The Syntax of Static Reflection

Andrew Sutton (asutton@lock3software.com)
Wyatt Childers (wchilders@lock3software.com)
Daveed Vandevoorde (daveed@edg.com)

Document P2320R0
Audience SG7

1 Introduction

This paper suggests a new syntax for reflection and splicing that differs from both [1] and [2]. The syntax in
both proposals has various weaknesses. P1240R1 is largely written using placeholder notation, and while
P2237 offers some concrete improvements, it turns out to have some ambiguity issues.

We (the authors) considered several notations for the two operations with respect to several criteria:

o FExpressivity. The syntax must support a wide array of metaprogramming use cases. Broadly, we need
syntax to a) inspect the compile-time properties of expressions, names, declarations, and entities, b)
splice entity references and expressions back into source code, and ¢) expand such splices in contexts
where pack expansion is allowed.

e Readability. Obviously, we’d like our programs to be readable. We want syntax that is both visually
distinctive yet comprehensible. Because metaprogramming (especially splicing) includes several new
C++ programming concepts, we think the notation should be different than conventional notations for
e.g., function call and template instantiation.

o Flexibility. We shouldn’t design notation that prevents future extensions. We should also consider
future extensions to metaprogramming (like code injection) so that we don’t end up with wildly different
notations for similar kinds of functionality.

e Lack of ambiguity. The grammar for these terms should be as unambiguous as practical, both technically
(i.e., not requiring parsing heroics) and visually (i.e., not confusing for a normal C++ programmer).

o Implementability. Syntax and semantics that cannot be supported by all implementations is not viable.
The variety of syntactic and semantic analysis techniques used by different implementations is known
to complicate, if not disqualify, seemingly simple or obvious ideas. We can’t force implementers to
standardize on technique.

Section 2 presents the notation we’ve chosen for reflection and splicing. Appendix A presents other notations
and brief analyses.

2 Proposal

This section describes specific syntax for three features of static reflection: reflecting names and expressions
(Section 2.1), splicing (Section 2.2), and pack expansion (Section 2.3). This corresponds to the scope of [1],
but does not cover some metaprogramming mechanisms — like code injection — described in [2]. However,
the authors have kept those mechanisms in mind while exploring the syntax options described here and in
Appendix A.

mailto:asutton@lock3software.com
mailto:wchilders@lock3software.com
mailto:daveed@edg.com

2.1 Reflection

We propose to enable reflecting a source construct using ~ as a unary operator. Because reflection is such

a fundamental (and primitive) operation for metaprogramming, it should have a simple spelling. The " is
intended to imply “lifting” or “raising” a term into the metaprogramming environment.

meta::info rl = “int; // reflects the type-id int
meta::info r2 = “x; // reflects the id-expression

“f(x); // reflects the call f(z)

meta::info r2
The suggested grammar for reflection is:

unary-expression

reflection-expression

reflection-expression

"~ postfix-expression

"~ type-id

"~ qualified-namespace-specifier
"~ qualified-template-specifier

One of the reasons that we opt for this very terse syntax over the prior reflexpr (X) form, is that we anticipate
that it will be desirable to “pass arguments by reflection” in future proposals. Just as it is convenient to
“pass an argument by address/pointer” using the simple * declarator and & operators, having a simple ~ will
keep invocation syntax light and readable.

Another (weaker) reason to drop reflexpr(X) is that it has proven somewhat unpopular with the many
readers of earlier reflection papers (See [3]).

There are two potentially conflicting uses of ~: Apple’s blocks extension [4] and C++/CLI/CX’s managed
pointers.

With respect to blocks, ~ is used two ways: as a unary-expression and as part of a declarator. A “block literal
expression” uses ~ as a unary operator with approximately this grammar in C++:

unary-expression:

" type-specifier-seqop: (parameter-declaration-clause) compound-statement

There is an overlap between this production rule and the type-id form of the reflection-expression. Because a
block literal always has a compound-statement, there is no ambiguity. In the case where the type-specifier-seq
is omitted, we would have to distinguish the paren-enclosed parameter list from a primary-expression. However,
this is the same technique used to differentiate an expression from a declaration inside a condition.

The other potential conflict occurs in a declarative context. A block variable is declared like a function
pointer (e.g., int ("b) (int)). We don’t expect that “reflection parameters” would ever be declared in this
way: a reflection is always a value, never a function.

C++/CLI/CX also has a potential conflict in the declarative context. A managed pointer is declared with
the ~ operator:

MyClass "h_MyClass = gcnew MyClass;

We aren’t currently proposing using ~ as part of a declarator or parameter declaration, but we are concerned
about potential conflicts for future proposals. Reflection variables and parameters will need to be constant
expressions, so there’s some wiggle room for using ~ as part of a specialized style of reflection declaration.
Exactly, what such a declaration should look like is well beyond the scope of this paper, but we are thinking
about it.

2.2 Splicing reflections

We propose the notation [: R :] to denote the splice of a reflection R. Here, the use of bracket notation is
explicitly chosen to denote a “gap” in the source code, filled in by the “reflected value” of R. The notation is
intentionally designed to be visually distinctive because it represents a new programming concept for C++.
We prefer to encourage a degree of unfamiliarity.

In general, and without qualification, [: R :] splices an expression into the program (assuming R reflects a
variable, function, or some other expression). If R reflects a type, template, or namespace, the splice operator
must be qualified with an appropriate keyword, except in some contexts where the meaning is obvious. For
example:

struct S { struct Inner { }; };
template<int N> struct X;

auto refl = °S;

auto tmpl = “X;

void £ {
typename [:refl:] * x; // UK: declares z to be a pointer-to-S
[:refl:] * x; // error: attempt to multiply int by z
[:refl:]::Inner ij; // OK: splice as part of a nested-name-spectifier
typename [:refl:]{}; // OK: default-constructs an S temporary
using T = [:refl:]; // OK: operand must be a type

struct C : [:refl:] {}; // OK: base classes are types

template [:tmpl:]1<0>; // OK: names the specialization

[:tmpl:] < 0 > x; // error: attempt to compare X with O
}

Note that the extra annotations are necessary even in non-dependent contexts.

That said, we expect SG7 will entertain future proposals that relax the requirement for qualifying syntax when
the splice operand is not value-dependent (as is done in P2237R0 [2]). However, there are two main obstacles
to adopting such proposals. Is readability hurt by the omission of keywords? Does the implementation require
parsing heroics? (There is no implementation experience for this abbreviated notation in P2237R0.) Note
that requiring keywords now does not limit our ability to make them optional later.

There is one exception to this rule. Annotations differentiating type and non-type template-arguments in a
template-argument-list can be omitted. This is a special case that allows reflections (and packs thereof) to be
forwarded to a template taking mixed type/value template arguments or to an overload set where the kind
and type of arguments may vary. For example:

template<typename T> void f();
template<int N> void f();

template<meta::info Refl>
void g {

f<[:Refl:1>Q);
3

Here, Ref1 can reflect either a type or integer constant expression. We don’t require the program to explicitly
state whether Refl reflects types or expressions, as it could reasonably reflect either.

To “force” Refl to be spliced as a type or an expression by adding typename or enclosing the splice in
parentheses.

template<meta::info Refl>
void g() {
f<typename [:Refl:]1>(); // splices a type

f<([:Refl:1)>0; // splices an expression
}

We anticipate the later addition of an identifier-splice construct (currently we use the [# str #] syntax
in discussions among authors). However, that construct operates, in part, at the lexical level and has
considerably more subtleties that the authors are exploring (in part through prototype implementations).
We therefore do not propose syntax for it here, and we expect that the corresponding functionality will be
separated out in revisions of P1240 or other proposals.

The addition of splicing requires updating the grammar as follows.

splice
[: constant-expression :]

primary-expression
splice

postfix-expression
postfix-expression . templategp: splice
postfix-expression => template,p: splice

nested-name-specifier:

splice : :

qualified-namespace-specifier:

namespace splice

(The namespace keyword in a qualified-namespace-specifier will be optional in contexts where no other terms
could be spliced, such as in a namespace-alias-definition. Note that there are only a few contexts where a
namespace might be spliced into a program, and the namespace keyword is effectively optional in all of them.
We could therefore eliminate this addition to the grammar. However, we include it here for completeness and
consideration.)

simple-type-specifier:
typename,,; splice
template splice

(The typename keyword in a simple-type-specifier will be optional in very specific grammatical contexts, such
as in a base-specifier.)

simple-template-id:

template splice < template-argument-list >

template-argument:

template splice

(The grammar change for simple-template-id will unfortunately require quite a few wording adjustments.
Ideally, the way templates are “named” should be reworked in the grammar, because it is currently rather
unintuitive.)

2.3 Splicing packs

The ability to expand a range of reflections into a list of function arguments, template arguments, base classes,
etc. is an important use case for metaprogramming. However, the expansion of non-packs is a novel feature

and requires new syntax to nominate a term as being expandable. Our preferred approach is to require an
ellipsis before the term being expanded. For example:

using T = std::tuple<int, ...[:range_of_types:]..., bool>;

Here, range_of_types is a sequence (in the range-based-for-loop sense) of type reflections. The leading . ..
nominates the splice as expandable, and the trailing ... explicitly indicates its expansion.

We propose to allow such nominations in almost every context where expansion is allowed (and no others).
There are a number of reasons for choosing this syntax. First, a prefix annotation is necessary to be
implementable by all vendors.! Second, the choice of ... is chosen specifically because of the symmetry with
expansion “operator” and the way in which packs are declared, where the ... precedes the identifier.

For fold expressions, at most one cast-expression can be nominated as expandable.

(...[:range:] && ...) // Right fold over a splice
(... && ...[:range:]) // Left fold over a splice
(0.0 + ... + ...[:range:]) // Left binary fold over a splice

Semantically, the expansion of such expressions is (more or less) just like the expansion of normal template
and function parameter packs. Here are some examples:

fn(0, 1, ...[:range:]...); // OK: ezpansion after normal arguments
fn(...[:range:]1..., 0, 1); // OK: exzpansion before normal arguments
fn(...[:range:] * 2...); // OK: [:range:] * 2 is the pattern
fon(...[ird1:] * [:x2:]1...); // OK: iff r1 and 72 have equal size

We currently suggest two contexts where nomination is not allowed.

Nominating expressions for use with the sizeof... operator seems unnecessary. The size of a range can
be queried using r.size() or std::ranges::distance(r). We don’t need a language-based alternative to
these operations.

The second context is in function and template parameter lists:
void f£(... [:range_of_types:] ...args)

This seems like a plausible use of splicing, but there are some deep technical questions we have yet to address.
In particular, args is kind of like a conventional pack, but not really because it’s not dependent. We’ll need
to introduce new core language machinery to support the declaration of these new kinds of packs. Note that
this seems closely related to the declaration of packs in discussed P1061R1 [5], P1858R2 [6], and P2277R0 [7].

There is a potential redundancy in the notation. It can be argued that a term nominated for expansion
must always be expanded, so we could omit the trailing ellipsis, and this would be true today. However, this
“optimization” is not applicable in fold expressions and may not be future-proof. In the future, we might
introduce a “pass-by-reflection” convention that accepts unexpanded (non-splice) parameter packs. So for
now, we choose to require ellipses for nomination and expansion.

To support this feature, we need to change the following grammar additions:

initializer-list:
. . opt initializer-clause . . . p¢
initializer-list , . ..op initializer-clause . . . op¢

template-argument-list:
. . opt template-argument . .. pt
template-argument-list , ..., template-argument . . .,

base-specifier-list:
. . opt base-specifier .. . p¢

1Not all implementations preserve tokens or construct syntax trees during parsing. The prefix ellipsis in these contexts would
alert the compiler that it needs to preserve those tokens for subsequent expansion.

base-specifier-list , . ..op base-specifier . . .opt

meme-initializer-list:
. . opt Mem-initializer . . . p
mem-initializer-list ,pr mem-initializer . . .opt

fold-expression

(.. .opt cast-expression fold-operator ...)
(... fold-operator ..., cast-expression)
(.. .opt cast-expression fold-operator ... fold-operator ..., cast-expression)

In the fold expression, at most one cast-expression can be nominated as expandable.

We are still working through the semantics of this feature, but we are reasonably confident that the syntax
works, meaning that it satisfies our design criteria in Section 1. However, there are some cases where the
semantics are non-obvious and need further consideration. For example, what happens when a pattern
contains both “normal” function argument packs and spliced packs? Are they expanded simultaneously, or is
one expanded before the other?

3 Conclusions

We think the notation presented here is concise, visually distinctive, and generally readable and writable. We
have also considered the implementability of the proposed grammar and believe that the grammar proposes
no serious or novel challenges. Furthermore, if working through use cases, we have found it to be consistent
and composable.

We therefore request that SG7 approve further work building on these specific choices. If approved, the next
step is to update P1240 with the new syntax along with examples and use, and to start developing core
wording for these features.

4 References

1]

D. Vandevoorde, W. Childers, A. Sutton, F. Vali, and D. Vandevoorde, “P1240R1: Scalable reflection in
c++. https://wg21.link/p1240rl; WG21, Oct. 2019.

A. Sutton, “P2237R0: metaprogramming.” https://wg21.link/p2237r0; WG21, Oct. 2020.
M. Naydenov, “P2087R0: Reflection naming: Fix reflexpr.” https://wg21.link/p2087r0; WG21, Jan. 2020.

Apple Inc., “Language specification for blocks” 2009, [Online]. Available: https://opensource.apple.com/sou
rce/lldb/1ldb-167.2/1lvin /tools/clang /docs /BlockLanguageSpec.txt.auto.html.

B. Revzin and J. Wakely, “P1061R1: Structured bindings can introduce a pack.” https://wg21.link/p1061r1;
WG@21, Oct. 2019.

B. Revzin, “P1858R2: Generalized pack declaration and usage.” https://wg21.link/p1858r2; WG21, Mar.
2020.

B. Revzin, “P2277R0: Packs outside of templates.” https://wg21.link/p2277r0; WG21, Jan. 2021.
D. Sankel, “N4856: C++ extensions for reflection.” https://wg21.link/n4856; WG21, Mar. 2020.
M. Naydenov, “P2088R0: Reflection naming: reification.” https://wg21.link/p2088r0; WG21, Jan. 2020.

B. Revzin and C. Pike, “P2011R0: A pipeline-rewrite operator.” https://wg21.link/p2011r0; WG21, Jan.
2020.

5 Appendix A

This section provides analysis of other notations we considered.

https://wg21.link/p1240r1
https://wg21.link/p2237r0
https://wg21.link/p2087r0
https://opensource.apple.com/source/lldb/lldb-167.2/llvm/tools/clang/docs/BlockLanguageSpec.txt.auto.html
https://opensource.apple.com/source/lldb/lldb-167.2/llvm/tools/clang/docs/BlockLanguageSpec.txt.auto.html
https://wg21.link/p1061r1
https://wg21.link/p1858r2
https://wg21.link/p2277r0
https://wg21.link/n4856
https://wg21.link/p2088r0
https://wg21.link/p2011r0

5.1 P1240

P1240 is our (the authors’) initial (and revised) proposal for static reflection and splicing. For reflecting
source constructs, we adopted the reflexpr operator from the Reflection TS [8], making it an expression.
We introduced a similar notation for splicing (i.e., a keyword followed by Os).

As noted, there has always been some baseline dislike for the name reflexpr, which occasionally appears in
various proposals ([2], [3]).

The splice notations in P1240 are not very visually distinctive. It’s easy, especially for non-experts, to mistake
typename (x) as being somehow related to a typename-specifier. After all, in many contexts, parentheses are
used only for grouping. A number of more specific concerns are discussed in P2088 [9].

The required use of keywords can lead to some unfortunate compositions. For example:

template<typename meta::info x>
void £() {
typename typename(x)::type var;

}

Historically, repetition of keywords (i.e., noexcept (noexcept (E)) and requires requires) is often viewed
as a design failure by the broader C++4 community (even when it is not). It seems like there should be some
contexts in which the extra annotations can be elided because only a limited subset of terms are allowed,
but this requires a careful analysis of contexts where these terms can appear, but that may have other
grammatical consequences. For example, allowing the elision of the 2nd typename above effectively means
that we would need a new splice notation as (x) is not a viable choice.

5.2 P2237

P2237 did not propose a replacement for reflexpr. An early draft suggested the name reify, but subsequent
(offline) discussions showed that it was not an improvement to the status quo.

The splicing notation presented in P2237 was made with two goals in mind:

1. To be visually distinctive from conventional syntax, and
2. Avoid requiring annotations where they can be elided.

For example:

void £ {
|“int| x = 42; // ["int]| is a simple-type-specifier
[701; // |°0] is an exzpression

}

In cases where multiple productions can start with the same sequence of tokens, implementations typically
produce synthetic tokens containing the fully parsed and analyzed sequence, effectively caching the parse.
For example, GCC and Clang both do this with nested-name-specifiers and template-ids. The same technique
would be used here, and we can label the synthetic tokens according to their computed grammatical category.

Inside templates, the usual rules for adding typename and template apply.

However, P2237’s use of plain |s to delimit splices produces some unfortunate lexical issues. For example:

constexpr meta::info x = ~0;
constexpr meta::info y = “x;
int z = ||"yll|; // error: ezpected ezpression

In order to parse that as a nested splice, the parser would have to perform some seriously speculative lexical
gymnastics. Similar (but resolvable) issues arise when the splice appears in juxtaposition to other | tokens
such as the proposed pipeline rewrite operator. [10] All other considerations aside, this alone kills the plain
|x| notation.

5.3 Alternative splicing notations
We discussed (among the authors) a number of alternative notations that fall into roughly three categories:

« a single bracketed splice notation ([:x:]),
o multiple bracketed splice operators ([:e:1, [/t/], etc.), and
e a unary splice operator (e.g., %x).

We also discuss the impact that strongly typed reflections might have on the splice notation.

5.3.1 Bracketed single splice
The single bracketed approach is what we suggest in our proposal.

There are two syntactic motivating reasons for making the splice operator a bracketed expression: to represent
“gaps” or “blanks” filled by a reflection and to allow its use in member access expressions:

cout << x.[:get_member():];

We could have avoided this extension by just using the member-to-pointer syntax, but it feels a little too
arcane:

cout << x.*[:get_member():];
cout << (x—>*[:get_member_fn():]) (args);

Splicing member reflections directly through the . feels a bit more ergonomic.

We considered a number of different bracket operators, but ended up choosing [: and :]. Some alternatives
included:

e [I R I]. We think this might be too similar to the attribute brackets. Interestingly, this notation is
used by Template Haskell for quotes (like source code fragments in P2237). These brackets are also a
visual approximation of evaluation functions in various semantics models.

e <: R :> Not bad, but it combines poorly in template argument lists: vec<<:R:>>. We might use
these brackets for source code fragments, since they rarely appear in template argument lists.

e (: R :). Looks like smiley faces.

e <| R |>. Also not bad, but the closing token is proposed for the pipeline operator [10].

e« (I R). Considered briefly.

e {I R [}. Not considered.

e [< R >]. Proposed in P1240 for splicing template arguments and implemented experimentally in Clang
(with good feedback). However, we wanted to preserve <> notations for features a little more template-y.

There are a lot of ways we can combine tokens to create brackets. The current proposal seems to be a
reasonable choice and has been found pleasant enough while working through use-cases.

5.3.2 Multiple bracketed splice notations

We don’t need to limit ourselves to a single splice notation. We could choose to use different splice brackets
for the different categories of grammatical constructs being inserted into the program. In fact, P1240 does
this for two of its splicers (which it calls “reifiers”): identifiers ([:x:] and template arguments ([<x>]). The
identifier splice (|#x#|) in P2237 can also be considered an application of this approach. Template Haskell
takes a similar approach with its splice operator(s).

[:expr:] // splice an ezpression
[/type/] // splice a type
[<temp>] // splice a template
[:ns:] // splice a namespace

The choice of some brackets here approximate some aspect of the thing reflected: template-ids have <>s and
namespaces appear in nested-name-specifiers. The choice of brackets for expressions and types are chosen
somewhat arbitrarily (types appear in italics?).

One plausible benefit of this approach is that it eliminates the need for keywords in many contexts. For
example:

// template-id
[<temp>]<int>
typename [<temp>]<int>

// simple-type-specifier
[/type/]
foo:: [/type/]

// nested-name-specifiers
[/type/]::id

[:ns:]::id
[<temp>]<int>::id

foo::[:ns:]::id
Note that we still need a leading typename when splicing a template-id as a type. That seems unavoidable.

The benefit is more illusory than real. We’re not eliminating keywords, we’re replacing them with notation,
which can be a more cryptic than beneficial. It also means that programmers have to choose the right splice
notation in contexts where only one would be allowed.

5.3.3 Unary splice

There’s no strict requirement for splice notation to be bracketed. The design in P2237 prefers brackets for its
visual appeal, but we could easily choose to do this with a unary operator, replacing the suggested [:x:]
notation with, say, %x.

As above, without qualification a splice is an expression:

template<meta::info v, // reflects a wariable
meta::info x> // reflects a non-static data member m in T
void £(T& t) {
cout << %x; // UK: prints the wvalue of V
cout << t.%x; // OK: prints the wvalue of t.m
}

For a splice of anything else (in certain contexts), keywords are required. Again, some example can reveal the
flavor implied by such an approach:

// unqualified-id (as an expression)
template Y%temp<int>

// typename-specifier

typename Jtype

typename template Y%temp<int>
typename foo::%type

typename foo::template %temp<int>

// nested—-name-specifiers
ftype::id

Jns::id

template Y%temp<int>::id
foo::Ytype::id

foo::Yns::id

foo::template Ytemp<int>::id

If we choose this direction, then we should also choose an alternative for the reflexpr operator so that they
naturally complement each other. For example, we could choose / for the reflection operator.

constexpr meta::info x = /int; // reflect
int n = %x; // splice

and we could choose \ (yes, backslash) as the splice operator.

constexpr meta::info x = /int; // reflect
int n = \x; // splice

We could also choose to make the splice operator a suffix instead of a prefix.

constexpr meta::info x = /int; // reflect
int n = x\; // splice

Giving the operator lower precedence than a unary operator would allow this somewhat clever construction:
/int\ // splices the reflection of int (i.e., identity)

A downside of this approach is that single character unary operators are not very visually distinctive, and we
have found that splice constructs standing out really helps readability. This also seems just a little too cute.

10

	Introduction
	Proposal
	Reflection
	Splicing reflections
	Splicing packs

	Conclusions
	References
	Appendix A
	P1240
	P2237
	Alternative splicing notations
	Bracketed single splice
	Multiple bracketed splice notations
	Unary splice

