reference_wrapper Associations

Document Number: P2380R1

Date: 2021-06-03

Reply-to: Robert Leahy <rleahy@rleahy.ca>
Audience: LEWG

Abstract

This paper proposes that associated_allocator and associated_executor have
specializations for reference_wrapper<T>.

Background

The Networking TS [1] provides “associators” (§13.2.6 [async.regmts.associator])
(associated_allocator and associated_executor) which allow types and instances of
certain named typed requirements (ProtoAllocator and Executor respectively) to be
retrieved through a completion handler. The asynchronous model proposed by the Networking
TS uses these associators to obtain executors and allocators for use in its operations.

reference_wrapper has been a part of standard C++ since C++11 and allows references to be
transported inside a wrapper which behaves as one would expect a C++ class to: Assignable, et
cetera. Moreover if the target of a reference_wrapper models the named type requirement
Callable then reference_wrapper itself models this named type requirement.

Motivation

The standard provides reference_wrapper to enable the use of reference semantics with
Callable objects where the algorithms, types, et cetera in question are written with value
semantics (for example the standard algorithms accept their predicates and operations by
value). The fact that the Networking TS doesn’t provide specializations of
associated_allocator and associated_executor for reference_wrapper<T> means that
reference_wrapper can't fill this niche out of the box when interacting with Networking TS
operations with completion handlers which customize the associated ProtoAllocator and/or
Executor.

Being unable to use reference_wrapper in these situations is the best case scenario. More
problematic is the possibility that users (accustomed to reaching for reference_wrapper when
they need to pass a Callable by reference) will be unaware of the fact that the Networking TS
does not provide the requisite specializations and will use reference_wrapper in such
situations notwithstanding. Particularly where the Executor association has been customized



this would likely lead to the user unknowingly writing incorrect code: Their synchronization
and/or execution requirements would not be honored which could be the difference between
their program being data race free and containing undefined behavior.

Proposed Changes

§13.1 [async.synop]:

template<class T, class ProtoAllocator = allocator<void>>
struct associated allocator;

template<class T, class ProtoAllocator>
struct associated _allocator<reference_wrapper<T>, ProtoAllocator>;

[..]

template<class T, class Executor = system executor>
struct associated_executor;

template<class T, class Executor>
struct associated_executor<reference_wrapper<T>, Executor>;

§13.5 [async.assoc.alloc]

namespace std {
namespace experimental {
namespace net {

inline namespace vl {

template<class T, class ProtoAllocator = allocator<void>>
struct associated_allocator

{

using type = see below ;

static type get(const T& t, const ProtoAllocator& a = ProtoAllocator())
noexcept;

}s

template<class T, class ProtoAllocator>
struct associated _allocator<reference_wrapper<T>, ProtoAllocator>

{

using type = associated_allocator_t<T, ProtoAllocator>;



static type get(reference_wrapper<T> t, const ProtoAllocator& a =
ProtoAllocator()) noexcept;

I

} // inline namespace vli

} // namespace net

} // namespace experimental
} // namespace std

§13.5.2 [async.assoc.alloc.refwrap]

type get(reference_wrapper<T> t, const ProtoAllocator& a = ProtoAllocator())
noexcept;

Returns: associated_allocator<T, ProtoAllocator>::get(t.get(), a).
§13.12 [async.assoc.exec]

namespace std {
namespace experimental {
namespace net {

inline namespace v1 {

template<class T, class Executor = system_executor>
struct associated _executor

{
using type = see below ;

static type get(const T& t, const Executor& e = Executor()) noexcept;

}s

template<class T, class Executor>
struct associated_executor<reference_wrapper<T>, Executor>

{

using type = associated executor_ t<T, Executor>;

static type get(reference_wrapper<T> t, const Executor& e = Executor())
noexcept;

I

} // inline namespace vl

} // namespace net

} // namespace experimental
} // namespace std



§13.12.2 [async.assoc.exec.refwrap]
type get(reference_wrapper<T> t, const Executor& e = Executor()) noexcept;

Returns: associated_executor<T, Executor>::get(t.get(), e).

References

[1] J. Wakely. Working Draft, C++ Extensions for Networking N4771

Revision History

Revision 1

e Corrected mistakes in specifying the specializations of associated_allocator and
associated_executor

e The type member of the specializations of associated_allocator and
associated_executor are now specified in terms of associated _allocator_t and
associated_executor_t

e Corrected minor editorial issue within a comment

Review History

SG4 Teleconference June 3, 2021

Draft of revision 1 was presented to SG4. The following poll was taken and passed with
unanimous consent:

Forward P2380R1 to LEWG to merge into the SG4 networking draft?



