
Unevaluated strings literals
Document #: P2361R0
Date: 2021-06-11
Project: Programming Language C++
Audience: SG-16, EWG
Reply-to: Corentin Jabot <corentin.jabot@gmail.com>

Aaron Ballman <aaron.ballman@gmail.com>

Abstract

string-literals can appear in a context where they are not used to initialize a character array, but
are used at compile time for diagnostic messages, preprocessing, and other implementation-
defined behaviors. This paper clarifies how compilers should handle these strings.

Motivation

A string-literal can appear in _Pragma, asm, extern, static_assert, [[deprecated]] and [[nodiscard]]
attributes...

In all of these cases, the strings are exclusively used at compile time by the compiler, and are
as such not evaluated in phase 6. This means they should not be converted to the narrow
encoding or any literal encoding specified by an encoding prefix (L, u, U, u8).

Their encoding should therefore not be constrained or otherwise specified, except that these
strings can contain any Unicode characters.

Proposal

We propose than in all of these cases:

• No prefix is allowed

• The string is not converted to the execution encoding.

• universal-character-name and simple-escape-sequence (except \0) are replaced by the
corresponding Unicode codepoints, and other escape sequences are ill-formed.

This last point is important. Because the encoding the compiler will convert these strings
to is not known, and because UCNs can represent any Unicode characters, numeric-escape-
sequences have no use beyond forcing the compiler to contend with invalid code units in
diagnostic messages.

All of these changes are breaking changes. However, a survey of open source projects tend
to show that none of the restrictions added impact existing code.

1

mailto:corentin.jabot@gmail.com
mailto:aaron.ballman@gmail.com

This proposal does not specify how unevaluated string literals are presented in diagnos-
tic messages.

Alternative considered

Allowing and ignoring any prefix

This is arguably the status quo. The issue is that it is hard to teach. Users should be able to
expect for example that L”X” is always in the wide execution encoding. It could be argued that
"foo" not being in the narrow-encoding is also confusing, however, there is precedence for
that in headers names (which are already not string-literalss).

Allowing prefixes and encode all strings using that prefix

his is both implementer- and user-hostile It would force users to use any of u, u8, U on all
of their static_assert which contain non-ASCII characters as it is the only way to obtain a
portable encoding. It has the advantage of being mostly consistent (all strings except those in
headers names would be encoded using the encoding associated with their prefix) but would
break existing code using non-ASCII characters in static_assert and attributes and litter C++
code with these prefixes, which seems to be a net negative.

Compilers survey

_Pragma

In _Pragma directives, the standard specifies that the L prefix is ignored. In C, all encoding
prefixes are ignored. This divergence is highlighted in CWG897 [2]. MSVC does not support
_Pragma(L""). Only Clang supports other prefixes in _Pragma.

Out of the 90 millions lines of code of the 1300+ open source projects available on vcpkg, a
single use of that feature was found within clang’s lexer test suite, for a total of 2000 uses
of _Pragma. Similarly, the only uses of _Pragma (u8""), _Pragma (u""), _Pragma (U""), etc were
found in Clang’s test suite (both because these are valid C and because neither GCC nor Clang
are conforming, only L"" is described as valid by the C++ standard).

Attributes

Clang does not support strings with an encoding prefix in attributes, other compilers accept
them.

2

https://wg21.link/CWG897

static_assert

All compilers support strings with an encoding prefix in static assert. MSVC appears to convert
the string to the encoding associated with that prefix before displaying it, producing mojibake
if a string cannot be represented in the literal encoding. The following diagnostics are emmited
by MSVC with /execution-charset:ascii:

static_assert(false, "Your code is on ");

<source>(1): warning C4566: character represented by universal-character-name
'\u00F0' cannot be represented in the current code page (20127)
<source>(1): warning C4566: character represented by universal-character-name
'\u0178' cannot be represented in the current code page (20127)
<source>(1): warning C4566: character represented by universal-character-name
'\u201D' cannot be represented in the current code page (20127)
<source>(1): warning C4566: character represented by universal-character-name
'\u00A5' cannot be represented in the current code page (20127)
<source>(1): error C2338: ????

static_assert(false, u8"Your code is on ");
<source>(1): error C2002: invalid wide-character constant

extern & asm

No compiler support strings with an encoding prefix in extern and asm statements.

#line

GCC and Clang do not support encoding prefix in #line directives.

Future direction

This proposal does not prevent supporting constant expression in static_assert or attributes
in the future; we can imagine the following grammar:

static_assert-declaration:
static_assert (constant-expression) ;
static_assert (constant-expression , unevaluated-string-literal) ;
static_assert (constant-expression , constant-expression) ;

Those may make static_assert(true, u8"foo"); valid again as u8"foo" would be a valid con-
stant expression.

3

Implementability

This proposal requires implentations to keep around a non-encoded string for diagnostic
purposes. This has recently come up in a clang patch to support EBCDIC as the literal encoding.
To support diagnostics in this context, especially on a non-EBCDIC platform the original
sequence of characters must be retained. This proposal offers a well-specified, portable
mechanism to solve this problem.

Wording Challenges

Strings are handled in phase 5 and 6 before the program is parsed, which might force us to
have a ”reversal” of these phases.

Previous works

P2246R1 [1] removes wording specific to attributes mandating that diagnostic with characters
from the basic characters are displayed in diagnostic messages, which was not implementable.

Wording

[Editor’s note: The wording is relative to N4885 + P2314R2 [3] applied]

�? Phases of translation [lex.phases]

[Editor’s note: Modify ”[lex.phases]/p1.6” as follow]

6. Adjacent string-literal s are concatenated and a null character is appended to the result
as specified in [lex.string]. Adjacent unevaluated-string-literal s are concatenated.

�? Preprocessing tokens [lex.pptoken]

[Editor’s note: Modify ”5.4 Preprocessing tokens” as follow]

4

https://wg21.link/P2246R1
https://wg21.link/P2314R2

preprocessing-token:
header-name
import-keyword
module-keyword
export-keyword
identifier
pp-number
character-literal
user-defined-character-literal
string-literal
unevaluated string-literal
user-defined-string-literal
preprocessing-op-or-punc
each non-whitespace character that cannot be one of the above

Each preprocessing token that is converted to a token shall have the lexical form of a keyword,
an identifier, a literal, or an operator or punctuator.

A preprocessing token is the minimal lexical element of the language in translation phases 3
through 6. The categories of preprocessing token are: header names, placeholder tokens
produced by preprocessing import and module directives (import-keyword,module-keyword, and
export-keyword), identifiers, preprocessing numbers, character literals (including user-defined
character literals), string literals (including user-defined string literals and unevaluated string
literals), preprocessing operators and punctuators, and single non-whitespace characters
that do not lexically match the other preprocessing token categories. If a ' or a " character
matches the last category, the behavior is undefined. Preprocessing tokens can be separated
bywhitespace; this consists of comments, orwhitespace characters (space, horizontal tab, new-
line, vertical tab, and form-feed), or both. As described in ??, in certain circumstances during
translation phase 4, whitespace (or the absence thereof) serves as more than preprocessing
token separation. Whitespace can appear within a preprocessing token only as part of a
header name or between the quotation characters in a character literal or string literal..

�? String literals [lex.string]

[Editor’s note: Modify ”[lex.string]” as follow]

string-literal:
encoding-prefixopt " s-char-sequenceopt "
encoding-prefixopt R raw-string

unevaluated string-literal:
" s-char-sequenceopt "
R raw-string

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
basic-s-char
escape-sequence
universal-character-name

5

basic-s-char:
any member of the basic source character set except the double-quote ", back-
slash \, or new-line character

raw-string:
" d-char-sequenceopt (r-char-sequenceopt) d-char-sequenceopt "

r-char-sequence:
r-char
r-char-sequence r-char

r-char:
any member of the source character set, except a right parenthesis) followed
by

the initial d-char-sequence (which may be empty) followed by a double
quote ".

d-char-sequence:
d-char
d-char-sequence d-char

d-char:
any member of the basic source character set except:

space, the left parenthesis (, the right parenthesis), the backslash \, and
the control characters

representing horizontal tab, vertical tab, form feed, and newline.

[...]

In translation phase 6, adjacent string-literals are concatenated. If both string-literals have
the same encoding-prefix, the resulting concatenated string-literal has that encoding-prefix. If
one string-literal has no encoding-prefix, it is treated as a string-literal of the same encoding-
prefix as the other operand. If a UTF-8 string literal token is adjacent to a wide string literal
token, the program is ill-formed. Any other concatenations are conditionally-supported with
implementation-defined behavior. Adjacent unevaluated string-literals are concatenated.

[Note: This concatenation is an interpretation, not a conversion. Because the interpretation
happens in translation phase 6 (after the string literal contents have been encoded in the
string-literal’s associated character encoding), a string-literal’s initial rawness has no effect on
the interpretation or well-formedness of the concatenation. —end note]

[...]

Evaluating a string-literal results in a string literal object with static storage duration. Whether
all string-literal s are distinct (that is, are stored in nonoverlapping objects) and whether
successive evaluations of a string-literal yield the same or a different object is unspecified.
[Note: The effect of attempting to modify a string-literal is undefined. —end note]

String literal objects are initialized with the sequence of code unit values corresponding to the
string-literal’s sequence of s-char s (for a non-raw string literal) and r-char s (for a raw string
literal) in order as follows:

• The sequence of characters denoted by each contiguous sequence of basic-s-char s,
r-char s, simple-escape-sequence s, and universal-character-name s is encoded to a code

6

unit sequence using the string-literal’s associated character encoding. If a character
lacks representation in the associated character encoding, then:

– If the string-literal’s encoding-prefix is absent or L, then the string-literal is conditionally-
supported and an implementation-defined code unit sequence is encoded.

– Otherwise, the string-literal is ill-formed.

When encoding a stateful character encoding, implementations should encode the
first such sequence beginning with the initial encoding state and encode subsequent
sequences beginning with the final encoding state of the prior sequence. [Note: The
encoded code unit sequence can differ from the sequence of code units that would be
obtained by encoding each character independently. —end note]

• Each numeric-escape-sequence that specifies an integer value v contributes a single code
unit with a value as follows:

– If v does not exceed the range of representable values of the string-literal’s array
element type, then the value is v.

– Otherwise, if the string-literal’s encoding-prefix is absent or L, and v does not exceed
the range of representable values of the corresponding unsigned type for the
underlying type of the string-literal’s array element type, then the value is the unique
value of the string-literal’s array element type T that is congruent to v modulo 2N ,
where N is the width of T.

– Otherwise, the string-literal is ill-formed.

When encoding a stateful character encoding, these sequences should have no effect
on encoding state.

• Each conditional-escape-sequence contributes an implementation-defined code unit se-
quence. When encoding a stateful character encoding, it is implementation-defined
what effect these sequences have on encoding state.

[Editor’s note: Add after ”[lex.string]/p10”]

Each universal-character-name and each simple-escape-sequence in an unevaluated-string-literal
is replaced by the member of the translation set it denotes. An unevaluated string-literal which
contains the null character, a numeric-escape-sequence or a conditional-escape-sequence is
ill-formed.

An unevaluated-string-literal is never evaluated and its interpretation depends on the context
in which they appear.

[Editor’s note: ”translation set” is defined in P2314R2 [3] in [lex.phases]]

7

https://wg21.link/P2314R2

�? Declarations [dcl.dcl]

�? Preamble [dcl.pre]

simple-declaration:
decl-specifier-seq init-declarator-listopt ;
attribute-specifier-seq decl-specifier-seq init-declarator-list ;
attribute-specifier-seqopt decl-specifier-seq ref-qualifieropt [identifier-list] initializer
;

static_assert-declaration:
static_assert (constant-expression) ;
static_assert (constant-expression , unevaluated-string-literal) ;

[...]

In a static_assert-declaration, the constant-expression shall be a contextually converted con-
stant expression of type bool. If the value of the expression when so converted is true, the
declaration has no effect. Otherwise, the program is ill-formed, and the resulting diagnostic
message shall include the text of the unevaluated-string-literal, if one is supplied, except that
characters not in the basic source character set are not required to appear in the diagnostic
message. [Example:

static_assert(sizeof(int) == sizeof(void*), "wrong pointer size");

—end example]

�? The asm declaration [dcl.asm]

An asm declaration has the form

asm-declaration:
attribute-specifier-seqopt asm (unevaluated-string-literal) ;

The asm declaration is conditionally-supported; its meaning is implementation-defined. The
optional attribute-specifier-seq in an asm-declaration appertains to the asm declaration. [Note:
Typically it is used to pass information through the implementation to an assembler. —end
note]

�? Linkage specifications [dcl.link]

All functions and variables whose names have external linkage and all function types have
a language linkage. [Note: Some of the properties associated with an entity with language
linkage are specific to each implementation and are not described here. For example, a
particular language linkage might be associated with a particular form of representing names
of objects and functions with external linkage, or with a particular calling convention, etc.
—end note] The default language linkage of all function types, functions, and variables is C++

8

language linkage. Two function types with different language linkages are distinct types even
if they are otherwise identical.

Linkage between C++ and non-C++ code fragments can be achieved using a linkage-specification:

linkage-specification:
extern unevaluated-string-literal { declaration-seqopt }
extern unevaluated-string-literal declaration

The unevaluated-string-literal indicates the required language linkage. This document specifies
the semantics for the unevaluated-string-literals "C" and "C++". Use of a unevaluated-string-
literal other than "C" or "C++" is conditionally-supported, with implementation-defined seman-
tics. [Note: Therefore, a linkage-specification with a unevaluated-string-literal that is unknown
to the implementation requires a diagnostic. —end note] [Note: It is recommended that the
spelling of the unevaluated-string-literal be taken from the document defining that language.
For example, Ada (not ADA) and Fortran or FORTRAN, depending on the vintage. —end note]

Every implementation shall provide for linkage to the C programming language, "C", and C++,
"C++". [Example:

complex sqrt(complex); // C++ language linkage by default
extern "C" {

double sqrt(double); // C language linkage
}

—end example]

// [...]

�? Attributes [dcl.attr]

�? Deprecated attribute [dcl.attr.deprecated]

The attribute-token deprecated can be used to mark names and entities whose use is still
allowed, but is discouraged for some reason. [Note: In particular, deprecated is appropriate
for names and entities that are deemed obsolescent or unsafe. —end note] It shall appear at
most once in each attribute-list. An attribute-argument-clausemay be present and, if present,
it shall have the form:

(unevaluated-string-literal)

[Note: The unevaluated-string-literal in the attribute-argument-clause can be used to explain
the rationale for deprecation and/or to suggest a replacing entity. —end note]

�? Nodiscard attribute [dcl.attr.nodiscard]

The attribute-token nodiscard may be applied to the declarator-id in a function declaration or
to the declaration of a class or enumeration. It shall appear at most once in each attribute-list.
An attribute-argument-clausemay be present and, if present, shall have the form:

9

(unevaluated-string-literal)

A name or entity declared without the nodiscard attribute can later be redeclared with the
attribute and vice-versa. [Note: Thus, an entity initially declared without the attribute can
be marked as nodiscard by a subsequent redeclaration. However, after an entity is marked
as nodiscard, later redeclarations do not remove the nodiscard from the entity. —end note]
Redeclarations using different forms of the attribute (with or without the attribute-argument-
clause or with different attribute-argument-clause s) are allowed.

A nodiscard type is a (possibly cv-qualified) class or enumeration type marked nodiscard in a
reachable declaration. A nodiscard call is either

• a function call expression that calls a function declared nodiscard in a reachable declara-
tion or whose return type is a nodiscard type, or

• an explicit type conversion (??, ??, ??) that constructs an object through a constructor
declared nodiscard in a reachable declaration, or that initializes an object of a nodiscard
type.

Recommanded: Appearance of a nodiscard call as a potentially-evaluated discarded-value
expression is discouraged unless explicitly cast to void. Implementations should issue a
warning in such cases. [Note: This is typically because discarding the return value of a
nodiscard call has surprising consequences. —end note] The unevaluated-string-literal in
a nodiscard attribute-argument-clause should be used in the message of the warning as the
rationale for why the result should not be discarded.

�? Preprocessing directives [cpp]

�? Preamble [cpp.pre]

preprocessing-file:
groupopt
module-file

module-file:
pp-global-module-fragmentopt pp-module groupopt pp-private-module-fragmentopt

pp-global-module-fragment:
module ; new-line groupopt

pp-private-module-fragment:
module : private ; new-line groupopt

group:
group-part
group group-part

group-part:
control-line
if-section
text-line
conditionally-supported-directive

10

control-line:
include pp-tokens new-line
pp-import
define identifier replacement-list new-line
define identifier lparen identifier-listopt) replacement-list new-line
define identifier lparen ...) replacement-list new-line
define identifier lparen identifier-list , ...) replacement-list new-line
undef identifier new-line
line pp-tokens new-line
error pp-tokensopt new-line
pragma pp-tokensopt new-line
new-line

if-section:
if-group elif-groupsopt else-groupopt endif-line

if-group:
if constant-expression new-line groupopt
ifdef identifier new-line groupopt
ifndef identifier new-line groupopt

elif-groups:
elif-group
elif-groups elif-group

elif-group:
elif constant-expression new-line groupopt

else-group:
else new-line groupopt

endif-line:
endif new-line

text-line:
pp-tokensopt new-line

conditionally-supported-directive:
pp-tokens new-line

lparen:
a (character not immediately preceded by whitespace

identifier-list:
identifier
identifier-list , identifier

replacement-list:
pp-tokensopt

pp-tokens:
preprocessing-token
pp-tokens preprocessing-token

new-line:
the new-line character

A preprocessing directive consists of a sequence of preprocessing tokens that satisfies the fol-
lowing constraints: At the start of translation phase 4, the first token in the sequence, referred

11

to as a directive-introducing token, begins with the first character in the source file (optionally
after whitespace containing no new-line characters) or follows whitespace containing at least
one new-line character, and is

• a # preprocessing token, or

• an import preprocessing token immediately followed on the same logical line by a header-
name, <, identifier, unevaluated-string-literal, or : preprocessing token, or

• a module preprocessing token immediately followed on the same logical line by an
identifier, :, or ; preprocessing token, or

• an export preprocessing token immediately followed on the same logical line by one of
the two preceding forms.

The last token in the sequence is the first token within the sequence that is immediately
followed by whitespace containing a new-line character. 1hus, preprocessing directives are
commonly called “lines”. These “lines” have no other syntactic significance, as all whitespace is
equivalent except in certain situations during preprocessing (see the # character string literal
creation operator in ??, for example). [Note: A new-line character ends the preprocessing
directive even if it occurs within what would otherwise be an invocation of a function-like
macro. —end note]

[Example:

// preprocessing directive
module ; // preprocessing directive
export module leftpad; // preprocessing directive
import <string>; // preprocessing directive
export import "squee"; // preprocessing directive
import rightpad; // preprocessing directive
import :part; // preprocessing directive

module // not a preprocessing directive
; // not a preprocessing directive

export // not a preprocessing directive
import // not a preprocessing directive
foo; // not a preprocessing directive

export // not a preprocessing directive
import foo; // preprocessing directive (ill-formed at phase 7)

import :: // not a preprocessing directive
import -> // not a preprocessing directive

—end example]

A sequence of preprocessing tokens is only a text-line if it does not begin with a directive-
introducing token. A sequence of preprocessing tokens is only a conditionally-supported-

1T

12

directive if it does not begin with any of the directive names appearing after a # in the syntax.
A conditionally-supported-directive is conditionally-supported with implementation-defined
semantics.

At the start of phase 4 of translation, the group of a pp-global-module-fragment shall contain
neither a text-line nor a pp-import.

When in a group that is skipped, the directive syntax is relaxed to allow any sequence of pre-
processing tokens to occur between the directive name and the following new-line character.

The only whitespace characters that shall appear between preprocessing tokens within a
preprocessing directive (from just after the directive-introducing token through just before
the terminating new-line character) are space and horizontal-tab (including spaces that have
replaced comments or possibly other whitespace characters in translation phase 3).

The implementation can process and skip sections of source files conditionally, include other
source files, import macros from header units, and replace macros. These capabilities are
called preprocessing, because conceptually they occur before translation of the resulting
translation unit.

The preprocessing tokens within a preprocessing directive are not subject to macro expansion
unless otherwise stated.

[Example: In:

#define EMPTY
EMPTY # include <file.h>

the sequence of preprocessing tokens on the second line is not a preprocessing directive,
because it does not begin with a # at the start of translation phase 4, even though it will do so
after the macro EMPTY has been replaced. —end example]

�? Conditional inclusion [cpp.cond]

defined-macro-expression:
defined identifier
defined (identifier)

h-preprocessing-token:
any preprocessing-token other than >

h-pp-tokens:
h-preprocessing-token
h-pp-tokens h-preprocessing-token

header-name-tokens:
unevaluated-string-literal
< h-pp-tokens >

has-include-expression:
__has_include (header-name)
__has_include (header-name-tokens)

13

has-attribute-expression:
__has_cpp_attribute (pp-tokens)

The expression that controls conditional inclusion shall be an integral constant expression
except that identifiers (including those lexically identical to keywords) are interpreted as
described below 2ecause the controlling constant expression is evaluated during translation
phase 4, all identifiers either are or are not macro names — there simply are no keywords,
enumeration constants, etc. and it may contain zero or more defined-macro-expressions
and/or has-include-expressions and/or has-attribute-expressions as unary operator expressions.

A defined-macro-expression evaluates to 1 if the identifier is currently defined as a macro name
(that is, if it is predefined or if it has one or more active macro definitions, for example because
it has been the subject of a #define preprocessing directive without an intervening #undef
directive with the same subject identifier), 0 if it is not.

The second form of has-include-expression is considered only if the first form does not match,
in which case the preprocessing tokens are processed just as in normal text.

�? Line control [cpp.line]

The string-literal of a #line directive, if present, shall be a character string literal. The line
number of the current source line is one greater than the number of new-line characters read
or introduced in translation phase 1 while processing the source file to the current token.

A preprocessingdirective of the form # line digit-sequence new-line

causes the implementation to behave as if the following sequence of source lines begins
with a source line that has a line number as specified by the digit sequence (interpreted as a
decimal integer). If the digit sequence specifies zero or a number greater than 2147483647,
the behavior is undefined.

A preprocessing directive of the form

line digit-sequence " s-char-sequenceopt " unevaluated-string-literal new-line

sets the presumed line number similarly and changes the presumed name of the source file
to be the contents of the character string literal.

A preprocessing directive of the form

line pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokens
after line on the directive are processed just as in normal text (each identifier currently defined
as a macro name is replaced by its replacement list of preprocessing tokens). If the directive
resulting after all replacements does not match one of the two previous forms, the behavior
is undefined; otherwise, the result is processed as appropriate.

2B

14

�? Pragma operator [cpp.pragma.op]

A unary operator expression of the form:

_Pragma (unevaluated-string-literal)

is processed as follows: The unevaluated-string-literal is destringized by deleting the L prefix, if
present, deleting the leading and trailing double-quotes ,replacing each escape sequence \"
by a double-quote, and replacing each escape sequence \\ by a single backslash. The result-
ing sequence of characters is processed through translation phase 3 to produce preprocessing
tokens that are executed as if they were the pp-tokens in a pragma directive. The original four
preprocessing tokens in the unary operator expression are removed.

[Example:

#pragma listing on "..\listing.dir"

can also be expressed as:

_Pragma ("listing on \"..\\listing.dir\"")

The latter form is processed in the same way whether it appears literally as shown, or results
from macro replacement, as in:

#define LISTING(x) PRAGMA(listing on #x)
#define PRAGMA(x) _Pragma(#x)

LISTING(..\listing.dir)

—end example]

Acknowledgments

Thank you to Peter Brett who offered valuable feedback on this paper!

References

References

[1] Aaron Ballman. P2246R1: Character encoding of diagnostic text. https://wg21.link/
p2246r1, 1 2021.

[2] Daniel Krügler. CWG897: _pragma and extended string-literals. https://wg21.link/cwg897,
5 2009.

[3] Jens Maurer. P2314R2: Character sets and encodings. https://wg21.link/p2314r2, 5 2021.

[N4885] Thomas Köppe Working Draft, Standard for Programming Language C++
https://wg21.link/N4885

15

https://wg21.link/p2246r1
https://wg21.link/p2246r1
https://wg21.link/cwg897
https://wg21.link/p2314r2
https://wg21.link/N4885

	1 Abstract
	2 Motivation
	3 Proposal
	4 Alternative considered
	4.1 Allowing and ignoring any prefix
	4.2 Allowing prefixes and encode all strings using that prefix

	5 Compilers survey
	5.1 _Pragma
	5.2 Attributes
	5.3 static_assert
	5.4 extern & asm
	5.5 #line

	6 Future direction
	7 Implementability
	8 Wording Challenges
	9 Previous works
	10 Wording
	11 Phases of translation
	12 Preprocessing tokens
	12.1 String literals

	13 Declarations
	14 Preamble
	15 The asm declaration
	16 Linkage specifications
	17 Attributes
	17.1 Deprecated attribute
	17.2 Nodiscard attribute

	18 Preprocessing directives
	19 Preamble
	20 Conditional inclusion
	21 Line control
	22 Pragma operator
	23 Acknowledgments
	24 References

