
Relaxing Requirements of Moved-From Objects

http://localhost:3000/2021/03/31/relaxing-requirements-of-moved-from-objects.html[4/14/21, 11:10:27 PM]

Relaxing Requirements of Moved-From
Objects
Mar 31, 2021

Document Number: P2345R0

Date: 2021-04-14

Reply-to: Sean Parent, sean.parent@stlab.cc

Audience: LWG & LEWG

Table of Contents

Document Conventions
Motivation and Scope

Requirements of a Moved-From Object
Non-Requirements

Impact on the Standard
Technical Specifcations

Option 1
Option 2

Future Implications
Weaker Guarantees for Future Components
Class invariants

References
Acknowledgements

Introduction
The C++ Standard Library requirements are overly restrictive regarding the state of a moved-from object. The strong
requirements impose an unnecessary burden on implementers and imposes a performance impact of user-defned
operations.

The issue was recognized in Geoffrey Romer’s paper, P2027R0. The approach outlined here differs in the following
ways:

The requirements are (slightly) stronger to support swap(a, a)

Sean Parent About
Sean Parent
Papers and Presentations

http://localhost:3000/2021/03/31/sean.parent@stlab.cc
http://localhost:3000/
http://localhost:3000/
http://localhost:3000/about/
http://localhost:3000/
http://localhost:3000/papers-and-presentations/

Relaxing Requirements of Moved-From Objects

http://localhost:3000/2021/03/31/relaxing-requirements-of-moved-from-objects.html[4/14/21, 11:10:27 PM]

It avoids introducing a new object state, partially formed, (see Future Implications)

This paper details the issue and presents some suggested wording to address it. Depending on the
wording chosen, it may be possible to address the issue with a defect report retroactively.

Document Conventions

This is the proposed wording for the standard. There may be more than one proposed variant for the same section.

This is a quote from an existing document.

This is a comment or work in progress.

This document discusses requirements in multiple different contexts. The following terms are used when the meaning
is otherwise ambiguous. The Standard requirements refer to the current, C++20, documented requirements.
Implementation requirements refers to the actual requirements necessary to implement the library components. This
may be weaker than the stated requirements. Finally there are the proposed requirements , this is the proposed wording
to bring the Standard requirements more inline with the implementation requirements.

Motivation and Scope

Given an object, rv , which has been moved from, the C++201 Standard specifes the required postconditions of a
moved-from object:

rv ’s state is unspecifed
[Note: rv must still meet the requirements of the library component that is using it. The operations listed in those
requirements must work as specifed whether rv has been moved from or not. — end note] — Table 28, p. 488
C++20 Standard.

The Standard requirement applies to both Cpp17MoveConstructible and Cpp17MoveAssignable. The note is not
normative but does clarify that the requirements on a moved-from object are not relaxed.

In general, unless move is specifed to make a copy, the Standard requirement is not achievable. For example, the
sorting algorithms require comp(*i, *j) induce a strict weak ordering. Therefore, a moved-from object must be
ordered with respect to every other value in the sequence with an arbitrary user-supplied comparison function. Only a
value within the initial sequence could satisfy that requirement.

No implementation of the Standard Library will ever invoke a comparison, user-defned or otherwise, on an object
that a library component itself moved-from during the course of the same operation. Such a comparison would not
have meaning.

http://eel.is/c++draft/utility.arg.requirements
http://eel.is/c++draft/utility.arg.requirements
http://eel.is/c++draft/utility.arg.requirements#tab:cpp17.moveconstructible
http://eel.is/c++draft/utility.arg.requirements#tab:cpp17.moveassignable
https://www.iso.org/sites/directives/current/part2/index.xhtml#_idTextAnchor321
https://www.iso.org/sites/directives/current/part2/index.xhtml#_idTextAnchor321
https://eel.is/c++draft/alg.sorting.general

Relaxing Requirements of Moved-From Objects

http://localhost:3000/2021/03/31/relaxing-requirements-of-moved-from-objects.html[4/14/21, 11:10:27 PM]

The Standard has a slightly different requirement for the move_constructible concept:

If T is not const, rv ’s resulting state is valid but unspecifed ([lib.types.movedfrom]); otherwise, it is
unchanged.

And from the requirements for the assignable_from concept:

If rhs is a non-const xvalue, the resulting state of the object to which it refers is valid but unspecifed
([lib.types.movedfrom]).

The term valid in this context does not impose any actual requirement on the moved from object since there is no
requirements about what operations must be available on a valid object. The referenced defnition for valid but
unspecifed refers to a general guarantee of library types, but is not a library requirement. The only restriction on the
moved from object appears to be that it is unspecifed, which is to say there is no requirement.

The Standard even notes that assignment need not be a total function.

The way the Standard requirements for moved-from objects are frequently taught is that all operations used by
Standard components must be total when used with a moved-from object. i.e. rv < a must be valid and induce a
strict weak ordering for all possible values of a . However, even such a strong guarantee does not solve the issue for
arbitrary operations passed to the Standard Library.

Geoffrey Romer’s paper, P2027R0 makes the observation that valid but unspecifed does not compose. The result is
that any composite object requires additional code to move the object into a valid state on move.

Attempting to make all operations total with respect to moved-from objects imposes an unnecessary performance
penalty and the implementation of such operations is error-prone. Examples and details are provided in an Annoyance
I wrote for the upcoming Embracing Modern C++ Safely. An example directly from the standard library is detailed in
the [Weaker Guarantees for Future Components] section.

In the discussion of P2027R0 there is a lot of confusion about the difference between requirements and guarantees in
the Standard. In short, the standard library requirements impose a set of syntactic and semantic requirements on
operations on arguments (both types and values) passed to a standard component. i.e., Give std::fnd(f, l, v) ; it is
required that f and l denotes a valid range.

A guarantee is provided by a standard component, and may be conditional on requirements of the components
arguments. i.e., std::vector<T>::operator==() is (guaranteed to be) an equivalence relation iff T meets the
Cpp17EqualityComparable requirements. The confusion in part comes from stating a guarantee as satisfying a named

requirement.

The standard guarantees regarding moved from objects are specifed in lib.types.movedfrom, as being valid but
unspecifed. The wording proposed in this paper does not change the guarantees. I included some discussion in the
[Future Implications][weaker-guarantees-for-future-components] section about why it may be desirable to revisit this

https://eel.is/c++draft/concept.moveconstructible
https://eel.is/c++draft/concept.moveconstructible
https://eel.is/c++draft/lib.types.movedfrom
https://eel.is/c++draft/concept.assignable
https://eel.is/c++draft/concept.assignable
https://eel.is/c++draft/lib.types.movedfrom
https://eel.is/c++draft/concept.assignable#2
https://lists.isocpp.org/lib-ext/2020/01/14004.php
https://eel.is/c++draft/iterator.requirements#def:range,valid
https://eel.is/c++draft/tab:container.req
https://eel.is/c++draft/lib.types.movedfrom

Relaxing Requirements of Moved-From Objects

http://localhost:3000/2021/03/31/relaxing-requirements-of-moved-from-objects.html[4/14/21, 11:10:27 PM]

terminology.

Requirements of a Moved-From Object

All known standard library implementations only require the following operations on an object, mf , that the library
moved from within an operation:

mf.~() (The language also requires this for implicitly moved objects)
mf = a

mf = move(a)

mf = move(mf)

The last implementation requirement comes from std::swap() when invoked as swap(a, a) . It is note worthy that
self-move-assignment is only required in the case where the object has already been moved-from. Self-swap does
appear in some older standard library implementations of std::random_shuffe() . This underscores the need to
support self-swap by the standard requirements.

Supporting self-move-assignment for this narrow case imposes some additional complexity because a = move(a) is,
in general, a contradiction and is not required by the implementation of any standard component. The implementation
required postcondition of a = move(b) is that a holds the prior value of b and the value of b is unspecifed, but
may be guaranteed to be a specifc value. For example, if a and b are both of type my_unique_ptr<T> with the
guarantee that a will hold the prior value of b , and b will be equal to nullptr . Then for the expression a =
move(a) , the only way both of those guarantees could be satisfed is if a is already equal to nullptr . The current
standard avoids this contradiction by defning the postcondition of move assignment for std::unique_ptr<T> as
equivalent to reset(r.release()) which provides a stronger guarantee than any standard component implementation
requires while satisfying the Standard requirements.

Non-Requirements

There is not a standard requirement to provide guarantees across operations that result in moved-from objects. For
example:

1
2
3

T a[]{ v0, v1, v1, v2 };
(void)remove(begin(a), end(a), v1);
sort(begin(a), end(a));

After remove() , the last two objects at the end of a have unspecifed values and may have been moved from. There
is no requirement that these moved-from objects also satisfy the requirements of sort() by being in the domain of
the operation operator<() , even if v0 , v1 , and v2 are within the domain. The post conditions of remove() and the
requirements of sort() are independent. An invocation of sort() for a particular type, T , may or may not be valid
depending on the guarantees provided by T .

Relaxing Requirements of Moved-From Objects

http://localhost:3000/2021/03/31/relaxing-requirements-of-moved-from-objects.html[4/14/21, 11:10:27 PM]

Assuming v0 and v2 are in the domain of operator<() for sort() the following is guaranteed:

1
2
3

T a[]{ v0, v1, v1, v2 };
auto p = remove(begin(a), end(a), v1);
sort(begin(a), p);

As another example:

1
2
3

for (std::string line; std::getline(std::cin, line);) {
 v.push_back(std::move(line));
}

For the call to std::getline() to be valid with a moved from string it requires that std::string() guarantees that
std::erase() is valid on a moved from string. Changing the requirements of a moved from object does not change

the guarantees of the standard components.

Impact on the Standard
All components which are Movable in the Standard Library currently satisfy the proposed requirements as stated by
both options below. Both options are non-breaking changes and relax the requirements. With either option, it
may be possible to adopt these options retroactively as part of addressing a defect since neither option is a breaking
change.

Concern has been raised that changing the documentation for requirements, especially the named requirements and
concepts, would break existing code documentation that referenced the standard. However, taking a strict view of this
would mean that the standard documentation could not be changed. For example, one of the libraries I work on has a
task<> template which is documented as being “Similar to std::function except it is not copyable and supports
move-only and mutable callable targets…”. Of note, this goes on to specify, “ stlab::task satisfes the requirements
of MoveConstructible and MoveAssignable.” Weakening the requirements would mean that statement is still true.

However, the concern over changing the documentation is one that should be considered in light of weakening the
requirements retroactively as a defect. As that would mean even citing a specifc version of the standard would break.

Technical Specifcations
We need a general requirement regarding the domain of an operation. Borrowing from the text for input iterators:

Unless otherwise specifed, there is a general precondition for all operations that the requirements hold for values
within the domain of the operation.

The term domain of the operation is used in the ordinary mathematical sense to denote the set of values over

https://stlab.cc/libraries/concurrency/task/task/
https://stlab.cc/libraries/concurrency/task/task/
https://stlab.cc/libraries/concurrency/task/task/
https://stlab.cc/libraries/concurrency/task/task/
https://en.cppreference.com/w/cpp/named_req/MoveConstructible
https://en.cppreference.com/w/cpp/named_req/MoveAssignable
http://eel.is/c++draft/iterator.cpp17#input.iterators-2

Relaxing Requirements of Moved-From Objects

http://localhost:3000/2021/03/31/relaxing-requirements-of-moved-from-objects.html[4/14/21, 11:10:27 PM]

which an operation is (required to be) defned. This set can change over time. Each component may place
additional requirements on the domain of an operation. These requirements can be inferred from the uses that a
component makes of the operation and is generally constrained to those values accessible through the operation’s
arguments.

The above wording should appear in the Requirements section of the Library Introduction.

Given the above general requirement, we can then specify what operations must hold for a moved-from object.

Option 1

Option 1 requires that a moved-from object can be used as an rhs argument to move-assignment only in the case that
the object has been moved from and it is a self-move-assignment. It introduces a moved-from-value to discuss the
properties of the moved-from object without specifying a specifc value and requires that self-move-assignment for
the moved-from object is valid. The wording allows for swap(a, a) without allowing a = move(a) in general.

Table 28: Cpp17MoveConstructible requirements

Expression
Assertion/note

pre-/post-condition

T u = rv; Postconditions: u is equivalent to the value of rv before the construction

T(rv) Postconditions: T(rv) is equivalent to the value of rv before the construction

common

Postconditions:

If T meets the Cpp17Destructible requirements;
rv is in the domain of Cpp17Destructible

If T meets the Cpp17MoveAssignable requirements;
rv is in the domain of the lhs argument of Cpp17MoveAssignable and,
rv is a moved-from-value, such that following a subsequent operation, t = (T&&)(rv) ,

where t and rv refer to the same object, rv still satisfes the postconditions of
Cpp17MoveConstructible

If T meets the Cpp17CopyAssignable requirements;
rv is in the domain of the lhs argument of Cpp17CopyAssignable

The value of rv is otherwise unspecifed

Table 28: Cpp17MoveAssignable requirements

Expression
Return

type
Return
value

Assertion/note
pre-/post-condition

t = rv T& t Preconditions: t and rv do not refer to the same object, or the object is a moved-

https://eel.is/c++draft/structure.requirements#8

Relaxing Requirements of Moved-From Objects

http://localhost:3000/2021/03/31/relaxing-requirements-of-moved-from-objects.html[4/14/21, 11:10:27 PM]

from-value (see Cpp17MoveConstructible)

Postconditions:

If t and rv do not refer to the same object, t is equivalent to the value of rv
before the assignment, otherwise the value of t is unspecifed
If T is required to meet the Cpp17Destructible requirements;

rv is in the domain of Cpp17Destructible
rv is in the domain of the lhs argument of Cpp17MoveAssignable
If rv is required to meet the Cpp17CopyAssignable requirements;

rv is in the domain of the lhs argument of Cpp17CopyAssignable
The value of rv is otherwise unspecifed

Concept copy_constructible :

If T is not const ;
If T is required to satisfy destructible ;

rv ’s resulting state is in the domain of destructible .
If T is required to satisfy assignable_from as the LHS argument;

rv ’s resulting state is in the domain of the lhs argument of `assignable_from and,
If T is also required to satisfy assignable_from as the RHS argument;

rv ’s resulting state is a moved-from-value, such that following a subsequent operation, t =
(T&&)(rv) , where t and rv refer to the same object, rv still satisfes the requirements for
the resulting state of rv in move_constructible .

Otherwise, the value of rv is not specifed.

The concept assignable_from does not place any preconditions on the domain of the operation, therefore there is not
a need to reference the moved-from_value requirements.

I fnd the lack of preconditions and postconditions in the concept requirements as confusing, and in this
case. The lack of a precondition for assignable_from may be a defect.

If rhs is a non- const xvalue, the resulting state of the object to which it refers is valid but unspecifed
([lib.types.movedfrom]).

If rhs is a non- const xvalue;
If RHS is required to satisfy destructible ;

the resulting state of the object to which rhs refers is in the domain of destructible .
If RHS is required to satisfy assignable_from as the LHS argument;

the resulting state of the object to which rhs is in the domain of the lhs argument of

Relaxing Requirements of Moved-From Objects

http://localhost:3000/2021/03/31/relaxing-requirements-of-moved-from-objects.html[4/14/21, 11:10:27 PM]

assignable_from .
Otherwise, the value of rhs is not specifed.

Option 2

Option 2 requires that a moved-from object can be used as an rhs argument to move-assignment always and the result
of self-move-assignment is unspecifed.

Table 28: Cpp17MoveConstructible requirements

Expression
Assertion/note

pre-/post-condition

T u = rv; Postconditions: u is equivalent to the value of rv before the construction

T(rv) Postconditions: T(rv) is equivalent to the value of rv before the construction

common

Postconditions:

If T meets the Cpp17Destructible requirements;
rv is in the domain of Cpp17Destructible

If T meets the Cpp17MoveAssignable requirements;
rv is in the domain of Cpp17MoveAssignable

If T meets the Cpp17CopyAssignable requirements;
rv is in the domain of the lhs argument of Cpp17CopyAssignable

The value of rv is otherwise unspecifed

Table 28: Cpp17MoveAssignable requirements

Expression
Return

type
Return
value

Assertion/note
pre-/post-condition

t = rv T& t Postconditions:

If t and rv do not refer to the same object, t is equivalent to the value of rv
before the assignment, otherwise the value of t is unspecifed
rv is in the domain of Cpp17MoveAssignable
If T meets the Cpp17Destructible requirements;

rv is in the domain of Cpp17Destructible
If rv meets the Cpp17CopyAssignable requirements;

rv is in the domain of the lhs argument of Cpp17CopyAssignable
The value of rv is otherwise unspecifed

Concept copy_constructible :

Relaxing Requirements of Moved-From Objects

http://localhost:3000/2021/03/31/relaxing-requirements-of-moved-from-objects.html[4/14/21, 11:10:27 PM]

If T is not const ;
If T is required to satisfy destructible ;

rv ’s resulting state is in the domain of destructible .
If T is required to satisfy assignable_from as the LHS argument;

rv ’s resulting state is in the domain of the lhs argument of `assignable_from and,
If T is also required to satisfy assignable_from as the RHS argument;

rv ’s resulting state is in the domain of the rhs argument of assignable_from .
Otherwise, the value of rv is not specifed.

The concept assignable_from :

If rhs is a non- const xvalue, the resulting state of the object to which it refers is valid but unspecifed
([lib.types.movedfrom]).

If rhs is a non- const xvalue;
If RHS is required to satisfy destructible ;

the resulting state of the object to which rhs refers is in the domain of destructible .
If RHS is required to satisfy assignable_from as the LHS argument;

the resulting state of the object to which rhs is in the domain of the lhs argument of
assignable_from .

Otherwise, the value of rhs is not specifed.

Future Implications

Weaker Guarantees for Future Components

There are several cases in the existing standard where satisfying the guarantee of valid but unspecifed has negative
performance implications. For example, move operations on node based containers such as std::list() are not
noexcept because some implementations require an allocation for a valid list. To avoid the allocation, the

implementation would have to add additional null-checks for nearly all list operations.

Running a release build compiled with Visual C++ 20192 and given the following:

1
2

std::vector<std::list<int>> c{{9}, {8}, {7}, {6}, {5}, {4}, {3}, {2},
{1}, {0}};
std::list<int> a;

A subsequent call c.push_back(std::move(a)); generates 21 unnecessary calls to new and 20 unnecessary calls to
delete . The additional call to new is to leave a in a valid but unspecifed state. Sorting the same initial vector with

Relaxing Requirements of Moved-From Objects

http://localhost:3000/2021/03/31/relaxing-requirements-of-moved-from-objects.html[4/14/21, 11:10:27 PM]

std::sort(begin(c), end(c)); . Generates 9 calls to new and delete, all unnecessary.

Unfortunately, weakening the guarantees of an existing component is a breaking change but the committee should
consider carefully before compromising new components in a similar fashion.

Note that a new component could still provide stronger guarantees than is required, for example a container may
support clear() , reset() , or other operations that establish a new value.

Class invariants

Although the proposal Support for contract based programming in C++, P0542R5, did not include class invariants, it
is possible that a future version of the standard will. At which time the likely correct decision would be that invariants
are not checked on an object that has just been moved from by default, and more generally allow the declaration of
unsafe operations where invariants are not checked.

References
Parent, Sean. Move Annoyance, Addison-Wesley, 31 Mar. 2021, https://sean-parent.stlab.cc/2021/03/31/move-
annoyance.html. ↩

Sutter, Herb. “Move, Simply.” Sutter’s Mill , 21 Feb. 2020, https://herbsutter.com/2020/02/17/move-simply/.

Romer, Geoffrey. “Moved-from Objects Need Not Be Valid.” C++ Standards Committee Papers, ISO/IEC WG21,
10 Jan. 2020, https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2027r0.pdf.

G. Dos Reis et. al. “Support for contract based programming in C++.” C++ Standards Committee Papers, ISO/IEC
WG21, 08 June 2018, http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0542r5.html

Several links contained within the document. They will be listed here in a future draft along with any
existing papers that come to my attention.

Acknowledgements
Thanks to Howard Hinnant, Herb Sutter, Jonathan Wakely, Nicolai Josuttis, Nicholas DeMarco, Eric Neibler, Dave
Abrahams, and John Lakos for the many discussions and arguments that resulted in this paper.

1. Similar wording with the same intent appears in every version of the C++ Standard since C++11. ↩

2. Microsoft Visual C++ 2019 00435-60000-00000-AA859 ↩

Sean Parent
Sean Parent

https://sean-parent.stlab.cc/2021/03/31/move-annoyance.html
https://sean-parent.stlab.cc/2021/03/31/move-annoyance.html
https://herbsutter.com/2020/02/17/move-simply/
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2027r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0542r5.html

Relaxing Requirements of Moved-From Objects

http://localhost:3000/2021/03/31/relaxing-requirements-of-moved-from-objects.html[4/14/21, 11:10:27 PM]

sean.parent@stlab.cc

sean-parent

SeanParent

Too many projects, too little time.

https://github.com/sean-parent
https://github.com/sean-parent
https://twitter.com/SeanParent
https://twitter.com/SeanParent

	localhost
	Relaxing Requirements of Moved-From Objects

