
Unevaluated strings
Document #: P2361R3
Date: 2021-10-09
Programming Language C++
Audience: EWG
Reply-to: Corentin Jabot <corentin.jabot@gmail.com>

Aaron Ballman <aaron.ballman@gmail.com>

Abstract

string-literals can appear in a context where they are not used to initialize a character array, but
are used at compile time for diagnostic messages, preprocessing, and other implementation-
defined behaviors. This paper clarifies how compilers should handle these strings.

Motivation

A string-literal can appear in _Pragma, asm, extern, static_assert, [[deprecated]] and [[nodiscard]]
attributes...

In all of these cases, the strings are exclusively used at compile time by the compiler, and are
as such not evaluated in phase 6. This means they should not be converted to the narrow
encoding or any literal encoding specified by an encoding prefix (L, u, U, u8).

Their encoding should therefore not be constrained or otherwise specified, except that these
strings can contain any Unicode characters.

This proposal aim to identify contexts in which strings are not evaluated so that they can be
handle consistently by compilers.

Revisions

R3

• Improve wording by not making unevaluated-string preprocessing token as preprocess-
ing tokens should not be context dependent. Fix the wording of #line and _Pragma
accordingly.

• Appendnull-terminator during evaluation of string-literals tomake it clear that unevaluated-
string are not null-terminated.

• Adapt the grammar of literal-operator-id

• Adapt the wording of extern to clarify that the likage specification denotes unicode
characters.

1

mailto:corentin.jabot@gmail.com
mailto:aaron.ballman@gmail.com

• Allow numeric escape sequences in asm statements.

R2

• unevaluated-string-literal to unevaluated-string.

• Add a note about not disallowing non-printable characters

• Add a note about unevaluated-string not being expressions.

• Fix typos.

• Improve wording.

Proposal

Unevaluated string literals can appear in

• _Pragma

• #line directives

• [[nodiscard]] and [[deprecated]] attributes

• extern linkage specifications

• asm statements

• static_assert

• literal operator

We propose that in all of these cases:

• No prefix is allowed

• The string is not converted to the execution encoding.

• universal-character-name and simple-escape-sequence (except \0) are replaced by the
corresponding Unicode codepoints, and other escape sequences are ill-formed (except
in asm statements, see below).

This last point is important. Because the encoding the compiler will convert these strings
to is not known, and because UCNs can represent any Unicode characters, numeric-escape-
sequences have no use beyond forcing the compiler to contend with invalid code units in
diagnostic messages.

All of these changes are breaking changes. However, a survey of open source projects tend
to show that none of the restrictions added impact existing code.

This proposal does not specify how unevaluated strings are presented in diagnostic
messages.

2

Non printable characters and escape sequences

This proposal does not attempt to restrict further the characters allowed in unevaluated
strings. In particular, they may contain all matter of space, control characters, invisible
characters and alert. The handling of these characters in diagnostic messages is left as quality
of implementation, mostly for simplicity. The alternative would be to only allow graphic
characters (General_Category L, M, N, P, S + spaces).

Alternative considered

Allowing and ignoring any prefix

This is arguably the status quo. The issue is that it is hard to teach. Users should be able to
expect for example that L”X” is always in the wide execution encoding. It could be argued that
"foo" not being in the narrow-encoding is also confusing, however, there is precedence for
that in headers names (which are already not string-literalss).

Allowing prefixes and encode all strings using that prefix

This is both implementer- and user-hostile. It would force users to use any of u, u8, U on all
of their static_assert which contain non-ASCII characters as it is the only way to obtain a
portable encoding. It has the advantage of being mostly consistent (all strings except those in
headers names would be encoded using the encoding associated with their prefix) but would
break existing code using non-ASCII characters in static_assert and attributes and litter C++
code with these prefixes, which seems to be a net negative.

asm statements

Several people in SG22, as well as an implementer raised concerns about banning numeric
escape sequences in asm statement as supposedly an implementation could do ”something”
here. Given the implementation-defined nature of asm statements, we decided to only preclude
encoding prefixes in asm statements, and allow numeric escape sequences, whose behavior
would remain implementation-defined and possibly inconsistent with the behavior of string
literals in other contexts.

An alternative approach outside of the scope of this paper would be tomodify the specification
of asm statements to allow a well-balanced token sequences, like for attributes parameters.
This would better match existing practices.

Compilers survey

_Pragma

In _Pragma directives, the standard specifies that the L prefix is ignored. In C, all encoding
prefixes are ignored. This divergence is highlighted in CWG897 [2]. MSVC does not support

3

https://wg21.link/CWG897

_Pragma(L""). Only Clang supports other prefixes in _Pragma.

Out of the 90 millions lines of code of the 1300+ open source projects available on vcpkg, a
single use of that feature was found within clang’s lexer test suite, for a total of 2000 uses
of _Pragma. Similarly, the only uses of _Pragma (u8""), _Pragma (u""), _Pragma (U""), etc were
found in Clang’s test suite (both because these are valid C and because neither GCC nor Clang
are conforming, only L"" is described as valid by the C++ standard).

Attributes

Clang does not support strings with an encoding prefix in attributes, other compilers accept
them.

static_assert

All compilers support strings with an encoding prefix in static assert. MSVC appears to convert
the string to the encoding associated with that prefix before displaying it, producing mojibake
if a string cannot be represented in the literal encoding. The following diagnostics are emmited
by MSVC with /execution-charset:ascii:

static_assert(false, "Your code is on ");

<source>(1): warning C4566: character represented by universal-character-name
'\u00F0' cannot be represented in the current code page (20127)
<source>(1): warning C4566: character represented by universal-character-name
'\u0178' cannot be represented in the current code page (20127)
<source>(1): warning C4566: character represented by universal-character-name
'\u201D' cannot be represented in the current code page (20127)
<source>(1): warning C4566: character represented by universal-character-name
'\u00A5' cannot be represented in the current code page (20127)
<source>(1): error C2338: ????

static_assert(false, u8"Your code is on ");
<source>(1): error C2002: invalid wide-character constant

extern & asm

No compiler support strings with an encoding prefix in extern and asm statements.

#line

GCC and Clang do not support encoding prefix in #line directives.

4

Future direction

This proposal does not prevent supporting constant expression in static_assert or attributes
in the future; we can imagine the following grammar:

static_assert-declaration:
static_assert (constant-expression) ;
static_assert (constant-expression , unevaluated-string) ;
static_assert (constant-expression , constant-expression) ;

Those may make static_assert(true, u8"foo"); valid again as u8"foo" would be a valid con-
stant expression.

Implementability

This proposal requires implentations to keep around a non-encoded string for diagnostic
purposes. This has recently come up in a clang patch to support EBCDIC as the literal encoding.
To support diagnostics in this context, especially on a non-EBCDIC platform the original
sequence of characters must be retained. This proposal offers a well-specified, portable
mechanism to solve this problem.

Wording Challenges

Strings are handled in phase 5 and 6 before the program is parsed, which might force us to
have a ”reversal” of these phases. string-literal and unevaluated-string-literal only differ by the
context in which they may appear.

It is important to note that unevaluated-string, by vertue of not being evaluated, are not C++
expressions. They are purposefully left out of the literal grammar. Not being literal, and not
being expressions, unevaluated-string do not have a value category.

Previous works

P2246R1 [1] removes wording specific to attributes mandating that diagnostic with characters
from the basic characters are displayed in diagnostic messages, which was not implementable.

Wording

[Editor’s note: The wording is relative to N4885 + P2314R2 [3] applied]

�? Phases of translation [lex.phases]

[Editor’s note: Modify ”[lex.phases]/p1.6” as follow]

5

https://wg21.link/P2246R1
https://wg21.link/P2314R2

6. Adjacent string-literals are concatenated and a null character is appended to the result
as specified in [lex.string].

�? String literals [lex.string]

[Editor’s note: Modify ”[lex.string]” as follow]

[...]

In translation phase 6 [lex.phases], after adjacent string-literals are concatenated, a null
character is appended to the result.

Evaluating a string-literal results in a string literal object with static storage duration. Whether
all string-literals are distinct (that is, are stored in nonoverlapping objects) and whether
successive evaluations of a string-literal yield the same or a different object is unspecified.
[Note: The effect of attempting to modify a string-literal is undefined. —end note]

String literal objects are initialized with the sequence of code unit values corresponding to the
string-literal’s sequence of s-char s (for a non-raw string literal) and r-char s (for a raw string
literal) in order as follows:

• The sequence of characters denoted by each contiguous sequence of basic-s-char s,
r-char s, simple-escape-sequence s, and universal-character-name s is encoded to a code
unit sequence using the string-literal’s associated character encoding. If a character
lacks representation in the associated character encoding, then:

– If the string-literal’s encoding-prefix is absent or L, then the string-literal is conditionally-
supported and an implementation-defined code unit sequence is encoded.

– Otherwise, the string-literal is ill-formed.

When encoding a stateful character encoding, implementations should encode the
first such sequence beginning with the initial encoding state and encode subsequent
sequences beginning with the final encoding state of the prior sequence. [Note: The
encoded code unit sequence can differ from the sequence of code units that would be
obtained by encoding each character independently. —end note]

• Each numeric-escape-sequence that specifies an integer value v contributes a single code
unit with a value as follows:

– If v does not exceed the range of representable values of the string-literal’s array
element type, then the value is v.

– Otherwise, if the string-literal’s encoding-prefix is absent or L, and v does not exceed
the range of representable values of the corresponding unsigned type for the
underlying type of the string-literal’s array element type, then the value is the unique
value of the string-literal’s array element type T that is congruent to v modulo 2N ,
where N is the width of T.

– Otherwise, the string-literal is ill-formed.

6

When encoding a stateful character encoding, these sequences should have no effect
on encoding state.

• Each conditional-escape-sequence contributes an implementation-defined code unit se-
quence. When encoding a stateful character encoding, it is implementation-defined
what effect these sequences have on encoding state.

• A code unit of value 0 (representing the NULL character) is appened to the result.

[Editor’s note: Add after ”[lex.string]/p10”]

�? Unevaluated strings [lex.string.unevaluated]

unevaluated-string:
string-literal

An unevaluated-string shall have no encoding-prefix.

Each universal-character-name and each simple-escape-sequence in an unevaluated-string is
replaced by themember of the translation set it denotes. An unevaluated-stringwhich contains
a numeric-escape-sequence or a conditional-escape-sequence is ill-formed.

An unevaluated-string is never evaluated and its interpretation depends on the context in
which it appears.

[Editor’s note: ”translation set” is defined in P2314R2 [3] in [lex.phases]]

�? Declarations [dcl.dcl]

�? Preamble [dcl.pre]

simple-declaration:
decl-specifier-seq init-declarator-listopt ;
attribute-specifier-seq decl-specifier-seq init-declarator-list ;
attribute-specifier-seqopt decl-specifier-seq ref-qualifieropt [identifier-list] initializer
;

static_assert-declaration:
static_assert (constant-expression) ;
static_assert (constant-expression , unevaluated-string-literal) ;

[...]

In a static_assert-declaration, the constant-expression shall be a contextually converted con-
stant expression of type bool. If the value of the expression when so converted is true, the
declaration has no effect. Otherwise, the program is ill-formed, and the resulting diagnostic
message shall include the text of the unevaluated-string-literal, if one is supplied, except that
characters not in the basic source character set are not required to appear in the diagnostic
message. [Example:

static_assert(sizeof(int) == sizeof(void*), "wrong pointer size");

7

https://wg21.link/P2314R2

—end example]

�? The asm declaration [dcl.asm]

An asm declaration has the form

asm-declaration:
attribute-specifier-seqopt asm (string-literal) ;

The asm declaration is conditionally-supported; its meaning is implementation-defined. The
encoding prefix of the string-literal shall be absent. The optional attribute-specifier-seq
in an asm-declaration appertains to the asm declaration. [Note: Typically it is used to pass
information through the implementation to an assembler. —end note]

�? Linkage specifications [dcl.link]

All functions and variables whose names have external linkage and all function types have
a language linkage. [Note: Some of the properties associated with an entity with language
linkage are specific to each implementation and are not described here. For example, a
particular language linkage might be associated with a particular form of representing names
of objects and functions with external linkage, or with a particular calling convention, etc.
—end note] The default language linkage of all function types, functions, and variables is C++

language linkage. Two function types with different language linkages are distinct types even
if they are otherwise identical.

Linkage between C++ and non-C++ code fragments can be achieved using a linkage-specification:

linkage-specification:
extern unevaluated-string-literal { declaration-seqopt }
extern unevaluated-string-literal declaration

Theunevaluated-string-literal indicates the required language linkage as a sequenceof translation
set characters.

This document specifies the semantics for the string-literals language linkages "C" and "C++".
Use of a string-literal language linkage other than "C" or "C++" is conditionally-supported,
with implementation-defined semantics. [Note: Therefore, a linkage-specification with a
string-literal language linkage that is unknown to the implementation requires a diagnostic.
—end note] [Note: It is recommended that the spelling of the string-literal language linkage
be taken from the document defining that language. For example, Ada (not ADA) and Fortran
or FORTRAN, depending on the vintage. —end note]

Every implementation shall provide for linkage to the C programming language, "C", and C++,
"C++". [Example:

complex sqrt(complex); // C++ language linkage by default
extern "C" {

double sqrt(double); // C language linkage
}

8

—end example]

// [...]

�? Attributes [dcl.attr]

�? Deprecated attribute [dcl.attr.deprecated]

The attribute-token deprecated can be used to mark names and entities whose use is still
allowed, but is discouraged for some reason. [Note: In particular, deprecated is appropriate
for names and entities that are deemed obsolescent or unsafe. —end note] It shall appear at
most once in each attribute-list. An attribute-argument-clausemay be present and, if present,
it shall have the form:

(unevaluated-string-literal)

[Note: The unevaluated-string-literal in the attribute-argument-clause can be used to explain
the rationale for deprecation and/or to suggest a replacing entity. —end note]

�? Nodiscard attribute [dcl.attr.nodiscard]

The attribute-token nodiscardmay be applied to the declarator-id in a function declaration or
to the declaration of a class or enumeration. It shall appear at most once in each attribute-list.
An attribute-argument-clausemay be present and, if present, shall have the form:

(unevaluated-string-literal)

A name or entity declared without the nodiscard attribute can later be redeclared with the
attribute and vice-versa. [Note: Thus, an entity initially declared without the attribute can
be marked as nodiscard by a subsequent redeclaration. However, after an entity is marked
as nodiscard, later redeclarations do not remove the nodiscard from the entity. —end note]
Redeclarations using different forms of the attribute (with or without the attribute-argument-
clause or with different attribute-argument-clause s) are allowed.

A nodiscard type is a (possibly cv-qualified) class or enumeration type marked nodiscard in a
reachable declaration. A nodiscard call is either

• a function call expression that calls a function declared nodiscard in a reachable declara-
tion or whose return type is a nodiscard type, or

• an explicit type conversion (??, ??, ??) that constructs an object through a constructor
declared nodiscard in a reachable declaration, or that initializes an object of a nodiscard
type.

Recommanded: Appearance of a nodiscard call as a potentially-evaluated discarded-value
expression is discouraged unless explicitly cast to void. Implementations should issue a
warning in such cases. [Note: This is typically because discarding the return value of a
nodiscard call has surprising consequences. —end note] The unevaluated-string-literal in a

9

nodiscard attribute-argument-clause should be used in the message of the warning as the
rationale for why the result should not be discarded.

�? User-defined literals [over.literal]

literal-operator-id:
operator string-literal unevaluated-string identifier
operator user-defined-string-literal

The unevaluated-stringor user-defined-string-literal in a literal-operator-id shall have no encoding-
prefix and shall contain no characters other than the implicit terminating '\0'. The ud-suffix
of the user-defined-string-literal or the identifier in a literal-operator-id is called a literal suffix
identifier. Some literal suffix identifiers are reserved for future standardization; see ??. A dec-
laration whose literal-operator-id uses such a literal suffix identifier is ill-formed, no diagnostic
required.

�? Preprocessing directives [cpp]

[...]

�? Line control [cpp.line]

The string-literal of a #line directive, if present, shall be a character string literal satisfy the
semantic constraints of an unevaluated-string [lex.string.unevaluated].

The line number of the current source line is one greater than the number of new-line charac-
ters read or introduced in translation phase 1 while processing the source file to the current
token.

A preprocessingdirective of the form # line digit-sequence new-line

causes the implementation to behave as if the following sequence of source lines begins
with a source line that has a line number as specified by the digit sequence (interpreted as a
decimal integer). If the digit sequence specifies zero or a number greater than 2147483647,
the behavior is undefined.

A preprocessing directive of the form

line digit-sequence " s-char-sequenceopt " string-literal new-line

sets the presumed line number similarly and changes the presumed name of the source file
to be the contents of the character string literal.

A preprocessing directive of the form

line pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokens
after line on the directive are processed just as in normal text (each identifier currently defined

10

as a macro name is replaced by its replacement list of preprocessing tokens). If the directive
resulting after all replacements does not match one of the two previous forms, the behavior
is undefined; otherwise, the result is processed as appropriate.

�? Pragma operator [cpp.pragma.op]

The string-literal of a Pragma operator shall satisfy the semantic constraints of an unevaluated-
string [lex.string.unevaluated].

A unary operator expression of the form:

_Pragma (string-literal)

is processed as follows: The string-literal is destringized by deleting the L prefix, if present,
deleting the leading and trailing double-quotes ,replacing each escape sequence \" by a
double-quote, and replacing each escape sequence \\ by a single backslash. The resulting
sequence of characters is processed through translation phase 3 to produce preprocessing
tokens that are executed as if they were the pp-tokens in a pragma directive. The original four
preprocessing tokens in the unary operator expression are removed.

[Example:

#pragma listing on "..\listing.dir"

can also be expressed as:

_Pragma ("listing on \"..\\listing.dir\"")

The latter form is processed in the same way whether it appears literally as shown, or results
from macro replacement, as in:

#define LISTING(x) PRAGMA(listing on #x)
#define PRAGMA(x) _Pragma(#x)

LISTING(..\listing.dir)

—end example]

Acknowledgments

Thank you to Masayoshi Kanke and Peter Brett who offered valuable feedback on this paper!

References

[1] Aaron Ballman. P2246R1: Character encoding of diagnostic text. https://wg21.link/
p2246r1, 1 2021.

[2] Daniel Krügler. CWG897: _pragma and extended string-literals. https://wg21.link/cwg897,
5 2009.

11

https://wg21.link/p2246r1
https://wg21.link/p2246r1
https://wg21.link/cwg897

[3] Jens Maurer. P2314R2: Character sets and encodings. https://wg21.link/p2314r2, 5 2021.

[N4885] Thomas Köppe Working Draft, Standard for Programming Language C++
https://wg21.link/N4885

12

https://wg21.link/p2314r2
https://wg21.link/N4885

	1 Abstract
	2 Motivation
	3 Revisions
	3.1 R3
	3.2 R2

	4 Proposal
	4.1 Non printable characters and escape sequences

	5 Alternative considered
	5.1 Allowing and ignoring any prefix
	5.2 Allowing prefixes and encode all strings using that prefix

	6 asm statements
	7 Compilers survey
	7.1 _Pragma
	7.2 Attributes
	7.3 static_assert
	7.4 extern & asm
	7.5 #line

	8 Future direction
	9 Implementability
	10 Wording Challenges
	11 Previous works
	12 Wording
	13 Phases of translation
	13.1 String literals
	13.1.1 Unevaluated strings

	14 Declarations
	15 Preamble
	16 The asm declaration
	17 Linkage specifications
	18 Attributes
	18.1 Deprecated attribute
	18.2 Nodiscard attribute

	19 User-defined literals
	20 Preprocessing directives
	21 Line control
	22 Pragma operator
	23 Acknowledgments

