
constexpr class

Document Number: P2350 R1
Date: 20210715
Project: ISO JTC1/SC22/WG21: Programming Language C++
Replyto: Andreas Fertig ⟨ isocpp@andreasfertig.info ⟩
Audience: EWG

Contents

1 Introduction . 1

2 Implementation . 2

3 The design . 2
3.1 What about outofline definitions? . 2
3.2 What about a member function that already carries constexpr? 2
3.3 Do we need constexpr(false)? . 2
3.4 What about friend? . 3
3.5 What about static member functions? . 3
3.6 What about inheritance? . 3
3.7 What about a forward declaration? . 3
3.8 Is adding or removing constexpr from the classhead a breaking change? 4
3.9 Can this be solved with metaclasses? . 4
3.10 Syntax choices . 4
3.11 Order of the specifiers . 5

4 Other parts of the language . 5
4.1 What about consteval . 5
4.2 What about noexcept . 5
4.3 What about const . 6
4.4 What about override . 6
4.5 What about free functions? . 6

5 Proposed wording . 7

6 Acknowledgements . 8

7 Revision History . 9

1

2 P2350 R1: constexpr class

Bibliography . 9

1 Introduction

The evolution of constexpr since C++11 allows us to makemore andmore parts constexpr. For exam
ple, [P0980R1] makes std::string constexpr. [P1004R2] does the same for std::vector. Microsoft’s
implementation [MSVCVector] shows that all member functions in std::vector are constexpr now.
When I wrote the test implementation for [P2273R0] (Making unique_ptr constexpr) I more or less
simply added constexpr to all member functions of unique_ptr.

[P1235R0] proposed tomake all functions implicitly constexpr. Looking at the examples of vector
and [P1235R0] there seems to be a desire to reduce declarators.

I propose to allow constexpr in the classhead, acting much like final, declaring that all member
functions, including special member functions, in this class are implicitly constexpr:
Currently

1 class SomeType {
2 public:
3 constexpr bool empty() const { /* */ }
4 constexpr auto size() const { /* */ }
5 constexpr void clear() { /* */ }
6 // ...
7 };

With proposal

1 class SomeType constexpr {
2 public:
3 bool empty() const { /* */ }
4 auto size() const { /* */ }
5 void clear() { /* */ }
6 // ...
7 };

2 Implementation

This proposal was implemented in a fork of LLVM/Clang from the author [GHUPImpl]. The change
was small and easy to apply.

3 The design

The goal is to use the existing model of final and apply it to constexpr. This reduces the noise
resulting from entirely constexprclasses as we have it now.

3.1 What about outofline definitions?

This proposal does not change how outofline definitions of constexpr member functions work.
They continue to work the same way as if someone puts constexpr directly at the member function.
The outofline definition will not compile.

3.2 What about a member function that already carries constexpr?

Well, doing things twice to be sure never hurts. Themember functionwill be constexpr in a constexpr
class regardless of whether it is declared constexpr again at member function level.

P2350 R1: constexpr class 3

3.3 Do we need constexpr(false)?

I don’t know. Feel free to bring usecases.
My current answer is: no. If we see a constexpr class not only as a noise reduction in reading

and writing but also as a promise ”you can use this entire class in a constexprcontext”, disabling
the constexprness of certain member function makes this promise weak.

3.4 What about friend?

A friend declaration is different. Such a declaration is only in the namespace of a class but isn’t
a member of that class. On the reflector Ville Voutilainen provided a good example that even in a
constexpr class we might have a friend declaration for an ostream operator [ml16332], which
cannot be constexpr.

Therefore, this paper proposes that friend declaration are uneffected of a constexpr class.
They remain as they are and need to be marked constexpr even in a constexpr class.

3.5 What about static member functions?

By this proposal static member functions get implicitly marked constexpr in a constexpr class.

3.6 What about inheritance?

Consider the following examples:

1 struct BaseCxpr constexpr {
2 int foo() { return 42; } // this member function is constexpr
3 };
4
5 struct DerivedA : BaseCxpr {
6 int bar() { return 21; } // this member function is _not_ constexpr
7 };
8
9
10 struct Base {
11 int foo() { return 42; } // this member function is _not_ constexpr
12 };
13
14 struct DerivedB constexpr : Base {
15 int bar() { return 21; } // this member function is constexpr
16 };

Listing 3.1: constexpr class and inheritance

In the case of DerivedA, where a class derives from a constexpr class, only the member functions
of the constexpr base class are constexpr. There is no constexpr inheritance. It seems to constrain
the design space of classes too much if only constexpr classes can derive from constexpr classes.

In the case of DerivedB, where the derived class is marked as constexpr, but the base class isn’t,
this proposal makes all member functions of the derived class constexpr while those of the base

4 P2350 R1: constexpr class

class remain as they are. constexpr for member functions explicitly marked constexpr in the base
class and nonconstexpr for all the others.

3.7 What about a forward declaration?

Consider this:

1 struct Forward constexpr;

Listing 3.2: constexpr class and forward declaration

Analogous to final, the above is only a forward declaration that cannot have a specifier. Hence,
the code above is illformed by this proposal.

The same goes for class templates or specializations of class templates. Only the specialization
marked as constexpr does have all member functions implicitly constexpr. All other don’t.

3.8 Is adding or removing constexpr from the classhead a breaking change?

Say we have a class before this proposal, and after this proposal, the class author adds constexpr
in the classhead, is this a breaking change? The short answer is no. The longer is it depends. By
adding constexpr in the classhead allmember functions of a class become constexpr. If this class had
nonconstexpr member functions before this change, then users can observe a behavioral change.
However, this change is equal to adding constexpr to all the member functions of a class manually,
what we have done in [P1004R2] to std::vector. This was not considered a breaking change, nor an
ABI change.

3.9 Can this be solved with metaclasses?

Another question that came up is, can this feature be implemented with metaclasses. One idea is
to provide such a facility with the STL. [MCSrc] lists a possible implementation that was shown in a
Twitter discussion [MCSrcTweet].

While a constexpr class is implementable with the current state of metaclasses, it doesn’t seem
like the right tool for the job. A constexpr class is something simple and generic. There is no
need to let the compiler generate something for us. The combination of such a metaclasses library
part with other metaclasses elements, like promising shape example [P0707R4], is unclear.

3.10 Syntax choices

We have a couple of different syntax options:

1 class D constexpr : B {}; // A
2 class constexpr D : B {}; // B
3 class D : B constexpr {}; // C
4 constexpr class D : B {}; // D

A seems natural. final would be right of constexpr: constexpr final.

P2350 R1: constexpr class 5

B seems a bit confusing because its before the class name. The question is does it go before or after
attributes.

C seems very confusing. It creates the impression that constexpr applies to the base class.

D is ambiguous. We already have constexpr class D{} d.

This paper proposes syntax A.

3.11 Order of the specifiers

This paper proposes to make final the rightmost specifier and fill in constexpr to the left. The rea
sons are that with just constexpr even with a potential consteval the alternating freedom seems
unnecessary. Teaching will be more consistent. Second, it looks as it makes the implementation
easier. Currently, Clang does a scan after the class name for either a colon or an opening curly braces
and checks whether the characters found are the final specifier. With the flexibility of placing the
two specifiers both ways, this parsing gets more complex.

4 Other parts of the language

The ability to list other specifiers like noexcept is something that comes up with this proposal.

4.1 What about consteval

For consistency reasons, consteval should be allowed like constexpr.
If consteval is allowed as well, there are more questions to answer. It seems to make sense to

allow only one of both in the classhead. Now assume a class is marked constexpr:

1 class SomeType constexpr {
2 public:
3 bool empty() const { /* */ }
4 // ...
5 };

Do we like to allow that a member function can be marked consteval and those overriding
constexpr:

1 class SomeType constexpr {
2 public:
3 bool empty() const { /* */ }
4 // ...
5 consteval bool whatheverFun() { /* */ }
6 };

The same goes the other way around. Assume we have a consteval class, should it be allowed
that a member function can be down-grade to constexpr?

6 P2350 R1: constexpr class

4.2 What about noexcept

noexcept acts differently than constexpr or final. Should I, as a developer, do something that is
not allowed in, for example, a constexpr context the compiler gives me an error. Should I invoke
a throwing function in a noexcept member function, I end up with a runtime error. It seems less
desirable to me to create implicit noexcept member functions.

Another angle here are outofline definitions. If a full noexceptclass adds the implicit noexcept
to all inclass definitions, what about outofline definitions? Should the also be implicitly noexcept?
Should such outofline definitions need to be attributed with noexcept?

On the reflector, Giuseppe D’Angelo mentioned QT’s Point and std::complex as examples for
noexcept data structures. A quick check revealed that both data structures seem not to throw ex
ceptions, but even std::complex is not marked noexcept in the standard. The assumed reason for
them not have been marked noexcept in C++11 is that adding or removing noexcept is an observable
change. If we have two functions where one is marked noexcept, and the other isn’t, the typeid of
them is different:

1 #include <cassert>
2 #include <typeinfo>
3
4 void f1();
5 void f2() noexcept;
6
7 int main() {
8 assert(typeid(f1) == typeid(f2));
9 }

Listing 4.1: Comparison of the typeid of two functions with and without noexcept.

This paper does not propose to add noexcept as a specifier in the classhead.

4.3 What about const

Another thing that could be imaginable is to have const in the classhead, declaring all member
functions in a class implicitly const. This proposal does not propose this. If there is a desire for it, a
dedicated proposal seems best.

In general const is different because we can have outofline definitions which are explicitly
marked const to distinguish them from the nonconst overload. A constonly class would have
only const member functions, making this issue simpler, but regarding teachability and readability,
dropping the const from these functions does create a new kind that seems not desirable.

This paper does not propose to add const as a specifier in the classhead.

4.4 What about override

An override class where all member functions override those in a base class would at least solve the
situation with an unwanted nonvirtual destructor in the base class.

This paper does not propose to add override as a specifier in the classhead.

P2350 R1: constexpr class 7

4.5 What about free functions?

Free functions are an interesting question. While with this proposal, the noise from constexpr’fying
entire classes is reduced, we also have a lot of cases where many free functions are constexpr. One
example is [P1645R1], which made more algorithms constexpr.

One approach here can be a constexpr namespace like below.

1 namespace constexpr {
2 bool Fun() { /* */ } // this function is constexpr
3 bool Run() { /* */ } // this function is constexpr
4 }

This paper does not propose a constexpr namespace. If something like this is desirable, the author
is open to bring another paper dedicated to such a feature.

5 Proposed wording

This wording is base on the working draft [N4885].

The wording does not include changes to STL containers. If this is desired, the author believes that
it requires a new paper targeting LEWG.

Change in [dcl.constexpr] 9.2.5:
1 The constexpr specifier shall be applied only to the definition of a variable or variable template or ,

the declaration of a function or function template , or the definition of a class or class template. The
consteval specifier shall be applied only to the declaration of a function or function template. ...

2 A constexpr or consteval specifier used in the declaration of a function declares that function to be
a constexpr function. Further, the constexpr specifier used as a classpropspecifier in a class definition
(11.1) declares all direct member functions of that class to be constexpr functions. A function or
constructor declared with the consteval specifier is called an immediate function. A destructor, an
allocation function, or a deallocation function shall not be declared with the consteval specifier.

Change in [class.pre] 11.1:

class-head:
 class-key attribute-specifier-seqopt class-head-name class-prop-specifieropt class-virt-specifieropt base-clauseopt
 class-key attribute-specifier-seqopt base-clauseopt

class-head-name:
 nested-name-specifieropt class-name

class-prop-specifier:
 constexpr

8 P2350 R1: constexpr class

class-virt-specifier:
 final

Add after p5 in [class.pre] 11.1:

6 If a class is marked with the class-virt-specifier final and it appears as a class-or-decltype in a base-clause
(class.derived), the program is illformed. Whenever a class-key is followed by a class-head-name, the
identifier final, and a colon or left brace, final is interpreted as a class-virt-specifier. [Example:

struct A;
struct A final {}; // OK: definition of struct A,

// not value-initialization of variable final

struct X {
struct C { constexpr operator int() { return 5; } };
struct B final : C{}; // OK: definition of nested class B,

// not declaration of a bit-field member final
};

– end example]
7 [Note: The classpropspecifier constexpr means that all direct member functions of that class are

declared constexpr (9.2.5). – end note]

Add after p18 in [temp.inst] 13.9.1:

18 ...
[Example: The class S1<T>::Inner1 is illformed, no diagnostic required, because it has no valid
specializations. S2 is illformed, no diagnostic required, since no substitution into the constraints of
its Inner2 template would result in a valid expression. – end example]

19 If a class template is declared with the constexpr specifier any implicit instantiation is constexpr
as well.

Modify [tab:cpp.predefined.ft]

__cpp_constexpr 201907L202002L

6 Acknowledgements

Thanks to Ville Voutilainen, Barry Revzin, Matthew Woehlke, Giuseppe D’Angelo, Nevin Liber, Balog
Pal, and Joshua Berne for their feedback on the reflector.

P2350 R1: constexpr class 9

Thanks to Jens Maurer for spontaneously jumping on a wording review of this paper.

7 Revision History

Version Date Changes
0 Initial draft
1 • Added section about specifier order.

• Updated wording.

Bibliography

[P0980R1] Louis Dionne: ”Making std::string constexpr”, P0980R1, 20190719.
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2019/p0980r1.pdf

[P1004R2] Louis Dionne: ”Making std::vector constexpr”, P1004R2, 20190719.
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2019/p1004r2.pdf

[P1645R1] Ben Deane: ”constexpr for <numeric> algorithms”, P1645R1, 20190514.
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2019/p1645r1.html

[P2273R0] Andreas Fertig: ”Making std::unique_ptr constexpr”, P2273R0, 20201127.
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2020/p2273r0.pdf

[P1235R0] Bryce Adelstein Lelbach, Hana Dusíková: ”Implicit constexpr”, P1235R0, 2018.
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2018/p1235r0.pdf

[P0707R4] Herb Sutter: ”Metaclassfunctions: Generative C++”, P0707R4, 2019.
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2019/p0707r4.pdf

[N4885] Thomas Köppe: ”Working Draft, Standard for Programming Language C++”, N4885, 20210317.
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2021/n4885.pdf

[MSVCVector] MSVC STL: ”P0980R1 constexpr std::string (#1502)”.
https://github.com/microsoft/STL/blob/62137922ab168f8e23ec1a95c946821e24bde230/stl/inc/vector

[GHUPImpl] Andreas Fertig: ”LLVM/Clang constexpr class implementation on GitHub”.
https://github.com/andreasfertig/llvmproject/tree/P2350

[ml16332] Ville Voutilainen: ”on constexpr class EWG mailing list”.
https://lists.isocpp.org/ext/2021/04/16332.php

[MCSrc] JeanMichaël Celerier: ”constexpr class with metaclasses”.
https://cppx.godbolt.org/z/oGP5MYcja

[MCSrcTweet] JeanMichaël Celerier: ”constexpr class with metaclasses”.
https://twitter.com/jcelerie/status/1380271683408396288

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0980r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1004r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1645r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2273r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1235r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0707r4.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/n4885.pdf
https://github.com/microsoft/STL/blob/62137922ab168f8e23ec1a95c946821e24bde230/stl/inc/vector
https://github.com/andreasfertig/llvm-project/tree/P2350
https://lists.isocpp.org/ext/2021/04/16332.php
https://cppx.godbolt.org/z/oGP5MYcja
https://twitter.com/jcelerie/status/1380271683408396288

	1 Introduction
	2 Implementation
	3 The design
	3.1 What about out-of-line definitions?
	3.2 What about a member function that already carries [columns=fullflexible,breaklines=true,prebreak=,postbreak=,basicstyle=maincolor]constexpr?
	3.3 Do we need [columns=fullflexible,breaklines=true,prebreak=,postbreak=,basicstyle=maincolor]constexpr(false)?
	3.4 What about [columns=fullflexible,breaklines=true,prebreak=,postbreak=,basicstyle=maincolor]friend?
	3.5 What about [columns=fullflexible,breaklines=true,prebreak=,postbreak=,basicstyle=maincolor]static member functions?
	3.6 What about inheritance?
	3.7 What about a forward declaration?
	3.8 Is adding or removing [columns=fullflexible,breaklines=true,prebreak=,postbreak=,basicstyle=maincolor]constexpr from the class-head a breaking change?
	3.9 Can this be solved with metaclasses?
	3.10 Syntax choices
	3.11 Order of the specifiers

	4 Other parts of the language
	4.1 What about [columns=fullflexible,breaklines=true,prebreak=,postbreak=,basicstyle=maincolor]consteval
	4.2 What about [columns=fullflexible,breaklines=true,prebreak=,postbreak=,basicstyle=maincolor]noexcept
	4.3 What about [columns=fullflexible,breaklines=true,prebreak=,postbreak=,basicstyle=maincolor]const
	4.4 What about [columns=fullflexible,breaklines=true,prebreak=,postbreak=,basicstyle=maincolor]override
	4.5 What about free functions?

	5 Proposed wording
	6 Acknowledgements
	7 Revision History
	Bibliography

