
nullopt_t and nullptr_t should both have operator<=> and
operator==

Document #: P2405R0
Date: 2021-07-15
Project: Programming Language C++
Audience: LEWG, EWG, and SG9
Reply-to: Justin Bassett (jbassett271 at gmail dot com)

Abstract

nullopt_t can be three-way compared to optional. However, because there is no operator<=>
or operator== between nullopt_ts, optional is not comparison_relation _with nullopt_t
where comparison_relation _with is any of equality_comparable_with, totally_ordered_-
with, or three_way_comparable_with. Adding a trivial operator<=> for nullopt_t allows
comparison_relation _with to support optional and nullopt_t. The same holds true with
nullptr_t and unique_ptr<T> and shared_ptr<T>.

Contents

Contents 1
1 Motivation . 1
2 Background . 4
3 Design Intent . 4
4 Proposed wording . 5

References 6

1 Motivation

1.1 Specific Usage Changes

These are some specific examples of code which this paper will simplify:

1

Before After
auto remove_nulls(

vector<optional<int>>& range)
{

return ranges::remove(
range, optional<int>());

}

auto remove_nulls(
vector<optional<int>>& range)

{
return ranges::remove(

range, nullopt);
}

template <
ranges::forward_range R>
requires requires(

ranges::range_value_t<R> val) {

// Require range of optional<T>
requires same_as<

decltype(val),
decltype(optional(val))

>;
}

auto remove_nulls(R& range) {
return ranges::remove(range,

ranges::range_value_t<R>());
}

template <
ranges::forward_range R>
requires requires(

ranges::range_value_t<R> val) {

// Require range of optional<T>
requires same_as<

decltype(val),
decltype(optional(val))

>;
}

auto remove_nulls(R& range) {
return ranges::remove(

range, nullopt);
}

auto after_null_sorted(
vector<shared_ptr<int>>& range)

{
return ranges::upper_bound(

range, shared_ptr<int>());
}

auto after_null_sorted(
vector<shared_ptr<int>>& range)

{
return ranges::upper_bound(

range, nullptr);
}

template <
ranges::random_access_range R>
// Assuming R is a range of some
// smart_ptr<T>

auto after_null_sorted(R& range)
{

return ranges::upper_bound(range,
ranges::range_value_t<R>());

}

template <
ranges::random_access_range R>
// Assuming R is a range of some
// smart_ptr<T>

auto after_null_sorted(R& range)
{

return ranges::upper_bound(
range, nullptr);

}

Note that some may reach for ranges::algorithm _if or algorithm instead:
// Instead of:
ranges::remove(range, ranges::range_value_t<R>());
// One of these may be used:
ranges::remove_if(range, [](const auto& o) { return o == nullopt; });
remove(range.begin(), range.end(), nullopt);

In fact, note that every unconstrained algorithm supports this use-case; only the constrained
algorithms reject nullopt and nullptr.
As another example not concerning ranges, consider:

template <typename T>
class custom_set {
public:

bool insert(T val);

// Support heterogeneous lookup:
template <std::totally_ordered_with<T> U>
bool contains(const U& val);

};

2

Before After
bool has_null(

const custom_set<
shared_ptr<T>>& set)

{
return set.contains(shared_ptr<T>());

}

bool has_null(
const custom_set<

shared_ptr<T>>& set)
{

return set.contains(nullptr);
}

1.2 Why is this useful, given that optional<T>() and smart_ptr<T>() work?

It is true that this issue can be worked around by replacing nullopt with optional<T>() and
nullptr with smart_ptr<T>(), perhaps where those concrete types are computed through some
type alias. Furthermore, optimizers consistently eliminate these temporaries, generating the same
code either way. However, it is still beneficial to enable the usage nullopt and nullptr. nullopt
and nullptr can be more readable than the constructor calls, as they clearly communicate their
null value in their name. Furthermore, the same argument can be applied to the heterogeneous
comparison operators we already have: why do we need heterogeneous comparison operators if
we can simply use optional<T>() and smart_ptr<T>() in place of nullopt and nullptr? The
issue with that argument is that these comparison operators are quite reasonable, as opt ==
optional<T>(nullopt) and ptr == smart_ptr<T>(nullptr) compile fine, so it is natural and
consistent to be able to use opt == nullopt and ptr == nullptr as well. Given that we have
these heterogeneous comparison operators, disallowing their use with constrained algorithms or
constrained functions is inconsistent.

1.3 nullopt_t

It is trivial to define homogenous comparison operations for nullopt_t, as any singleton set is
strongly ordered by taking the single element to be equal to itself. Because nullopt_t is a singleton
type and therefore meets the mathematical models, adding these comparison operations will not
hide any logic errors. Despite this, nullopt == nullopt never makes sense in ordinary code, as
it could be replaced with true, making the idea of adding comparison operators seem illogical.
However, types should not be considered in isolation. nullopt_t should be considered in the context
of optional<T>.
We have the ability to compare optional<T> and nullopt_t through operator==(optional<T>,
nullopt_t) and operator<=>(optional<T>, nullopt_t). However, without the comparison
operators for nullopt_t itself, although we have equality_comparable<optional<T>>, three_-
way_comparable<optional<T>>, and totally_ordered<optional<T>>, we do not have the cross-
type variants comparison_relation _with<optional<T>, nullopt_t>. This is because these
variants include the requirements comparison_relation <A> and comparison_relation , but
nullopt_t does not satisfy any of these comparison_relation s because it has no comparison
operators at all. Despite being irrelevant for nullopt_t on its own, operator== and operator<=>
should be added to nullopt_t to fix this inconsistency with optional<T>.

1.4 nullptr_t

The argument for nullptr_t is the same as that as for nullopt_t except for unique_ptr and
shared_ptr. The idea of comparison operators for nullptr_t initially brings to mind the context of
T*, where relational comparisons only form a partial ordering that cannot compare null with other
pointers without undefined behavior, but this forgets that nullptr is also the singleton null value
for unique_ptr and shared_ptr. The smart pointers have custom relational comparisons with
nullptr_t that use less<T*> to produce a valid total ordering. As such, these comparisons should
be defined for nullptr_t so that comparison_relation _with<smart_ptr<T>, nullptr_t> can
be syntactically met.

3

2 Background

2.1 nullptr’s historic relational operators

nullptr used to have relational comparisons and not just equality operators. However, [N3478]
removed these nullptr comparisons as part of resolving p > nullptr given T* p, where p >
nullptr was always undefined behavior, so removing this comparison operator turns a runtime
bug into a compilation error. Without the context of the comparison_relation _with concepts, it
seems obvious to remove the meaningless-in-isolation nullptr-only comparisons when removing
p > nullptr regardless of the fact that the nullptr with nullptr comparisons do not have this
same issue. Now that we have the comparison_relation _with concepts, we have a reason to add
back in nullptr-only comparisons; a reason which does not conflict with the original reason that
these comparisons were removed from the language.
Note that this paper does not propose adding comparison operators for any null pointer constructs
other than nullptr itself. This means that nullptr < (T*)nullptr will not be made valid by
this proposal, nor will nullptr < (T*)0. This apparent inconsistency is for a particular reason:
directly writing nullptr < nullptr is not expected to appear in useful code. Instead, nullptr
comparisons are expected to appear either through generic code or through concept syntactic
requirements, where nullptr being of the special type std::nullptr_t is significant.

2.2 Why do the comparison_relation_with<T, U> concepts require
comparison_relation<T> and comparison_relation<U>?

Cross-type equality must be carefully defined in mathematics. Equalities are equivalence relations,
not just the operator==(A, B). As equivalence relations are defined for a single set, cross-type
equality is defined over a common supertype of A and B. That is, we take C = A ∪B and define
our equivalence relation over C, meaning that ∀c1, c2 ∈ C, c1 == c2 must be well-defined. Thus,
as we could have c1, c2 ∈ A, c1, c2 ∈ B, or c1 ∈ A but c2 ∈ B, so our equivalence relation must be
defined for A×A, A×B, and B×B. Translating to C++, operator==(A, A), operator==(A, B),
operator==(B, B), and operator==(C, C) must all be defined and be part of the same equivalence
relation for us to have high confidence that the operator==(A, B) represents an actual equality.
This is why we require equality_comparable<A> and equality_comparable: to verify that
the operator==(A, B) models equality.
The mathematics is the same for each of the other comparison relations.

3 Design Intent
For both singleton types nullptr_t and nullopt_t, the same comparison operations should be
valid:

— nullopt <=> nullopt should be strong_ordering::equal.

— nullopt == nullopt should be true.

— nullopt != nullopt should be false.

— nullopt < nullopt should be false.

— nullopt > nullopt should be false.

— nullopt <= nullopt should be true.

— nullopt >= nullopt should be true.

4

And similarly for nullptr.
For the case of nullopt, this can be easily accomplished by providing a defaulted operator<=>.
For the case of nullptr, this requires defining nullptr <=> nullptr in [expr.spaceship] as well
as the relational operators in [expr.rel] for consistency with other fundamental types; nullptr_t
already has equality operators defined.

3.1 Unresolved Issues

Even with this change, these comparison_relation _with concepts do not work with move-only
types. For example, equality_comparable_with<optional<T>, nullopt_t> for move-only T is
still false. This issue will be resolved by [P2404R0].

4 Proposed wording
In [optional.nullopt]:

struct nullopt_t{see below };

struct nullopt_t{
see below

friend constexpr strong_ordering operator<=>(nullopt_t, nullopt_t) noexcept
= default;

};

inline constexpr nullopt_t nullopt(unspecified);

In [expr.spaceship]:

If both operands are of type std::nullptr_t, the result is of type std::strong_-
ordering. The result is std::strong_ordering::equal.
Otherwise, the program is ill-formed.

In [expr.rel]:

The converted operands shall have arithmetic, enumeration, or pointer type, or type
std::nullptr_t. The operators < (less than), > (greater than), <= (less than or equal
to), and >= (greater than or equal to) all yield false or true. The type of the result is
bool.
...
If both operands (after conversions) are of arithmetic or enumeration type, each of the
operators shall yield true if the specified relationship is true and false if it is false.
If both operands (after conversions) are of type std::nullptr_t, the result is true if
the operator is <= or >= and false otherwise.

The proposed changes are relative to the current working draft [N4878].

Document history

— R0, 2021-07-15 : Initial version.

5

References

[N3478] Jens Maurer. Core Issue 1512: Pointer comparison vs qualification conversions. https:
//wg21.link/n3478, 2012 (accessed 2021-07-09).

[N4878] Thomas Köppe. Working Draft, Standard for Programming Language C++. https:
//wg21.link/n4878, 2020 (accessed 2021-07-10).

[P2404R0] Justin Bassett. Relaxing equality_comparable_with’s, totally_ordered_with’s, and
three_way_comparable_with’s common reference requirements to support move-only
types. https://wg21.link/p2404r0, 2021.

6

https://wg21.link/n3478
https://wg21.link/n3478
https://wg21.link/n4878
https://wg21.link/n4878
https://wg21.link/p2404r0

	Contents
	1 Motivation
	1.1 Specific Usage Changes
	1.2 Why is this useful, given that optional<T>() and smart_ptr<T>() work?
	1.3 nullopt_t
	1.4 nullptr_t

	2 Background
	2.1 nullptr's historic relational operators
	2.2 Why do the comparison_relation_with<T, U> concepts require comparison_relation<T> and comparison_relation<U>?

	3 Design Intent
	3.1 Unresolved Issues

	4 Proposed wording

	References

