
Document Number: P2409R0
Date: 2021-07-12
Reply-to: Daniel Ruoso <druoso@bloomberg.net>
Audience: SG15

Requirements for Usage of C++
Modules at Bloomberg

Abstract
This paper explores the status quo of how C++ code is reused in organizations that don’t have a
monorepo, evaluates the impact C++ Modules have on this status quo, and finally formulates a
set of requirements to be fulfilled to enable the effective adoption of C++ Modules in those
organizations.

Introduction
In this document we will explore requirements for the successful implementation of the C++
Modules standard from the context of Bloomberg.

The goal of this document is to raise awareness of technical requirements and to start a
conversation on how we can address those requirements. It is not our expectation that this will
require a change to the language itself, but rather that this will motivate the creation of a
Technical Report to drive interoperability across tools in the scope where there is already ABI
interoperability, particularly in the scope of GNU/Linux but that likely can be extended to all
POSIX systems.

Bloomberg has a code base with tens of thousands of independent C++ projects, which are
integrated together with a package-manager approach with aggressive dependency rebuilds to
ensure coherence of all those projects into what we call a “distribution snapshot”.

That distribution snapshot contains prebuilt artifacts. Most developers will create a build context
that contains only the source code they’re expecting to change, and build against an installed
location where artifacts (headers, archives, pkg-config files) are deployed.

This stands in contrast with the practice of a “monorepo”. At Bloomberg we explain that
distinction by the categories “Source-to-Source Builds” (short for “Resolve Source
dependencies by consuming Other Sources”) versus “Source-to-Binary Builds” (short for
“Resolve Source dependencies by consuming Binary artifacts''). We will start by exploring those
concepts, and how they reflect real-world practice.

1

Document Number: P2409R0
Date: 2021-07-12
Reply-to: Daniel Ruoso <druoso@bloomberg.net>
Audience: SG15

It is our understanding that Bloomberg’s experience is not dissimilar to most Free/Libre Open
Source Software communities, so while this document is heavily influenced by our particular
experience, this document tries to frame it in a way that is not Bloomberg-specific.

After we describe the state of the world before the adoption of modules, we will break down
different requirements for the successful adoption of modules for organizations that follow
similar patterns. These requirements, explained more in depth below, are as follows:

R1: It should be possible to test the existence of a module outside of the current build by
performing a fixed IO cost, regardless of the number of modules present in the system
(e.g.: testing for the presence of a file with a name deterministically defined by the
module name), without the need to open, read, and parse files containing C++ source
code.

R2: It should be possible to discover how to consume a module outside of the current
build with a fixed IO cost, regardless of the number of modules present in the system
(e.g.: by reading a file with a name deterministically defined by the module name).

R3: It should be possible to discover the dependencies of modules outside of the current
build without incurring the cost of parsing that module’s source code (e.g.: by reading a
simplified file with a name deterministically defined by the module name).

R4: Module discoverability should be interoperable for different compilers and static
analysis tools running on the same platform.

R5: Module discoverability should include sufficient instructions to parse the module
interface.

R6: The compilation command, in addition to files on disk being discoverable and
parseable in an interoperable way, should be sufficient to correctly reproduce the
semantics of the translation unit.

R7: Module discoverability should include an interoperable format to reduce the cost of
parsing module files external to the build system.

Review of Status-quo

Source-to-Source Builds
The defining characteristic of what we call a “Source-to-Source build” is that the build system
understands how any other part of the codebase is built. It has access to any compilation

2

Document Number: P2409R0
Date: 2021-07-12
Reply-to: Daniel Ruoso <druoso@bloomberg.net>
Audience: SG15

commands and code generation steps it needs access to for the purposes of parsing code that
is not part of the standard library.

In this case the intermediate build artifacts are all internal implementation details of the build
system, and the only significant product is the final executable. With the prevalence of static
linking, that executable becomes a self-contained artifact, completely decoupled from build-time
concerns.

This means that any arguments required by the compiler are also an implementation detail for
the build system, since any dependency outside of the standard library is known by the build
system itself.

Source-to-Binary Builds
When operating on this style, different projects will not have visibility into each other’s build
processes. This is implemented by making intermediate artifacts the interfaces by which
different projects consume each other’s build outputs.

This is often achieved in conjunction with a package management system (e.g.: dpkg, rpm,
pacman, Conan), where library projects will produce a “devel” package that can be consumed
by downstream systems.

This is the prevalent way in which GNU/Linux distributions are built, and it is particularly useful
to manage the heterogeneity of build systems in the FLOSS C++ Community. But it also fits well
in organizations that have teams operating more independently, instead of in a monorepo and a
common build system.

The Interfaces of a Source-to-Binary Build
The particular interfaces exposed in a Source-to-Binary build are going to be heavily influenced
by the particular package management infrastructure. For the purposes of this discussion we
will focus on the conventions adopted by the Debian project, as Bloomberg’s experience is
heavily influenced by it.

For the purposes of this document, we want to focus on library projects. There are many other
forms of dependencies in terms of C++ (build tools, code generation, etc), but when attempting
to adopt C++ Modules, library projects are most significantly impacted by the specification.

POSIX standard for compilers/linkers
It is important to note that a lot of interoperability is possible on the Linux/Unix World due to a
few standards that are implemented by compilers and linkers. Those interfaces allow projects

3

Document Number: P2409R0
Date: 2021-07-12
Reply-to: Daniel Ruoso <druoso@bloomberg.net>
Audience: SG15

that are built with different build systems -- even different compiler versions or even compiler
products -- to safely interoperate.

Even when not using the actual standardized cc command1, compilers that target those
architectures still preserve a compatible interface for the relevant options, such as -I/path,
-DTOKEN=VALUE, -L/path, -llibrary.

This standardization has played a significant role in the landscape of code reuse on POSIX
compliant, or even POSIX-inspired platforms, and it is a cornerstone of the “Source-to-Binary”
approach to code reuse in C++.

ABI Uniformity in Linux/Unix systems
Additionally, it is a standard practice to assume that a given version of the operating system has
a uniform Application Binary Interface for C++, and that compilers and linkers provided for that
system will adhere to that.

This allows far more flexibility, as it is usually fair to assume that it is safe to use a library artifact
that is delivered with the Operating System. As an example, Red Hat provides an ABI
Compatibility Guide2 that specifies what level of compatibility you can expect for library artifacts.

Driving the linker
There are many complexities that arise when you try to invoke the linker consuming different
projects in C++. The lack of a standardized package management system resulted in a
proliferation of alternatives, be it specific to a particular build system (e.g.: CMake Config
modules), or a more generic metadata (e.g.: pkg-config files).

The C++ Modules specification, as it stands now, doesn’t change the requirements for the
invocation of the linker in a significant way, so we will not do a deep dive into extra requirements
later in the document, but for completeness sake, we will include a brief summary of how this
interface works.

That metadata for the linker also needs to be able to correctly distinguish between static or
dynamic linking in most cases, which is also going to be heavily architecture-dependent.

For the purpose of this document, we will focus on the pkg-config file format, as that provides a
concrete, yet simple, metadata format. This document will not cover the whole specification for
that metadata, rather in this section we will cover how the format handles the linkage interface.

2 https://access.redhat.com/articles/rhel-abi-compatibility#Appendix
1 https://pubs.opengroup.org/onlinepubs/7908799/xcu/cc.html

4

Document Number: P2409R0
Date: 2021-07-12
Reply-to: Daniel Ruoso <druoso@bloomberg.net>
Audience: SG15

The relevant parts of the snippet above are the Requires and Libs properties, with their
.private counterparts.

The distinction between the bare property and the “.private” counterpart is whether you are
linking it statically or dynamically, represented by the --static argument to pkg-config.
When linking dynamically only the bare property will be followed; when linking statically, both the
bare property and the “.private” counterpart will be followed. This is because a dynamic
library is expected to either embed or reference its dependencies directly, while static linking
requires the full transitive set of dependencies to be included in the final linker invocation.

The Requires and Requires.private properties allow you to reference other dependencies
that have a pkg-config file themselves. The Libs and Libs.private properties specify
what library arguments need to be added, either for this library package, or for any library
dependency that doesn’t have an equivalent pkg-config file.

Translation Interface
As is the case for the linkage interface, the lack of an industry standard package management
framework on the C++ language has led to a lot of heterogeneity in this space. For the purposes
of this document we will continue focusing on the pkg-config format.

5

Document Number: P2409R0
Date: 2021-07-12
Reply-to: Daniel Ruoso <druoso@bloomberg.net>
Audience: SG15

As with the linkage interface, you can specify dependencies on libraries that offer pkg-config
files, but you can also specify the Cflags property, which is used to compose the compilation
command.

Note that this is not a set of instructions that were used to compile the code in the library itself,
but rather it is the set of arguments expected from users of those libraries in order to be able to
reuse that code correctly.

Files on disk
Ultimately, package management systems represent the intermediate build artifacts of C++
library projects as a set of files, where at least some of those files are meant to be in a fixed
place for discoverability.

Projects using pkg-config, for instance, need to deploy their metadata files in the path
hard-coded in the pkg-config executable for them to be discoverable. That being said,
pkg-config also supports that to be customized via the PKG_CONFIG_PATH environment
variable, so it is realistic for an organization to set a different convention for how to discover
those metadata files.

Once the metadata files can be found, everything else can be derived from there, so an
organization can have their own conventions on how to deploy their library artifacts. However, it
is also common to follow the Filesystem Hierarchy Standards3 and use standard directories for
headers and libraries.

3 https://refspecs.linuxfoundation.org/FHS_3.0/fhs/index.html

6

Document Number: P2409R0
Date: 2021-07-12
Reply-to: Daniel Ruoso <druoso@bloomberg.net>
Audience: SG15

Compilation Database
The compilation database4 was first introduced by the clang project as a way to allow an easier
integration of “tools based on the C++ Abstract Syntax Tree”. This became a de-facto standard
that allows various build systems to provide a single entry-point for tools to be able to correctly
parse the C++ code without the need to be tightly coupled with the particular build system.

This has also become a significant enabler for IDEs to offer interactive feedback to the users by
either running the compiler directly, or via the Language Server Protocol.

Requirements Statement
This section will now focus on the requirements that arise from the use of “Source-to-Binary
Builds” at large-scale. It is our expectation that this applies to any organization that performs
large-scale C++ integration without a monorepo. This is the case at Bloomberg, but it also
includes the C++ Libraries distributed by most GNU/Linux distributions.

Cheap Module Discoverability
One significant gap in the C++ Modules as specified in C++20 is the definition of a cheap way of
identifying which modules exist and where they are defined. The standard allows for any
translation unit to export a module of any name, without any expectation for correlation with the
file system.

This works reasonably well for the “Source-to-Source” use case, as there’s no expectation that
this will represent additional parsing beyond what would be necessary for building the project
anyway, since the build systems in general have a higher-level concept of “targets” which allows
reducing the scope of what needs to be scanned.

However, in “Source-to-Binary” builds, it is frequently the case that the system will have a much
larger number of dependencies available when compared to what this particular project may
need. This problem gets further exacerbated by transitive dependencies, or the reuse of the
system installation across multiple projects. And since there’s not an uniform concept of
“package”, the build system would end up having to parse all modules available in the system.

Therefore having to parse all existing module files to build a mapping is unrealistic for
organizations using the “Source-to-Binary” approach.

R1: It should be possible to test the existence of a module outside of the current build by
performing a fixed IO cost, regardless of the number of modules present in the system

4 https://clang.llvm.org/docs/JSONCompilationDatabase.html

7

Document Number: P2409R0
Date: 2021-07-12
Reply-to: Daniel Ruoso <druoso@bloomberg.net>
Audience: SG15

(e.g.: testing for the presence of a file with a name deterministically defined by the
module name), without the need to open, read, and parse files containing C++ source
code.

R2: It should be possible to discover how to consume a module outside of the current
build with a fixed IO cost, regardless of the number of modules present in the system
(e.g.: by reading a file with a name deterministically defined by the module name).

Dependency Graph of Modules External to the Build
Having to perform the discoverability of module dependencies topologically for modules outside
of the current build will result in an undesirable performance penalty. Therefore it’s important
that the module dependency graph should be exposed in a way that is cheaper to parse.

Additionally, building the dependency graph is a precondition to being able to parse the module
files in the first place, therefore making the process of building that dependency graph cheaper
will have a significant impact on the overall cost.

In a Source-to-Source Build, all module files already need to be scanned for the full parsing,
therefore the additional cost to build the dependency graph is not relevant. However, in a
Source-to-Binary Build, we don’t necessarily expect to parse all module files, therefore having a
simplified interface to discover the dependency graph of modules external to the build will
provide a significant improvement in build times.

Identifying the dependency graph for the module happens as a step before the module can be
parsed, since the parsing of this module may depend on other modules. Therefore if the tool
needs to parse the original source to identify dependencies, it may have to read a lot more
content before having access to the dependency information.

While the standard limits this in a very concrete way5, It doesn’t forbid - and in fact, it explicitly
allows6 - the use of a preprocessing macro in an import statement, so you can't just use a
simple lexer to identify dependencies, you need to evaluate with a complete preprocessor,
including the possibility of having to open included files in order to be able to evaluate macros.

Therefore, it would be beneficial to have a file with a simpler syntax, which is less likely to
contain a significant extra amount of data to be read and parsed.

6 https://eel.is/c++draft/cpp#import-2 -- "The preprocessing tokens after the import preprocessing token in
the import control-line are processed just as in normal text (i.e., each identifier currently defined as a
macro name is replaced by its replacement list of preprocessing tokens)."

5 https://eel.is/c++draft/cpp#import-3 -- "If a pp-import is produced by source file inclusion (including by
the rewrite produced when a #include directive names an importable header) while processing the group
of a module-file, the program is ill-formed."

8

Document Number: P2409R0
Date: 2021-07-12
Reply-to: Daniel Ruoso <druoso@bloomberg.net>
Audience: SG15

R3: It should be possible to discover the dependencies of modules outside of the current
build without incurring the cost of parsing that module’s source code (e.g.: by reading a
simplified file with a name deterministically defined by the module name).

Compiler-independent Module Discoverability
In an environment with ABI uniformity, it is safe to have a library that was compiled with g++-7,
another library that was compiled with g++-9 and an application that is compiled with clang++,
as long as they all agree to the uniform ABI.

Likewise, Static Analysis tools will need to be able to consume modules that are both inside and
outside of the current build, therefore that discoverability process needs to be made
interoperable.

Therefore it is important that we have a compiler-independent way of identifying which modules
exist on a system and where they are provided from.

R4: Module discoverability should be interoperable for different compilers and static
analysis tools running on the same platform.

Compiler-independent Module Parsing
Most initial implementations of the module specification utilize an implementation-specific binary
module interface file, which is an implementation detail for the compiler. This is a reasonable
approach for a monorepo. However, in the case of “Source-to-Binary Builds”, this will prevent
reuse across compiler versions or products that would otherwise be compatible, as well as static
analysis tools.

It is possible to understand the implementation-specific binary interface file to be a simple
optimization for what should be available for any other compiler, but in that case, it’s necessary
that a compiler should be able to know how to parse those additional modules without knowing
how those modules were built in the first place.

There should be an interoperable way of specifying any preprocessor or additional instructions
(e.g.: -D, -I, -isystem arguments) that are required to correctly parse the module files. The
alternative is to rely on the current heterogeneous solutions, such as pkg-config.

The relevant difference is that modules, unlike include statements, have their own independent
parsing context, and therefore it would be entirely reasonable to expect that arguments to
parsing a module would be different from the arguments to parse the consumer of a module.

9

Document Number: P2409R0
Date: 2021-07-12
Reply-to: Daniel Ruoso <druoso@bloomberg.net>
Audience: SG15

R5: Module discoverability should include sufficient instructions to parse the module
interface.

Observability Outside of the Build System
There is a de-facto standard that has been established over the past few years on how to
observe a C++ build system in order to perform static analysis. This allows any tool to know how
to parse a given translation unit without the need to be tightly coupled with the build system.

This is currently used by IDE integrations, either via the Language Server Protocol or by just
invoking the compiler directly to offer immediate feedback to the user.

In order to preserve those characteristics, it’s important that a tool should be able to observe the
build system from the outside and be able to analyze the source code.

R6: The compilation command, in addition to files on disk being discoverable and
parseable in an interoperable way, should be sufficient to correctly reproduce the
semantics of the translation unit.

Cheap Parsing of Modules External to the Build
In a monorepo, the full parsing of all modules is already expected, therefore there is no concern
on the requirement that the build system must fully parse the module interface from its original
source code when using a different compiler or a static analysis tool.

However, when you are consuming a significant amount of modules from outside your build
system, having to parse the original source code for all those modules can easily become a
scalability problem.

Ideally what is currently implementation-defined for the module interface file would become
standardized, such that different compiler products and versions would be able to reuse the
same files, but in the absence of that, having an interoperable format that is cheaper to parse
would significantly improve the parsing costs.

The difference that Modules introduce is that each module has now a fully-independent parsing
context, which means that things like the optimizations around include guards will no longer be
valid, and the code in a header may need to be parsed multiple times if we need to parse
unprocessed module interface files.

R7: Module discoverability should include an interoperable format to reduce the cost of
parsing module files external to the build system.

10

Document Number: P2409R0
Date: 2021-07-12
Reply-to: Daniel Ruoso <druoso@bloomberg.net>
Audience: SG15

Summary
We believe that the requirements presented here will be relevant for any organization that is not
working in a monorepo environment, including GNU/Linux distributions. At the same time, we
recognize that it may not be realistic to solve those requirements with a single universal
specification across all platforms.

We believe SG15 is in the position to drive interoperability even if with a limited scope. In
particular, we believe there would be substantial benefit for interoperability for the usage of C++
Modules anywhere where we already have an expectation of ABI interoperability. We believe a
Technical Report can be used to establish a de-facto standard with that more limited scope.

11

