
Remove non-encodable wide character
literals and multicharacter wide character
literals

Document No. P2362 R2 Date 2021-07-29
Reply To Peter Brett pbrett@cadence.com

Corentin Jabot corentin.jabot@gmail.com
Audience: EWG

Revisions
R2 Remove additional wording related to wide character literals. Rebased wording on

N4892.

R1 Apply SG16 feedback. New title. Retain an additional “character literal” in wording for
clarity. Update summary table to show size of wchar_t. Discuss feature test macros.
Add WG21 poll outcomes.

Introduction
C++ currently permits writing a wide character literal with multiple characters or characters that

cannot fit into a single codeunit. For example:

🤦‍♀️

Wide non-encodable and multicharacter literals have wildly different interpretations across different

implementations, and it is not feasible to specify a portable and consistent interpretation.

Make these literals ill-formed.

Design

Wide non-encodable character literals
The size of is implementation-defined. On platforms where is a 32-bit integer type

(e.g. Linux), 🤦‍♀️ is interpreted as without loss of information.

On platforms where is a 16-bit integer type (e.g. Windows), the value is truncated, and

there is significant implementation divergence.

MSVC first converts to UTF-16, and then truncates to the first codeunit, producing the invalid lone

high surrogate and a diagnostic (disabled by default). GCC with first

converts to UTF-16, then truncates to the second codeunit, producing the invalid lone low surrogate

 and a diagnostic.

Clang with treats the input as ill-formed.

Wide multicharacter literals
All the implementations we examined only ever interpret a single character in a wide multicharacter

literal. However, there is divergence in which is chosen. MSVC takes the first, treating as

mailto:pbrett@cadence.com?subject=Re:%20P1892R0%20Extended%20locale-specific%20presentation%20specifiers%20for%20std::format
mailto:corentin.jabot@gmail.com

P2362 R2

2

equivalent to , and emits a diagnostic (disabled by default). GCC and Clang take the last, treating

 as equivalent to , and emit diagnostics.

 may consist of either 1 or 2 c-chars depending on source normalization. In the composed form,

 produces the value when compiled by MSVC, GCC and Clang. There is divergence in

handling the decomposed form . MSVC produces ; GCC and Clang produce

.

Therefore, what looks like a single c-char when reading the source file may, in fact, be a multi-

character literal. This is the case in many scripts, including Korean, many Brahmic scripts, and emoji

[1].

Proposal
There is irreconcilable implementation divergence in the handling of wide multicharacter literals.

Because all wide character literals have storage, no implementation can interpret more

than one wide codeunit from any wide character literal. The allowance for implementations to

accept wide multicharacter literals is redundant.

Similarly, no implementation can handle a non-encodable wide character literal without loss of

information.

Using any of the implementations examined, using a wide non-encodable or multicharacter literals

provided no benefit whatsoever over using an equivalent ‘normal’ wide character literal. They only

serve to obfuscate and reduce portability.

We propose that wide non-encodable and wide multicharacter literals should be ill-formed.

Ill-formedness will clear the design space for defining a useful, and portable, interpretation of wide

non-encodable and/or multicharacter literals in a future revision of the standard, if there is

widespread desire for them to be reintroduced.

This change was previously proposed in P2178 “Misc lexing and string handling improvements” [2].

Impact on implementations
Implementations are already able to detect and diagnose wide non-encodable and multicharacter

literals. We recommend that implementations update these diagnostics to errors and, for wide

multicharacter literals, propose the change that the user should make fix the problem.

Impact on users
Because there is no possible meaningful interpretation of wide multicharacter literals, they are not

used. The authors carried out a survey of open source code and found no occurrences outside

compiler testsuites.

No feature test macro changes required
Wide non-encodable character literals and wide multicharacter character literals are currently

conditionally-supported with implementation defined behaviour, and there is no associated feature

test macro.

Summary

16-bit wchar_t

MSVC ⚠ ⚠ ⚠

Clang -fshort-wchar 🛑 (error) ⚠ ⚠

GCC -fshort-wchar ⚠ ⚠ ⚠

32-bit wchar_t

Clang ⚠ ⚠

GCC ⚠ ⚠

Cases marked with a ⚠ currently result in a warning diagnostic (possibly not enabled by default).

Cases marked with a 🛑 currently result in a compilation error.

We propose that the cases marked with a ⚠ or 🛑 above will become ill-formed.

WG21 feedback

SG16 2020-08-26
Discussion of P2178 R1 [2]:

Poll: Proposal 6: We support making wide multicharacter literals ill-formed.

• Attendees: 10

• No objection to unanimous consent

Poll: Proposal 6: We support making wide non-encodable character literals ill-formed.

• Attendees: 10

• No objection to unanimous consent

SG16 2021-07-14
Discussion of this paper at R0:

Poll: Forward P2362R0 with title and wording modifications as discussed to EWG for

C++23.

• Attendees: 9

• No objection to unanimous consent.

Proposed wording

Editing notes
All wording is relative to the June 2021 C++ working draft [3].

5.13.3 Character literals [lex.ccon]

Update ¶1:
A non-encodable character literal is a character-literal whose c-char-sequence consists of a

single c-char that is not a numeric-escape-sequence and that specifies a character that either

lacks representation in the literal’s associated character encoding or that cannot be encoded

as a single code unit. A multicharacter literal is a character-literal whose c-char-sequence

consists of more than one c-char. The encoding-prefix of a non-encodable character literal or

a multicharacter literal shall be absent or L. Such character-literals are conditionally-

supported.

Update ¶2
The kind of a character-literal, its type, and its associated character encoding are determined

by its encoding-prefix and its c-char-sequence as defined by Table 9. The special cases for

non-encodable character literals and multicharacter literals take precedence over their

respective base kinds.

[Note 1: The associated character encoding for ordinary and wide character literals

determines encodability, but does not determine the value of non-encodable ordinary or

wide character literals or ordinary or wide multicharacter literals. The examples in Table 7

for non-encodable ordinary and wide character literals assume that the specified character

lacks representation in the execution character set or execution wide-character set,

respectively, or that encoding it would require more than one code unit.— end note]

Update Table 7 [tab:lex.ccon.literal]:

Encoding
prefix

Kind Type Associated
character
encoding

Example

none ordinary character
literal

encoding of the
execution
character set non-encodable

ordinary character

literal

ordinary

multicharacter literal

wide character literal encoding of the
execution wide-
character set

non-encodable wide
character literal

wide multicharacter
literal

UTF-8 character literal UTF-8

UTF-16 character
literal

UTF-16

UTF-32 character
literal

UTF-32

P2362 R2

5

Update ¶3.2.2

Otherwise, if the character-literal’s encoding-prefix is absent or , and v does not exceed the

range of representable values of the corresponding unsigned type for the underlying type of

the character-literal’s type, then the value is the unique value of the character-literal’s type

 that is congruent to v modulo 2N, where N is the width of .

References

[1] S. Downey, Z. Laine, T. Honermann, P. Bindels and J. Maurer, “P1949R6 C++ Identifier Syntax

using Unicode Standard Annex 31,” 15th Sept 2020. [Online]. Available: http://www.open-

std.org/jtc1/sc22/wg21/docs/papers/2020/p1949r6.html.

[2] C. Jabot, “P2178R1 Misc lexing and string handling improvements,” 14 July 2020. [Online].

Available: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2178r1.pdf.

[3] T. Köppe, “N4892 Working Draft, Standard for Programming Language C++,” 18 June 2021.

[Online]. Available: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/n4892.pdf.

