value such that

—(10.19.1) eq(r1, ke) == eq(ke, r1)
—(10.19.2) hf(r1) == hf(ke) if eq(r1, ke) is true, and
—(10.19.3) (eq(r1, ke) && eq(r1, r2)) == eq(r2, ke)

where r1 and r2 are keys of elements in a_tran,
—(10.20) n denotes a value of type size_type,
—(10.21) z denotes a value of type float, and
—(10.22) nh denotes a non-const rvalue of type X::node_type.

11 A type X meets the unordered associative container requirements if X meets all the requirements of an
allocator-aware container (22.2.2.1) and the following statements and expressions are well-formed and have
the specified semantics, except that for unordered_map and unordered_multimap, the requirements placed
on value_type in 22.2.2.5 apply instead to key_type and mapped_type.
[Note 3 : For example, key_type and mapped_type are sometimes required to be Cpp17CopyAssignable even though
the associated value_type, pair<const key_type, mapped_type>, is not Cpp17CopyAssignable. —end note]

—(11.1) The name X::key_type denotes the type Key.
—(11.2) For unordered_map and unordered_multimap only, the name X::mapped_type denotes T.
—(11.3) For unordered_set and unordered_multiset only, the name X::value_type denotes Key.
—(11.4) For unordered_map and unordered_multimap only, the name X::value_type denotes pair<const

Key, T>.
—(11.5) Preconditions: value_type is Cpp17Erasable from X.
—(11.6) The name X::hasher denotes the type Hash. Preconditions: Hash is a unary function object type such

that the expression hf(k) has type size_t.
—(11.7) The name X::key_equal denotes the type Pred. Preconditions: Pred meets the Cpp17CopyConstructi-

ble requirements. Pred is a binary predicate that takes two arguments of type Key. Pred is an
equivalence relation.

—(11.8) The name X::local_iterator denotes an iterator type whose category, value type, difference type,
and pointer and reference types are the same as X::iterator’s.
[Note 4 : A local_iterator object can be used to iterate through a single bucket, but cannot be used to iterate
across buckets. —end note]

—(11.9) The name X::const_local_iterator denotes an iterator type whose category, value type, difference
type, and pointer and reference types are the same as X::const_iterator’s. A const_local_iterator
object may be used to iterate through a single bucket, but may not be used to iterate across buckets.

—(11.10) The name X::node_type denotes a specialization of a node-handle class template (22.2.5), such that
the public nested types are the same types as the corresponding types in X.

X(n, hf, eq) is an expression with the following properties:
12 Effects: Constructs an empty container with at least n buckets, using hf as the hash function and eq

as the key equality predicate.
13 Complexity: O(n)

X(n, hf) is an expression with the following properties:
14 Preconditions: key_equal meets the Cpp17DefaultConstructible requirements.

§ 22.2.8.1 825

© ISO/IEC Dxxxx

15 Effects: Constructs an empty container with at least n buckets, using hf as the hash function and
key_equal() as the key equality predicate.

16 Complexity: O(n)

X(n) is an expression with the following properties:
17 Preconditions: hasher and key_equal meet the Cpp17DefaultConstructible requirements.
18 Effects: Constructs an empty container with at least n buckets, using hasher() as the hash function

and key_equal() as the key equality predicate.
19 Complexity: O(n)

The statements X a = X() and X a; each satisfy the following properties:
Preconditions: hasher and key_equal meet the Cpp17DefaultConstructible requirements.

20 Effects: Constructs an empty container with an unspecified number of buckets, using hasher() as the
hash function and key_equal() as the key equality predicate.

21 Complexity: Constant.

X(i, j, n, hf, eq) is an expression with the following properties:
22 Preconditions: value_type is Cpp17EmplaceConstructible into X from *i.
23 Effects: Constructs an empty container with at least n buckets, using hf as the hash function and eq

as the key equality predicate, and inserts elements from [i, j) into it.
24 Complexity: Average case O(N) (N is distance(i, j)), worst case O(N2).

X(i, j, n, hf) is an expression with the following properties:
25 Preconditions: key_equal meets the Cpp17DefaultConstructible requirements. value_type is Cpp17-

EmplaceConstructible into X from *i.
26 Effects: Constructs an empty container with at least n buckets, using hf as the hash function and

key_equal() as the key equality predicate, and inserts elements from [i, j) into it.
27 Complexity: Average case O(N) (N is distance(i, j)), worst case O(N2).

X(i, j, n) is an expression with the following properties:
28 Preconditions: hasher and key_equal meet the Cpp17DefaultConstructible requirements. value_type

is Cpp17EmplaceConstructible into X from *i.
29 Effects: Constructs an empty container with at least n buckets, using hasher() as the hash function

and key_equal() as the key equality predicate, and inserts elements from [i, j) into it.
30 Complexity: Average case O(N) (N is distance(i, j)), worst case O(N2).

X(i, j) is an expression with the following properties:
31 Preconditions: hasher and key_equal meet the Cpp17DefaultConstructible requirements. value_type

is Cpp17EmplaceConstructible into X from *i.
32 Effects: Constructs an empty container with an unspecified number of buckets, using hasher() as the

hash function and key_equal() as the key equality predicate, and inserts elements from [i, j) into it.
33 Complexity: Average case O(N) (N is distance(i, j)), worst case O(N2).

X(il) is an expression with the following properties:
34 Effects: Equivalent to X(il.begin(), il.end()).

X(il, n) is an expression with the following properties:
35 Effects: Equivalent to X(il.begin(), il.end(), n).

X(il, n, hf) is an expression with the following properties:
36 Effects: Equivalent to X(il.begin(), il.end(), n, hf).

§ 22.2.8.1 826

© ISO/IEC Dxxxx

X(il, n, hf, eq) is an expression with the following properties:
37 Effects: Equivalent to X(il.begin(), il.end(), n, hf, eq).

X(b) is an expression with the following properties:
38 Effects: In addition to the container requirements (22.2.2.1), copies the hash function, predicate, and

maximum load factor.
39 Complexity: Average case linear in b.size(), worst case quadratic.

a = b is an expression with the following properties:
40 Result: X&
41 Effects: In addition to the container requirements, copies the hash function, predicate, and maximum

load factor.
42 Complexity: Average case linear in b.size(), worst case quadratic.

a = il is an expression with the following properties:
43 Result: X&
44 Preconditions: value_type is Cpp17CopyInsertable into X and Cpp17CopyAssignable.
45 Effects: Assigns the range [il.begin(), il.end()) into a. All existing elements of a are either

assigned to or destroyed.
46 Complexity: Average case linear in il.size(), worst case quadratic.

b.hash_function() is an expression with the following properties:
47 Result: hasher
48 Returns: b’s hash function.
49 Complexity: Constant.

b.key_eq() is an expression with the following properties:
50 Result: key_equal
51 Returns: b’s key equality predicate.
52 Complexity: Constant.

a_uniq.emplace(args) is an expression with the following properties:
53 Result: pair<iterator, bool>
54 Preconditions: value_type is Cpp17EmplaceConstructible into X from args.
55 Effects: Inserts a value_type object t constructed with std::forward<Args>(args)... if and only

if there is no element in the container with key equivalent to the key of t.
56 Returns: The bool component of the returned pair is true if and only if the insertion takes place, and

the iterator component of the pair points to the element with key equivalent to the key of t.
57 Complexity: Average case O(1), worst case O(a_uniq.size()).

a_eq.emplace(args) is an expression with the following properties:
58 Result: iterator
59 Preconditions: value_type is Cpp17EmplaceConstructible into X from args.
60 Effects: Inserts a value_type object t constructed with std::forward<Args>(args)... and
61 Returns: An iterator pointing to the newly inserted element.
62 Complexity: Average case O(1), worst case O(a_eq.size()).

a.emplace_hint(p, args) is an expression with the following properties:
63 Result: iterator
64 Preconditions: value_type is Cpp17EmplaceConstructible into X from args.

§ 22.2.8.1 827

© ISO/IEC Dxxxx

65 Effects: Equivalent to a.emplace(std::forward<Args>(args)...).
66 Returns: An iterator pointing to the element with the key equivalent to the newly inserted element. The

const_iterator p is a hint pointing to where the search should start. Implementations are permitted
to ignore the hint.

67 Complexity: Average case O(1), worst case O(a.size()).

a_uniq.insert(t) is an expression with the following properties:
68 Result: pair<iterator, bool>
69 Preconditions: If t is a non-const rvalue, value_type is Cpp17MoveInsertable into X; otherwise,

value_type is Cpp17CopyInsertable into X.
70 Effects: Inserts t if and only if there is no element in the container with key equivalent to the key of t.
71 Returns: The bool component of the returned pair indicates whether the insertion takes place, and the

iterator component points to the element with key equivalent to the key of t.
72 Complexity: Average case O(1), worst case O(a_uniq.size()).

a_eq.insert(t) is an expression with the following properties:
73 Result: iterator
74 Preconditions: If t is a non-const rvalue, value_type is Cpp17MoveInsertable into X; otherwise,

value_type is Cpp17CopyInsertable into X.
75 Effects: Inserts t.
76 Returns: An iterator pointing to the newly inserted element.
77 Complexity: Average case O(1), worst case O(a_eq.size()).

a.insert(p, t) is an expression with the following properties:
78 Result: iterator
79 Preconditions: If t is a non-const rvalue, value_type is Cpp17MoveInsertable into X; otherwise,

value_type is Cpp17CopyInsertable into X.
80 Effects: Equivalent to a.insert(t). The iterator p is a hint pointing to where the search should start.

Implementations are permitted to ignore the hint.
81 Returns: An iterator pointing to the element with the key equivalent to that of t.
82 Complexity: Average case O(1), worst case O(a.size()).

a.insert(i, j) is an expression with the following properties:
83 Result: void
84 Preconditions: value_type is Cpp17EmplaceConstructible into X from *i. Neither i nor j are iterators

into a.
85 Effects: Equivalent to a.insert(t) for each element in [i,j).
86 Complexity: Average case O(N), where N is distance(i, j), worst case O(N(a.size() + 1)).

a.insert(il) is an expression with the following properties:
87 Effects: Equivalent to a.insert(il.begin(), il.end()).

a_uniq.insert(nh) is an expression with the following properties:
88 Result: insert_return_type
89 Preconditions: nh is empty or a_uniq.get_allocator() == nh.get_allocator() is true.
90 Effects: If nh is empty, has no effect. Otherwise, inserts the element owned by nh if and only if there is

no element in the container with a key equivalent to nh.key().
91 Postconditions: If nh is empty, inserted is false, position is end(), and node is empty. Otherwise

if the insertion took place, inserted is true, position points to the inserted element, and node is
empty; if the insertion failed, inserted is false, node has the previous value of nh, and position
points to an element with a key equivalent to nh.key().

§ 22.2.8.1 828

© ISO/IEC Dxxxx

92 Complexity: Average case O(1), worst case O(a_uniq.size()).

a_eq.insert(nh) is an expression with the following properties:
93 Result: iterator
94 Preconditions: nh is empty or a_eq.get_allocator() == nh.get_allocator() is true.
95 Effects: If nh is empty, has no effect and returns a_eq.end(). Otherwise, inserts the element owned by

nh and returns an iterator pointing to the newly inserted element.
96 Postconditions: nh is empty.
97 Complexity: Average case O(1), worst case O(a_eq.size()).

a.insert(q, nh) is an expression with the following properties:
98 Result: iterator
99 Preconditions: nh is empty or a.get_allocator() == nh.get_allocator() is true.

100 Effects: If nh is empty, has no effect and returns a.end(). Otherwise, inserts the element owned by
nh if and only if there is no element with key equivalent to nh.key() in containers with unique keys;
always inserts the element owned by nh in containers with equivalent keys. The iterator q is a hint
pointing to where the search should start. Implementations are permitted to ignore the hint.
Postconditions: nh is empty if insertion succeeds, unchanged if insertion fails.

101 Returns: An iterator pointing to the element with key equivalent to nh.key().
102 Complexity: Average case O(1), worst case O(a.size()).

a.extract(k) is an expression with the following properties:
103 Result: node_type
104 Effects: Removes an element in the container with key equivalent to k.
105 Returns: A node_type owning the element if found, otherwise an empty node_type.
106 Complexity: Average case O(1), worst case O(a.size()).

a.extract(q) is an expression with the following properties:
107 Result: node_type
108 Effects: Removes the element pointed to by q.

Returns: A node_type owning that element.
109 Complexity: Average case O(1), worst case O(a.size()).

a.merge(a2) is an expression with the following properties:
110 Result: void
111 Preconditions: a.get_allocator() == a2.get_allocator().
112 Effects: Attempts to extract each element in a2 and insert it into a using the hash function and key

equality predicate of a. In containers with unique keys, if there is an element in a with key equivalent
to the key of an element from a2, then that element is not extracted from a2.

113 Postconditions: Pointers and references to the transferred elements of a2 refer to those same elements
but as members of a. Iterators referring to the transferred elements and all iterators referring to a will
be invalidated, but iterators to elements remaining in a2 will remain valid.

114 Complexity: Average case O(N), where N is a2.size(), worst case O(N*a.size() + N).

a.erase(k) is an expression with the following properties:
115 Result: size_type
116 Effects: Erases all elements with key equivalent to k.
117 Returns: The number of elements erased.
118 Complexity: Average case O(a.count(k)), worst case O(a.size()).

§ 22.2.8.1 829

© ISO/IEC Dxxxx

a.erase(q) is an expression with the following properties:
119 Result: iterator
120 Effects: Erases the element pointed to by q.
121 Returns: The iterator immediately following q prior to the erasure.
122 Complexity: Average case O(1), worst case O(a.size()).

a.erase(r) is an expression with the following properties:
123 Result: iterator
124 Effects: Erases the element pointed to by r.
125 Returns: The iterator immediately following r prior to the erasure.
126 Complexity: Average case O(1), worst case O(a.size()).

a.erase(q1, q2) is an expression with the following properties:
127 Result: iterator
128 Effects: Erases all elements in the range [q1, q2).
129 Returns: The iterator immediately following the erased elements prior to the erasure.
130 Complexity: Average case linear in distance(q1, q2), worst case O(a.size()).

a.clear() is an expression with the following properties:
131 Result: void
132 Effects: Erases all elements in the container.
133 Postconditions: a.empty() is true.
134 Complexity: Linear in a.size().

b.find(k) is an expression with the following properties:
135 Result: iterator; const_iterator for const b.
136 Returns: An iterator pointing to an element with key equivalent to k, or b.end() if no such element

exists.
137 Complexity: Average case O(1), worst case O(b.size()).

a_tran.find(ke) is an expression with the following properties:
138 Result: iterator; const_iterator for const a_tran.
139 Returns: An iterator pointing to an element with key equivalent to ke, or a_tran.end() if no such

element exists.
140 Complexity: Average case O(1), worst case O(a_tran.size()).

b.count(k) is an expression with the following properties:
141 Result: size_type
142 Returns: The number of elements with key equivalent to k.
143 Complexity: Average case O(b.count(k)), worst case O(b.size()).

a_tran.count(ke) is an expression with the following properties:
144 Result: size_type
145 Returns: The number of elements with key equivalent to ke.
146 Complexity: Average case O(a_tran.count(ke)), worst case O(a_tran.size()).

b.contains(k) is an expression with the following properties:
147 Effects: Equivalent to b.find(k) != b.end().

§ 22.2.8.1 830

© ISO/IEC Dxxxx

a_tran.contains(ke) is an expression with the following properties:
148 Effects: Equivalent to a_tran.find(ke) != a_tran.end().

b.equal_range(k) is an expression with the following properties:
149 Result: pair<iterator, iterator>; pair<const_iterator, const_iterator> for const b.
150 Returns: A range containing all elements with keys equivalent to k. Returns make_pair(b.end(),

b.end()) if no such elements exist.
151 Complexity: Average case O(b.count(k)), worst case O(b.size()).

a_tran.equal_range(ke) is an expression with the following properties:
152 Result: pair<iterator, iterator>; pair<const_iterator, const_iterator> for const a_tran.
153 Returns: A range containing all elements with keys equivalent to ke. Returns make_pair(a_tran.end(),

a_tran.end()) if no such elements exist.
154 Complexity: Average case O(a_tran.count(ke)), worst case O(a_tran.size()).

b.bucket_count() is an expression with the following properties:
155 Result: size_type
156 Returns: The number of buckets that b contains.
157 Complexity: Constant.

b.max_bucket_count() is an expression with the following properties:
158 Result: size_type
159 Returns: An upper bound on the number of buckets that b can ever contain.
160 Complexity: Constant.

b.bucket(k) is an expression with the following properties:
161 Result: size_type
162 Preconditions: b.bucket_count() > 0.
163 Returns: The index of the bucket in which elements with keys equivalent to k would be found, if any

such element existed. The return value is in the range [0, b.bucket_count()).
164 Complexity: Constant.

b.bucket_size(n) is an expression with the following properties:
165 Result: size_type
166 Preconditions: n shall be in the range [0, b.bucket_count()).
167 Returns: The number of elements in the nth bucket.
168 Complexity: O(b.bucket_size(n))

b.begin(n) is an expression with the following properties:
169 Result: local_iterator; const_local_iterator for const b.
170 Preconditions: n is in the range [0, b.bucket_count()).
171 Returns: An iterator referring to the first element in the bucket. If the bucket is empty, then b.begin(n)

== b.end(n).
172 Complexity: Constant.

b.end(n) is an expression with the following properties:
173 Result: local_iterator; const_local_iterator for const b.
174 Preconditions: n is in the range [0, b.bucket_count()).
175 Returns: An iterator which is the past-the-end value for the bucket.
176 Complexity: Constant.

§ 22.2.8.1 831

© ISO/IEC Dxxxx

b.cbegin(n) is an expression with the following properties:
177 Result: const_local_iterator
178 Preconditions: n shall be in the range [0, b.bucket_count()).
179 Returns: An iterator referring to the first element in the bucket. If the bucket is empty, then

b.cbegin(n) == b.cend(n).
180 Complexity: Constant.

b.cend(n) is an expression with the following properties:
181 Result: const_local_iterator
182 Preconditions: n is in the range [0, b.bucket_count()).
183 Returns: An iterator which is the past-the-end value for the bucket.
184 Complexity: Constant.

b.load_factor() is an expression with the following properties:
185 Result: float
186 Returns: The average number of elements per bucket.
187 Complexity: Constant.

b.max_load_factor() is an expression with the following properties:
188 Result: float
189 Returns: A positive number that the container attempts to keep the load factor less than or equal to.

The container automatically increases the number of buckets as necessary to keep the load factor below
this number.

190 Complexity: Constant.

a.max_load_factor(z) is an expression with the following properties:
191 Result: void
192 Preconditions: z is positive. May change the container’s maximum load factor, using z as a hint.
193 Complexity: Constant.

a.rehash(n) is an expression with the following properties:
194 Result: void
195 Postconditions: a.bucket_count() >= a.size() / a.max_load_factor() and a.bucket_count()

>= n.
196 Complexity: Average case linear in a.size(), worst case quadratic.

a.reserve(n) is an expression with the following properties:
197 Effects: Equivalent to a.rehash(ceil(n / a.max_load_factor())).
198 Two unordered containers a and b compare equal if a.size() == b.size() and, for every equivalent-key

group [Ea1, Ea2) obtained from a.equal_range(Ea1), there exists an equivalent-key group [Eb1, Eb2)
obtained from b.equal_range(Ea1), such that is_permutation(Ea1, Ea2, Eb1, Eb2) returns true. For
unordered_set and unordered_map, the complexity of operator== (i.e., the number of calls to the ==
operator of the value_type, to the predicate returned by key_eq(), and to the hasher returned by hash_-
function()) is proportional to N in the average case and to N2 in the worst case, where N is a.size(). For
unordered_multiset and unordered_multimap, the complexity of operator== is proportional to

∑
E2
i in

the average case and to N2 in the worst case, where N is a.size(), and Ei is the size of the ith equivalent-key
group in a. However, if the respective elements of each corresponding pair of equivalent-key groups Eai and
Ebi are arranged in the same order (as is commonly the case, e.g., if a and b are unmodified copies of the same
container), then the average-case complexity for unordered_multiset and unordered_multimap becomes
proportional to N (but worst-case complexity remains O(N2), e.g., for a pathologically bad hash function).
The behavior of a program that uses operator== or operator!= on unordered containers is undefined unless

§ 22.2.8.1 832

© ISO/IEC Dxxxx

the Pred function object has the same behavior for both containers and the equality comparison function for
Key is a refinement218 of the partition into equivalent-key groups produced by Pred.

199 The iterator types iterator and const_iterator of an unordered associative container are of at least the
forward iterator category. For unordered associative containers where the key type and value type are the
same, both iterator and const_iterator are constant iterators.

200 The insert and emplace members shall not affect the validity of references to container elements, but may
invalidate all iterators to the container. The erase members shall invalidate only iterators and references to
the erased elements, and preserve the relative order of the elements that are not erased.

201 The insert and emplace members shall not affect the validity of iterators if (N+n) <= z * B, where N is
the number of elements in the container prior to the insert operation, n is the number of elements inserted, B
is the container’s bucket count, and z is the container’s maximum load factor.

202 The extract members invalidate only iterators to the removed element, and preserve the relative order of
the elements that are not erased; pointers and references to the removed element remain valid. However,
accessing the element through such pointers and references while the element is owned by a node_type is
undefined behavior. References and pointers to an element obtained while it is owned by a node_type are
invalidated if the element is successfully inserted.

203 The member function templates find, count, equal_range, and contains shall not participate in overload
resolution unless the qualified-ids Pred::is_transparent and Hash::is_transparent are both valid and
denote types (13.10.3).

204 A deduction guide for an unordered associative container shall not participate in overload resolution if any of
the following are true:
—(204.1) It has an InputIterator template parameter and a type that does not qualify as an input iterator is

deduced for that parameter.
—(204.2) It has an Allocator template parameter and a type that does not qualify as an allocator is deduced

for that parameter.
—(204.3) It has a Hash template parameter and an integral type or a type that qualifies as an allocator is deduced

for that parameter.
—(204.4) It has a Pred template parameter and a type that qualifies as an allocator is deduced for that parameter.

22.2.8.2 Exception safety guarantees [unord.req.except]
1 For unordered associative containers, no clear() function throws an exception. erase(k) does not throw an

exception unless that exception is thrown by the container’s Hash or Pred object (if any).
2 For unordered associative containers, if an exception is thrown by any operation other than the container’s

hash function from within an insert or emplace function inserting a single element, the insertion has no
effect.

3 For unordered associative containers, no swap function throws an exception unless that exception is thrown
by the swap of the container’s Hash or Pred object (if any).

4 For unordered associative containers, if an exception is thrown from within a rehash() function other than
by the container’s hash function or comparison function, the rehash() function has no effect.

22.3 Sequence containers [sequences]
22.3.1 In general [sequences.general]

1 The headers <array> (22.3.2), <deque> (22.3.3), <forward_list> (22.3.4), <list> (22.3.5), and <vector>
(22.3.6) define class templates that meet the requirements for sequence containers.

2 The following exposition-only alias template may appear in deduction guides for sequence containers:
template<class InputIterator>

using iter-value-type = typename iterator_traits<InputIterator>::value_type; // exposition only

22.3.2 Header <array> synopsis [array.syn]
#include <compare> // see 17.11.1
#include <initializer_list> // see 17.10.2

218) Equality comparison is a refinement of partitioning if no two objects that compare equal fall into different partitions.

§ 22.3.2 833

© ISO/IEC Dxxxx

30 Regular expressions library [re]
30.1 General [re.general]

1 This Clause describes components that C++ programs may use to perform operations involving regular
expression matching and searching.

2 The following subclauses describe a basic regular expression class template and its traits that can handle
char-like (21.1) template arguments, two specializations of this class template that handle sequences of char
and wchar_t, a class template that holds the result of a regular expression match, a series of algorithms
that allow a character sequence to be operated upon by a regular expression, and two iterator types for
enumerating regular expression matches, as summarized in Table 126.

Table 126: Regular expressions library summary [tab:re.summary]

Subclause Header
30.2 Requirements
30.4 Constants <regex>
30.5 Exception type
30.6 Traits
30.7 Regular expression template
30.8 Submatches
30.9 Match results
30.10 Algorithms
30.11 Iterators
30.12 Grammar

30.2 Requirements [re.req]
1 This subclause defines requirements on classes representing regular expression traits.

[Note 1 : The class template regex_traits, defined in 30.6, meets these requirements. —end note]
2 The class template basic_regex, defined in 30.7, needs a set of related types and functions to complete the

definition of its semantics. These types and functions are provided as a set of member typedef-names and
functions in the template parameter traits used by the basic_regex class template. This subclause defines
the semantics of these members.

3 To specialize class template basic_regex for a character container CharT and its related regular expression
traits class Traits, use basic_regex<CharT, Traits>.

4 In the following requirements,
—(4.1) X denotes a traits class defining types and functions for the character container type charT;
—(4.2) u is an object of type X;
—(4.3) v is an object of type const X;
—(4.4) p is a value of type const charT*;
—(4.5) I1 and I2 are input iterators (23.3.5.3);
—(4.6) F1 and F2 are forward iterators (23.3.5.5);
—(4.7) c is a value of type const charT;
—(4.8) s is an object of type X::string_type;
—(4.9) cs is an object of type const X::string_type;
—(4.10) b is a value of type bool;
—(4.11) I is a value of type int;
—(4.12) cl is an object of type X::char_class_type; and

§ 30.2 1521

© ISO/IEC Dxxxx

—(4.13) loc is an object of type X::locale_type.
5 A traits class X meets the regular expression traits requirements if the following types and expressions are

well-formed and have the specified semantics.
—(5.1) The type X::char_type denotes charT, the character container type used in the implementation of

class template basic_regex.
—(5.2) The type X::string_type denotes the type basic_string<charT>.
—(5.3) The type X::locale_type denotes a copy constructible type that represents the locale used by the

traits class.
—(5.4) The type X::char_class_type denotes a bitmask type (16.3.3.3.4) representing a particular character

classification.

X::length(p)

6 Return type: size_t
7 Returns: The smallest i such that p[i] == 0.
8 Complexity: Linear in i.

v.translate(c)

9 Return type: X::char_type
10 Returns: A character such that for any character d that is to be considered equivalent to c then

v.translate(c) == v.translate(d).

v.translate_nocase(c)

11 Return type: X::char_type
12 Returns: For all characters C that are to be considered equivalent to c when comparisons are to be

performed without regard to case, then v.translate_nocase(c) == v.translate_nocase(C).

v.transform(F1, F2)

13 Return type: X::string_type
14 Returns: A sort key for the character sequence designated by the iterator range [F1, F2) such that if

the character sequence [G1, G2) sorts before the character sequence [H1, H2) then v.transform(G1,
G2) < v.transform(H1, H2).

v.transform_primary(F1, F2)

15 Return type: X::string_type
16 Returns: A sort key for the character sequence designated by the iterator range [F1, F2) such that if

the character sequence [G1, G2) sorts before the character sequence [H1, H2) when character case is
not considered then v.transform_primary(G1, G2) < v.transform_primary(H1, H2).

v.lookup_collatename(F1, F2)

17 Return type: X::string_type
18 Returns: A sequence of characters that represents the collating element consisting of the character

sequence designated by the iterator range [F1, F2). Returns an empty string if the character sequence
is not a valid collating element.

v.lookup_classname(F1, F2, b)

19 Return type: X::char_class_type
20 Returns: Converts the character sequence designated by the iterator range [F1, F2) into a value of a

bitmask type that can subsequently be passed to isctype. Values returned from lookup_classname
can be bitwise OR’ed together; the resulting value represents membership in either of the corresponding
character classes. If b is true, the returned bitmask is suitable for matching characters without regard
to their case. Returns 0 if the character sequence is not the name of a character class recognized by X.
The value returned shall be independent of the case of the characters in the sequence.

§ 30.2 1522

© ISO/IEC Dxxxx

v.isctype(c, cl)

21 Return type: bool
22 Returns: Returns true if character c is a member of one of the character classes designated by cl,

false otherwise.

v.value(c, I)

23 Return type: int
24 Returns: Returns the value represented by the digit c in base I if the character c is a valid digit in

base I ; otherwise returns -1.
[Note 2 : The value of I will only be 8, 10, or 16. —end note]

u.imbue(loc)

25 Return type: X::locale_type
26 Effects: Imbues u with the locale loc and returns the previous locale used by u if any.

v.getloc()

27 Return type: X::locale_type
28 Returns: Returns the current locale used by v, if any.
29 [Note 3 : Class template regex_traits meets the requirements for a regular expression traits class when it is specialized

for char or wchar_t. This class template is described in the header <regex>, and is described in 30.6. —end note]

30.3 Header <regex> synopsis [re.syn]
#include <compare> // see 17.11.1
#include <initializer_list> // see 17.10.2

namespace std {
// 30.4, regex constants
namespace regex_constants {

using syntax_option_type = T1;
using match_flag_type = T2;
using error_type = T3;

}

// 30.5, class regex_error
class regex_error;

// 30.6, class template regex_traits
template<class charT> struct regex_traits;

// 30.7, class template basic_regex
template<class charT, class traits = regex_traits<charT>> class basic_regex;

using regex = basic_regex<char>;
using wregex = basic_regex<wchar_t>;

// 30.7.6, basic_regex swap
template<class charT, class traits>

void swap(basic_regex<charT, traits>& e1, basic_regex<charT, traits>& e2);

// 30.8, class template sub_match
template<class BidirectionalIterator>

class sub_match;

using csub_match = sub_match<const char*>;
using wcsub_match = sub_match<const wchar_t*>;
using ssub_match = sub_match<string::const_iterator>;
using wssub_match = sub_match<wstring::const_iterator>;

§ 30.3 1523

