ISO/IEC JTC 1{730 22 /WG 14 ENPIII R
G 21, SG 22 2pklik]:¥]

2021-3-1

Function literals and value closures
proposal for C23

Jens Gustedt
INRIA and ICube, Université de Strasbourg, France

We propose the inclusion of simple lambda expressions into the C standard. We build on a slightly restricted
syntax of that feature in C++. In particular, they only have immutable value captures, fully specified pa-
rameter types, and, based on N2697, the return type is inferred from return statements. This is part of a
series of papers for the improvement of type-generic programming in C that has been introduced in N2693.
Follow-up papers N2695 and N2696 will extend this feature with auto parameter types and lvalue captures,
respectively.

Changes:

v3/R2. this document, integrating feedback from different sources
— Add a section Caveats (I11) that describes possible implementation difficulties.
— Wording changes:
— add two notes in the concepts clause that relate the terms of scope and linkage to lambda expres-
sions and captures
— make lambda values copyable by assignment
— better describe how a converted function literal would be specified as a static function
— only require that converted-to function pointers are compatible
— setjmp and lambdas, second take
v2/R1. integrating feedback from the WG14 reflector
— add function literals to the RHS of assignment and cast if the target type is a function pointer
— make it clear that lambda objects can only be formed by auto definitions
— cleanup of the relationship between lambdas and VM types
— be more precise on the sequencing of lambda evaluations and function calls
— affect the attributes of a lambda expression to the lambda value
— integrate <stdarg.h> and lambdas
— integrate <setjmp.h> and lambdas
— integrate lambdas with the rest of the library clause

I. MOTIVATION

In N2693 it is argued that the features presented in this paper are useful in a more general
context, namely for the improvement of type-generic programming in C. We will not repeat
this argumentation here, but try to motivate the introduction of lambdas as a stand-alone
addition to C.

When programming in C we are often confronted with the need of specifying small functional
units that

—are to be reused in several places
— are to be passed as argument to another function
—need a fine control of data in- and outflow.

The smallest unit currently is the specification of a function, that is a top-level named entity
with identified parameters for input and output. Current C provides several mechanisms to
ease the specification of such small functions:

© 2021 by the author(s). Distributed under a Creative Commons Attribution 4.0 International License

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2697.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2693.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2695.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2696.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2693.pdf

N2694

P2303R2 2 Jens Gustedt
— The possibility to distinguish internal and external linkage via a specification with static
(or not).

— The possibility to add function definitions to header files and thus to make the definitions
and not only the interface declaration available across translation units via the inline
mechanism.

— The possibility to add additional properties to functions via the attribute mechanism.

All these mechanisms are relatively rigid:

(1) They require a naming convention for the function.

(2) They require a specification far away and ahead of the first use.

(3) They treat all information that is passed from the caller to the function as equally
important.

As an example, take the task of specifying a comparison function for strings to qsort. There
is already such a function, strcmp, in the C library that is almost fit for the task, only that
its prototype is missing an indirection. The semantically correct comparison function could
look something like this:

1 i int strComp(charx const* a, charx const*x b) {
2 | return strcmp(*a, *b);
3|

}

Although probably for most existing ABI its call interface could be used as such (if charx*
const* and void const* have the same representation) the use of it in the following call is
a constraint violation:

1 |#define NUMEL 256
2 ' charx stringArray[NUMEL] = { "hei”, "you", ... };
3
4
5 gsort(stringArray, NUMEL, sizeof(charx),
6 strComp); // mismatch, constraint violation
7
The reflex of some C programmers will perhaps be to paint over this by using a cast:
1
2 gsort(stringArray, NUMEL, sizeof(charx),
3 (int (*) (void const*, void constx))strComp); // UB
4

This does not only make the code barely readable, but also just introduces undefined behav-
ior instead of a constraint violation. On the other hand, on many platforms the behavior
of this code may indeed be well defined, because finally the ABI of strComp is the right
one. Unfortunately there is no way for the programmer to know that for all possible target
platforms.

So the “official” strategy in C is to invent yet another wrapper:

1 |int strCompV(void const* a, void constx b) {
2 | return strComp(a, b);

N2694

Function literals and value closures P2303R2 :3
3 \}
4
5 ...
6\ gsort(stringArray, NUMEL, sizeof(charx),
7 strCompV); // OK
5

This strategy has the disadvantages (1) and (2), but on most platforms it will also miss
optimization opportunities:

— Since strCompV is specified as a function its address must be unique. The caller cannot
inspect gsort, it cannot know if strCompV and strComp must have different addresses.
Thus we are forcing the creation of a function that only consists of code duplication.

— If the two functions are found in two different translation units, strCompV will just consist
of a tail call to strComp and thus create a useless indirection for every call within gsort.

C++’s lambda feature that we propose to integrate into C allows the following simple speci-
fication:

gsort(stringArray, NUMEL, sizeof(charx),
[1(void const* a, void const* b)({
return strComp(a, b);

1)

S T LW N~

By such a specification of a lambda we do not only avoid (1) and (2), but we also leave it
to the discretion of the implementation if this produces the a new function with a different
address or if the tail call is optimized at the call site and the address of strComp is used
instead.

Altogether, the improvements that we want to gain with this feature are:

— Similar to compound literals, avoid useless naming conventions for functions with a local
scope (anonymous functions).

— Avoid to declare and define small functions far from their use.

— Allow the compiler to reuse functions that have the same functionality and ABI.

— Split interface specifications for such small functions into an invariant part (captures) and
into a variable part (parameters).

— Strictly control the in- and outflow of data into specific functional units.

— Provide more optimization opportunities to the compiler, for example better tail call
elimination or JIT compilation of code snippets for fixed run-time values.

Il. DESIGN CHOICES
11.1. Expression versus function definition

Currently, the C standard imposes to use named callbacks for small functional units that
would be used by C library functions such as atexit or gsort. Where inventing a name
is already an unnecessary burden to the programming of small one-use functionalities, the
distance between definition and use is a real design problem and can make it difficult to
enforce consistency between a callback and a call. Already for the C library itself this is a

N2694
P2303R2

real problem, because function arguments are even reinterpreted (transiting through void
constx*) by a callback to gsort, for example. The situation is even worse, if input data for
the function is only implicitly provided by access to global variables as for atexit.

4 Jens Gustedt

Nested functions improve that situation only marginally: definition and use are still disso-
ciated, and access to variables from surrounding scopes can still be used within the local
function. In many cases the situation can even be worse than for normal functions, because
variables from outside that are accessed by nested functions may have automatic storage
duration. Thus, nested functions may access objects that are already dead when they are
called, making the behavior of the execution undefined.

For these reasons we opted for an expression syntax referred to as lambda. This particular
choice not withstanding we think that it should still be possible to name a local functionality
if need be, and to reuse it in several places of the same program. Therefore, lambdas still
allow to manipulate lambda values, the results of a lambda expresssion, and in particular
that these values are assigned to objects of lambda type.

11.2. Capture model

For the possible visibility of types and objects inside the body of a lambda, the simplest is
to apply the existing scope model. This is what is chosen here (consistently with C++) for
all use of types and objects that do not need an evaluation.

— All visible types can be used, if otherwise permitted, as type name in within alignof,
alignas, sizeof or typeof expressions, type definitions, generic choice expressions, casts
or compound literals, as long as they do not lead to an evaluation of a variably modified
type.

— All visible objects can be used within the controlling expression of _Generic, within
alignof expressions, and, if they do not have a variably modified type, within sizeof
or typeof expressions.

In contrast to that and as we have discussed in N2693, there are four possible design
choices for the access of automatic variables that are visible at the point of the evaluation
of a lambda expression. We don’t think that there is any “natural” choice among these,
but that for a given lambda the choice has to depend on several criteria, some of which are
general (such as personal preferences or coding styles) and some of which are special (such
as a subsequent modification of the object or optimization questions).

As a consequence, we favor a solution that leaves the principal decision if a capture is a
value capture or an lvalue capture to the programmer of the lambda; it is only they who can
appreciate the different criteria. For this particular paper, we put the question on how lvalue
captures should be be handled aside and only introduce value captures.! Nevertheless we
think that the choice of explicit specification of value captures as provided by C++ lambdas is
preferable to the implicit use of value captures for all automatic variables as in Objective C’s
blocks, or of Ivalue captures as for gcc’s compound expression or nested functions.?

ILvalue captures will be proposed in N2696.
2These different possibilities have been discussed in N2693.

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2693.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2696.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2693.pdf

. . N2694]
Function literals and value closures P2303R2 5

11.3. Call sequence

As for all papers in this series, we intend not to impose ABI changes to implementations.
We chose a specification for a call sequence for lambdas that either uses an existing function
call ABI or encapsulates all calls to lambdas within a given translation unit.

For function literals, that is lambdas that have no captures, we impose that they should
be convertible to function pointers with a compatible prototype. Such a lambda can be
rewritten to a static function with an auxiliary name which then is used in place of the
lambda expression itself.

For closures, that is lambdas with captures, the situation is a bit more complicated. Where
some implementations, building for example upon gcc’s nested functions, may prefer to use
the same calling sequence as for functions, others may want to evaluate captures directly
in place and use an extended ABI to call a derived function interface or pass information
for the captures implicitly in a special register.

Therefore, our proposal just adds lambda values to the possibilities of the postfix expression
(LHS) of a function call, and imposes no further restrictions how this feature is to be
implemented.

11.4. Interoperability

The fact that objects with lambda type can be defined and may have external linkage, could
imply that such lambda objects are made visible between different translation units. If that
would be possible, implementations would be forced to extend ABIs with the specification
of lambda types, and platforms that have several interoperable implementations would have
to agree on such ABI.

To require such an ABI specifiction would have several disadvantages:

— A cross-implementation effort of for an ABI extension would incur a certain burden for
implementations.

— Many different ABI are possible, in particular special cases have a certain potential for
optimization. Fixing an ABI too early, forces implementations to give stability guarantees
for the interface.

For our proposal here, we expect that most lambda expressions that appear in file scope
will be function literals. Since function literals can be converted to function pointers, no
special syntax is needed to make their functionalities available to other translation units.

Because there are no objects with automatic storage duration in file scope, the only captures
that can be formed in file scope are those that are derived from expressions, and these
expression must have a value that can be determined at translation time. We think that
it should be possible to define most such captures as lambda-local unmutable objects with
static storage duration, and thus, in general such lambdas are better formulated as function
literals.

To be accessible in another translation unit a closure expression that is evaluated in block
scope, would have to be assigned to a global variable of lambda type. We inhibit this by
not specifying a declaration syntax for lambdas. Thereby the only possibility to declare
an object of lambda type is to use auto, and thus each such declaration must also be a
definition such that the full specification of the lambda expression is visible. But then, no
translation unit can declare an object of lambda value with external linkage that is not
already a definition.

© 00O Ui Wk

N2694
P2303R2 0 Jens Gustedt

I11.5. Invariability

Since lambdas will often concern small functional units, our intent is that implementations
use all the means available to optimize them, as long as the security of the execution can
be guaranteed. Therefore we will enforce that lambda values, once they are stored in an
object, will be known to never change. This will inhibit, e.g, that implementation specific
functions or jump targets will change between calls to the same lambda value, or that any
lambda value can escape to a context where its originating lambda expression is not known.

11.6. Recursion

Since there is no syntax to forward-declare a lambda and they can only be assigned to a
lambda value that stems from the same lambda expression, a lambda cannot refer to itself
(same lambda value and type), neither directly nor indirectly by calling other functions or
lambdas. The only possibility is for function literals, when they are converted and assigned
to function pointers. Such a function pointer can then be used directly or indirectly as any
other function pointer, also by the function literal expression that gave rise to its conversion.

// file scope definition
static int (xcomp)(void const*, void constx) = 0;

iﬁf main(void) {

comp = [J(void const*x A, void constx B){
if (something) {
return 0;
} else {
return comp(B, A);
3
}

Such examples for function literals are a bit contrived, and will probably not be very com-
mon.

In contrast to that, closures cannot be called recursively because they don’t even convert
to function pointers. This is a conscious decision for this paper, because we don’t want to
constrain implementations in the way(s) they reserve the storage that is necessary to hold
captures, and how they implement captures in general. For example, closures that return
void can be implement relatively simple as-if by adding some small state, an entry label,
one return label per call, and some switched or computed goto statements.

As a consequence, the maximum storage that is needed for the captures of a given closure
can be computed at translation time, and no additional mechanism to handle dynamic
storage is necessary.

11.7. Variable argument lists

Although permitted, lambdas with variable argument list are not completely implemented
by the major C++ compilers. This seems to indicate that there is not much need for them,
and to simplify we have left them out of this specification. If need be, they could be added
later with a separate paper.

N2694
P2303R2

This not withstanding, lambdas may have parameters of type va_list (stdarg.h). This can
be useful for small functional units that process variable argument lists of functions.

Function literals and value closures 7

11.8. Variably modified (VM) types

All VM types, not only VLA, have a hidden state that keeps track of the size or sizes of
the current object or the object it points to. Even if such objects may have static storage
duration (see e.g 6.7.6.2 p10), their state may have automatic storage duration, and so their
use from a lambda is not easily modeled. Therefore the use of an outer object with VM
type is completely forbidden with the body of a lambda.

I1l. CAVEATS FOR IMPLEMENTORS
I11.1. Syntax

While at the time of their introduction into C++ the lambda feature caused no syntax
ambiguity, unfortunately C’s VLA and C++’ constexpr evaluations of array sizes now make
the construct ambiguous in both languages. In particular, it interacts with the attribute
syntax and array declarations in subtle ways that may require substantial lookahead. The
main problem is that two consecutive [tokens now may introduce

— an attribute
—an array bound for which the size expression starts with a lambda expression.

Since additionally attribute tokens can be regular identifiers a starting sequence such as

. [[deprecated, ...]

can be read as either the start of an attribute or as an array bound with a capture clause
(here for identifier deprecated) that starts a lambda expression.

111.2. Visibility of non-captures

The lambda concept allows to refer to outer identifiers even if they are not captured, as
long as they are not evaluated. This can for example be the case for local type definitions
(typedef) or the use of variable names in typeof or sizeof expression. This specification
takes care that none of these identifiers have VM types, and so all their accessible features
are known at translation time. Nevertheless, textually lifting a lambda and all the features
of which it depends outside of its defining function may be challenging even for a function
literal.

IV. SYNTAX AND TERMINOLOGY

For all proposed wording see Section IX.

IV.1. Lambda expressions

Since it is the most flexible and expressive, we propose to adopt C++ syntax for lambdas,
6.5.2.6 p1, as a new form of postfix expression (6.5.2 p1) introducing the terms lambda
expression, capture clause, capture list, capture default, value capture, capture and parameter
clause.

We make some exceptions from that C++ syntax for the scope of this paper:

N2694

P2303R2 ‘8 Jens Gustedt
(1) We omit the possibility to specify the return type of a lambda. The corresponding
C++ syntax

[
\ -> return-type
L

reuses the -> token in an unexpected way, and is not strictly necessary if we have auto
return. If WG14 wishes so, this feature could be added easily in the future as a general
function return type syntax.

(2) We omit the possibility to specify all value captures as mutable. The C++ syntax intro-
duces a keyword, mutable, that would be new to C. We don’t see enough gain that would
justify the introduction of a new keyword.

(3) For the simplicity of this proposal we omit lvalue captures and lvalue aliases. A follow-
up paper, N2696, takes care of lvalue captures. The introduction of lvalue aliases (C++’s
references) is not currently planned.

(4) We omit the possibility for the parameter list to end in a ... token.

As this syntax leaves the parameter clause as optional, 6.5.2.6 p7 fixes the semantics for
this case to be equivalent to an empty parameter list, and also introduces the terminology
of function literal (no captures) and closure (any capture).

Also, 6.5.2.6 p3 introduces a distinction between explicit captures, that are captures that
are explicitly listed in the capture list, and implicit captures, that are automatic variables
of a surrounding scope that are caught because the capture clause is [=].

The terminology for lambda values and lambda types and their prototype is introduced with
the other type categories in 6.2.5 p20, and then later specified in the clause for lambda
expressions, 6.5.2.6 p11.

IV.2. Adjustments to other constructs

With the introduction of lambda expressions, functions bodies can now be nested and several
standard constructs become ambiguous. Therefore it is necessary to adjust the definitions of
these constructs and relate them to the nearest other constructs to which they could refer.
This ensures that their use remains unique and well defined, and that no jumps across
boundaries of function bodies are introduced.

— For labels we enforce that they are anchored within the nearest function body in which
they appear:
— Function scope as the scope for labels must only extend to the innermost function body
in which a label is found and such function scopes are not nested (6.2.1 p3).
— Case labels must be found within a corresponding switch statement of their innermost
function body (6.8.1 p2).

— continue and break statements must match to a loop or switch construct that is found
in the innermost function body that contains them (6.8.6.2 p1 and 6.8.6.3 p1).

— A return statement also has to be associated to the innermost function body. It has to
return a value, if any, according to the type of that function body. Also, if its function
body is associated to a lambda, it only has to terminate the corresponding call to the
lambda, and not the surrounding function (6.8.6.4 p3).

— We allow function literals to be operand of simple assignment (6.5.16.1 p1) and cast
(6.5.4 p2) when the target type is a function pointer.

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2696.pdf

N2694

P2303R2 9

Function literals and value closures
V. SEMANTICS

The principal semantic of lambda expressions themselves is described in 6.2.5.6 p7.
Namely, it describes how lambda expressions are similar to functions concerning the scope
of visibility and the lifetime of captures and parameters.

Captures are handled in two paragraphs, but the main feature is the description of the
evaluation that provides values for value captures, 6.5.2.6 p10. It stipulates that their
values are determined at the point of evaluation of the lambda expression (basically in
order of declaration), that the value undergoes lvalue, array-to-pointer or function-to-pointer
conversion if necessary, and that the type of the capture then is the type of the expression
after that conversion, that is without any qualification or atomic derivation, and, that it
gains a const qualification. Additionally, we insist that the so-determined value of a value
capture will and cannot not change by any means and is the same during all evaluations
during all calls to the same lambda value.

Two paragraph, 6.5.2.6 p8 and p9, describe how the two forms of value captures relate
and how the type of a value capture is determined. The form without assignment expression
is really a short form that evaluates an automatic variable of the surrounding scope of the
same name.

The other specifications for lambda expressions are then their use in different contexts.

— Function literals may be converted to function pointers, 6.3.2.1 p5. For these this is easily
possible because they have exactly the same functionality as functions: all additional caller
information is transferred by arguments to the call. Thus the existing function ABI can
be used to call a function literal, and the translator has in fact all information to provide
such a call interface.

— As postfix expression within function calls they can take the place that previously only
had function pointers, 6.5.2.2. If we would not provide the possibility of captures, the
corresponding function literals could all first be converted to function literals (see above)
and called then. But since we don’t want to impose how lambda-specific capture informa-
tion is transferred during a call and to guarantee the properties specified in I1.3 above,
we just agid lambdas to the possibilities of the postfix expression that describes the called
function.’

VI. LIBRARY

The impact on the library clause is relatively small. It mostly concerns an update
for the terminology, because the calling context may be a function or a lambda
and a callback feature that is referred by a function pointer may indicate an ordi-
nary function or a function literal. Such rectifications concern <setjmp.h>, <signal.h>
<stdarg.h>, <stdlib.h> and <thread.h>. The impacted library functions or macros are

_Exit call_once quick_exit va_end
at_quick_exit exit signal

atexit longjmp thrd_create

bsearch gsort tss_create

VIl. CONSTRAINTS AND REQUIREMENTS

As a general policy, we try to fix as much requirements as possible through constraints,
either with specific syntax or explicit constraints. Ouly if a requirement is not (or hardly)

3A similar addition for function designators could also be made, see [Gustedt 2016].

N2694
P2303R2

detectable at translation time, or if we want to leave design space to implementations,
we formulate it as an imperative, indicating that the behavior then is undefined by the
C standard.

:10 Jens Gustedt

— Captures are introduced to handle objects of automatic storage duration, all other cat-
egories of objects and functions are to use other mechanisms of access within lamb-
das. Therefore, we constrain captures to names of objects of automatic storage duration
(6.5.2.6 p4) and limit the evaluation of all such objects from a surrounding scope to the
initialization of captures. All such evaluations thus take place during the evaluation of the
lambda expression itself, not during a subsequent call to the lambda value.

— Unfortunately such a restriction for objects of automatic storage duration is not sufficient
to avoid the implicit access of hidden dynamic state from within a lambda. The reason is
that there are some rare forms of objects of VM type that have static storage duration, for
which even the use in sizeof or similar constructs would constitute an evaluation. These
are just exotic artifacts in the language without much use cases or justification. We just
forbid them by a constraint for this proposal (also 6.5.2.6 p4), but they could be added
in later a stage if need be.

— Since an automatic object of array type would evaluate to a pointer type, it would give rise
to a capture of a different type than in the surrounding scope. Therefore in 6.5.2.6 p3
and p4 we also add constraints that forbid array types for captures (explicit or implicit)
without assignment expression. It is possible to overwrite that constraint by explicitly
specifying a capture of the form id = id, even if id has an array type; within the lambda
expression id then has pointer type and retrieving the size of the underlying array is not
possible.*

— Calling a closure needs additional information, namely the transfer of lambda-specific
values for captures. In 6.3.2.1 p5 we explicitly call out the fact that converting closures
to function pointers is not defined by the text. This would also follow as implicit undefined
behavior from the following text, but we found it important to point this out and thereby
guide the expectations of programmers.

— A switch label should not enable control flow that jumps from the controlling expression
of the switch into a lambda. The corresponding property is syntactic and can be checked
at translation time. Therefore we formulate this as a constraint in 6.8.1 p2.

— Labels should not be used to bypass the calling sequence (capture and parameter instan-
ciation) and jump into a lambda. Therefore we constrain the visibility scope of labels to
the surrounding function body, 6.2.1 p3. With these constraints, no goto statement can
be formed that jumps into or out of a lambda or into a different function.

— Similarly, all jump statements other than return should never attempt to jump into or
out of the nearest enclosing function body. To ensure this we add an explicit constraint
as 6.8.6 p2,and in 6.8.6.2 pl and 6.8.6.3 p1.

— According to I1.5 we don’t want lambda values to be modified. If they were specified from
scratch, this would probably be reflected in both, a constraint and a requirement. But
since we want to be able to leave the possibility that lambda values are implemented as
function pointers (in particular for function literals) we cannot make this a requirement.
Therefore, we only introduce a requirement (6.5.2.6 p11 last sentence) and recommended
practice for applications to use a const qualification and for implementations to diagnose
modifications when possible (6.5.2.6 p12).

— There is no direct syntax to declare lambda types, and so objects of lambda type can
only be declared (and defined) through type inference. The necessary adjustments to that
feature are integrated to the constraints of 6.7.10 p4.

4 Arrays themselves can be accessed as lvalue captures that will be introduced in N2696.

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2696.pdf

. . N2694
Function literals and value closures P2303R2

11
VIll. QUESTIONS FOR WG14

In the March 2021 session, WG14 has already voted in favor of integrating the lambda
feature into C23 along the lines as described here.

(1) Does WG14 want to integrate the changes as specified in N2694 into C23?

Ackowledgments

Many thanks go to and to many other WG14ners for the discussions, especially to Joseph
Myers for his very detailed review and feedback,

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2694.pdf

N2694
P2303R2

References

Jens Gustedt. 2016. The register overhaul. Technical Report N2067. ISO. available at http://www.open-std.
org/jtcl/sc22/wgld/www/docs/n2067.pdf.

Jens Gustedt. 2021a. Function literals and value closures. Technical Report N2694. ISO. available at http:
//www.open-std.org/jtcl/sc22/wgld/www/docs/n2694.pdf.

Jens Gustedt. 2021b. Improve type generic programming. Technical Report N2693. ISO. available at http:
//www.open-std.org/jtcl/sc22/wgld/www/docs/n2693.pdf.

Jens Gustedt. 2021c. Lvalue closures. Technical Report N2696. ISO. available at http://www.open-std.org/
jtel/sc22/wgld /www/docs/n2696.pdf.

Jens Gustedt. 2021d. Type-generic lambdas. Technical Report N2695. ISO. available at http://www.
open-std.org/jtcl/sc22/wgld/www/docs/n2695.pdf.

Jens Gustedt. 2021e. Type inference for variable definitions and function return. Technical Report N2697.
ISO. available at http://www.open-std.org/jtcl/sc22/wgld/www/docs/n2697.pdf.

12 Jens Gustedt

IX. PROPOSED WORDING

The proposed text is given as diff against N2697.

— Additions to the text are marked as shown.
— Deletions of text are marked as show.

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2067.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2067.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2694.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2694.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2693.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2693.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2696.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2696.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2695.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2695.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2697.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2697.pdf

CORE 202101 (E) § 6, working draft — March 28, 2021 auto-return-C17.. N2694

6. Language

6.1 Notation

In the syntax notation used in this clause, syntactic categories (nonterminals) are indicated by italic
type, and literal words and character set members (terminals) by bold type. A colon () following
a nonterminal introduces its definition. Alternative definitions are listed on separate lines, except
when prefaced by the words “one of”. An optional symbol is indicated by the subscript “opt”, so
that

{ expressionept }
indicates an optional expression enclosed in braces.

When syntactic categories are referred to in the main text, they are not italicized and words are
separated by spaces instead of hyphens.

A summary of the language syntax is given in Annex A.

6.2 Concepts
6.2.1 Scopes of identifiers

An identifier can denote an object; a function; a tag or a member of a structure, union, or enumeration;
a typedef name; a label name; a macro name; or a macro parameter. The same identifier can denote
different entities at different points in the program. A member of an enumeration is called an
enumeration constant. Macro names and macro parameters are not considered further here, because
prior to the semantic phase of program translation any occurrences of macro names in the source file
are replaced by the preprocessing token sequences that constitute their macro definitions.

For each different entity that an identifier designates, the identifier is visible (i.e., can be used) only
within a region of program text called its scope. Different entities designated by the same identifier
either have different scopes, or are in different name spaces. There are four kinds of scopes: function,
file, block, and function prototype. (A function prototype is a declaration of a function that declares
the types of its parameters.)

A label name is the only kind of identifier that has function scope. It can be used (in a goto statement)
anywhere-in the function body in which it appears, and is declared implicitly by its syntactic

appearance (followed by a : and a statement). Each function body has a function scope that is
separate from the function scope of any other function body. In particular, a label is visible in
exactly one function scope (the innermost function body in which it appears) and distinct function

bodies may use the same identifier to desienate different labels.??)

Every other identifier has scope determined by the placement of its declaration (in a declarator
or type specifier). If the declarator or type specifier that declares the identifier appears outside
of any block or list of parameters, the identifier has file scope, which terminates at the end of the
translation unit. If the declarator or type specifier that declares the identifier appears inside a block
or within the list of parameter declarations in a function definition, the identifier has block scope,
which terminates at the end of the associated block. If the declarator or type specifier that declares
the identifier appears within the list of parameter declarations in a function prototype (not part
of a function definition), the identifier has function prototype scope, which terminates at the end of
the function declarator.?” If an identifier designates two different entities in the same name space,
the scopes might overlap. If so, the scope of one entity (the inner scope) will end strictly before the
scope of the other entity (the outer scope). Within the inner scope, the identifier designates the entity
declared in the inner scope; the entity declared in the outer scope is hidden (and not visible) within
the inner scope.

) As a consequence, it is not possible to specify a goto statement that jumps into or out of a lambda or into another

function.

30)Identifiers that are defined in the parameter list of a lambda expression do not have prototype scope, but a scope that
comprises the whole body of the lambda.

modifications to ISO/IEC 9899:2018, § 6.2.1 page 28 Language

N2694 auto-return-C17.. § 6.2.2, working draft — March 28, 2021 CORE 202101 (E)

Unless explicitly stated otherwise, where this document uses the term “identifier” to refer to some
entity (as opposed to the syntactic construct), it refers to the entity in the relevant name space whose
declaration is visible at the point the identifier occurs.

Two identifiers have the same scope if and only if their scopes terminate at the same point.

Structure, union, and enumeration tags have scope that begins just after the appearance of the tag in
a type specifier that declares the tag. Each enumeration constant has scope that begins just after the
appearance of its defining enumerator in an enumerator list. An identifier that has an underspecified
definition and that designates an object, has a scope that starts at the end of its initializer and from
that point extends to the whole translation unit (for file scope identifiers) or to the whole block (for
block scope identifiers); if the same identifier declares another entity in a scope that surrounds the
current block, that declaration is hidden as soon as the inner declarator is met.??) An identifier that
designates a function with an underspecified definition has a scope that starts after the lexically first
return statement in its function body or at the end of the function body if there is no such return,
and from that point extends to the whole translation unit. Any other identifier has scope that begins
just after the completion of its declarator.

As a special case, a type name (which is not a declaration of an identifier) is considered to have
a scope that begins just after the place within the type name where the omitted identifier would
appear were it not omitted.

NOTE Properties of the feature to which an identifier refers are not necessarily uniformly available within its whole scope
of visibility. Examples are identifiers of objects or functions with an incomplete type that is only completed in a subscope
of its visibility, labels that are only valid targets of goto statements when the jump does not cross the scope of a VLA,
identifiers of objects to which the access is restricted in specific contexts such as signal handlers or lambda expressions, or
library features such as setjmp where the use is restricted to a specific subset of the grammar.

Forward references: declarations (6.7), function calls (6.5.2.2), lambda expressions (??), function
definitions (6.9.1), identifiers (6.4.2), macro replacement (6.10.3), name spaces of identifiers (6.2.3),
source file inclusion (6.10.2), statements and blocks (6.8).

6.2.2 Linkages of identifiers

An identifier declared in different scopes or in the same scope more than once can be made to refer to
the same object or function by a process called linkage.>” There are three kinds of linkage: external,
internal, and none.

In the set of translation units and libraries that constitutes an entire program, each declaration of a
particular identifier with external linkage denotes the same object or function. Within one translation
unit, each declaration of an identifier with internal linkage denotes the same object or function. Each
declaration of an identifier with no linkage denotes a unique entity.

If the declaration of a file scope identifier for an object or a function contains the storage-class
specifier static, the identifier has internal linkage.33)

For an identifier declared with the storage-class specifier extern in a scope in which a prior dec-
laration of that identifier is visible,® if the prior declaration specifies internal or external linkage,
the linkage of the identifier at the later declaration is the same as the linkage specified at the prior
declaration. If no prior declaration is visible, or if the prior declaration specifies no linkage, then the
identifier has external linkage.

If the declaration of an identifier for a function has no storage-class specifier, its linkage is determined
exactly as if it were declared with the storage-class specifier extern. If the declaration of an identifier
for an object has file scope and no storage-class specifier or only the specifier auto, its linkage is
external.

The following identifiers have no linkage: an identifier declared to be anything other than an object
or a function; an identifier declared to be a function parameter; a block scope identifier for an object
declared without the storage-class specifier extern.

3DThat means, that the outer declaration is not visible for the initializer.

32)There is no linkage between different identifiers.

33) A function declaration can contain the storage-class specifier static only if it is at file scope; see 6.7.1.
34) As specified in 6.2.1, the later declaration might hide the prior declaration.

Language modifications to ISO/IEC 9899:2018, § 6.2.2 page 29

CORE 202101 (E) § 6.2.3, working draft — March 28, 2021 auto-return-C17.. N2694

If, within a translation unit, the same identifier appears with both internal and external linkage, the
behavior is undefined.

NOTE Internal and external linkage is used to access objects or functions that have a lifetime of the whole program
execution. It is therefore usually determined before the execution of a program starts. For variables with a lifetime that
is not the whole program execution and that are accessed from lambda expressions an additional mechanism called capture

is available that dynamically provides the access to the current instance of such a variable within the active function call
that definesiit.

Forward references: storage durations of objects (6.2.4), declarations (6.7), expressions (6.5), exter-
nal definitions (6.9), statements (6.8).

6.2.3 Name spaces of identifiers

If more than one declaration of a particular identifier is visible at any point in a translation unit, the
syntactic context disambiguates uses that refer to different entities. Thus, there are separate name
spaces for various categories of identifiers, as follows:

— label names (disambiguated by the syntax of the label declaration and use);

— the tags of structures, unions, and enumerations (disambiguated by following any>® of the
keywords struct, union, or enum);

— the members of structures or unions; each structure or union has a separate name space for its
members (disambiguated by the type of the expression used to access the member via the . or
-> operator);

— all other identifiers, called ordinary identifiers (declared in ordinary declarators or as enumera-
tion constants).

Forward references: enumeration specifiers (6.7.2.2), labeled statements (6.8.1), structure and union
specifiers (6.7.2.1), structure and union members (6.5.2.3), tags (6.7.2.3), the goto statement (6.8.6.1).

6.2.4 Storage durations of objects

An object has a storage duration that determines its lifetime. There are four storage durations: static,
thread, automatic, and allocated. Allocated storage is described in 7.22.3.

The lifetime of an object is the portion of program execution during which storage is guaranteed
to be reserved for it. An object exists, has a constant address,?® and retains its last-stored value
throughout its lifetime.?”) If an object is referred to outside of its lifetime, the behavior is undefined.
The value of a pointer becomes indeterminate when the object it points to (or just past) reaches the
end of its lifetime.

An object whose identifier is declared without the storage-class specifier _Thread_local, and either
with external or internal linkage or with the storage-class specifier static, has static storage duration.
Its lifetime is the entire execution of the program and its stored value is initialized only once, prior
to program startup.

An object whose identifier is declared with the storage-class specifier _Thread_local has thread
storage duration. Its lifetime is the entire execution of the thread for which it is created, and its
stored value is initialized when the thread is started. There is a distinct object per thread, and use of
the declared name in an expression refers to the object associated with the thread evaluating the
expression. The result of attempting to indirectly access an object with thread storage duration from
a thread other than the one with which the object is associated is implementation-defined.

An object whose identifier is declared with no linkage and without the storage-class specifier static
has automatic storage duration, as do some compound literals. The result of attempting to indirectly
access an object with automatic storage duration from a thread other than the one with which the
object is associated is implementation-defined.

%) There is only one name space for tags even though three are possible.

36)The term “constant address” means that two pointers to the object constructed at possibly different times will compare
equal. The address can be different during two different executions of the same program.
37)In the case of a volatile object, the last store need not be explicit in the program.

modifications to ISO/IEC 9899:2018, § 6.2.4 page 30 Language

20

21

22

23

24

N2694 auto-return-C17.. § 6.2.5, working draft — March 28, 2021 CORE 202101 (E)

Any number of derived types can be constructed from the object and function types, as follows:

— An array type describes a contiguously allocated nonempty set of objects with a particular
member object type, called the element type. The element type shall be complete whenever the
array type is specified. Array types are characterized by their element type and by the number
of elements in the array. An array type is said to be derived from its element type, and if its
element type is T, the array type is sometimes called “array of T”. The construction of an array
type from an element type is called “array type derivation”.

— A structure type describes a sequentially allocated nonempty set of member objects (and, in
certain circumstances, an incomplete array), each of which has an optionally specified name
and possibly distinct type.

— A union type describes an overlapping nonempty set of member objects, each of which has an
optionally specified name and possibly distinct type.

— A function type describes a function with specified return type. A function type is characterized
by its return type and the number and types of its parameters. A function type is said to
be derived from its return type, and if its return type is T, the function type is sometimes
called “function returning T”. The construction of a function type from a return type is called
“function type derivation”.

— A lambda type is a complete object type that describes the value of a lambda expression. A
lambda type is characterized but not determined by a return type that is inferred from the
function body of the lambda expression, and by the number, order, and type of parameters
that are expected for function calls. The function type that has the same return type and
list of parameter types as the lambda is called the prototype of the lambda. A lambda type
has no syntax derivation.”” Obijects of such a type shall only be defined as a capture (of
another lambda expression) or by an underspecified declaration for which the lambda type is
inferred.”" An object of lambda type shall only be modified by simple assignment (6.5.16.1). _

— A pointer type may be derived from a function type or an object type, called the referenced type. A
pointer type describes an object whose value provides a reference to an entity of the referenced
type. A pointer type derived from the referenced type T is sometimes called “pointer to T”.
The construction of a pointer type from a referenced type is called “pointer type derivation”.
A pointer type is a complete object type.

— An atomic type describes the type designated by the construct _Atomic (type-name). (Atomic
types are a conditional feature that implementations need not support; see 6.10.8.3.)

These methods of constructing derived types can be applied recursively.

Arithmetic types and pointer types are collectively called scalar types. Array and structure types are
collectively called aggregate types.>?

An array type of unknown size is an incomplete type. It is completed, for an identifier of that type,
by specifying the size in a later declaration (with internal or external linkage). A structure or union
type of unknown content (as described in 6.7.2.3) is an incomplete type. It is completed, for all
declarations of that type, by declaring the same structure or union tag with its defining content later
in the same scope.

A type has known constant size if the type is not incomplete and is not a variable length array type.

Array, function, and pointer types are collectively called derived declarator types. A declarator type
derivation from a type T is the construction of a derived declarator type from T by the application of
an array-type, a function-type, or a pointer-type derivation to T.

*"Not even a typeof type specifier with lambda type can be formed. So there is no syntax to make a lambda type a choice
*! Another possibility to create an object that has an effective lambda type is to copy a lambda value into allocated storage

52)Note that aggregate type does not include union type because an object with union type can only contain one member at
a time.

Language modifications to ISO/IEC 9899:2018, § 6.2.5 page 33

N2694 auto-return-C17.. §6.3.2.2, working draft — March 28, 2021 CORE 202101 (E)

the object. A modifiable lvalue is an Ivalue that does not have array type, does not have an incomplete
type, does not have a const-qualified type, and if it is a structure or union, does not have any
member (including, recursively, any member or element of all contained aggregates or unions) with
a const-qualified type.

Except when it is the operand of the typeof specifier, the sizeof operator, the unary & operator,
the++ operator, the- - operator, or the left operand of the . operator or an assignment operator, an
lvalue that does not have array type is converted to the value stored in the designated object (and is
no longer an lvalue); this is called lvalue conversion. If the lvalue has qualified type, the value has the
unqualified version of the type of the lvalue; additionally, if the lvalue has atomic type, the value has
the non-atomic version of the type of the Ivalue; otherwise, the value has the type of the Ivalue. If the
lvalue has an incomplete type and does not have array type, the behavior is undefined. If the lvalue
designates an object of automatic storage duration that could have been declared with the register
storage class (never had its address taken), and that object is uninitialized (not declared with an
initializer and no assignment to it has been performed prior to use), the behavior is undefined.

Except when it is the operand of the typeof specifier, the unary sizeof operator, or the unary &
operator, or is a string literal used to initialize an array, an expression that has type “array of type” is
converted to an expression with type “pointer to type” that points to the initial element of the array
object and is not an lvalue. If the array object has register storage class, the behavior is undefined.

A function designator is an expression that has function type. Except when it is the operand of the
typeof specifier, the sizeof operator,”? or the unary & operator, a function designator with type
“function returning type” is converted to an expression that has type “pointer to function returning

type”.

Closures shall not be converted to any other object type. A function literal with a type “lambda
with prototype P” can be converted implicitly or explicitly to an expression that has type “pointer
to Q”, where Q is a function type that is compatible with P.” The function pointer value behaves
as if a function F of type P with internal linkage, a unique name, and the same parameter list and
function body as for A where uses of identifiers from an outer scope in expressions that are not
evaluated are replaced by proper types or values, had been defined in the translation unit,_and
the function pointer had been formed by function-to-pointer conversion of that function. The only
difference is that the function pointer needs not necessarily to be distinct from any other compatible
function pointer that provides the same observable behavior.

Forward references: lambda expressions (??) address and indirection operators (6.5.3.2), assign-
ment operators (6.5.16), common definitions <stddef.h> (7.19), typeof specifier 6.7.9, initialization
(6.7.10), postfix increment and decrement operators (6.5.2.4), prefix increment and decrement opera-
tors (6.5.3.1), the sizeof and _Alignof operators (6.5.3.4), structure and union members (6.5.2.3).

6.3.2.2 void

The (nonexistent) value of a void expression (an expression that has type void) shall not be used in any
way, and implicit or explicit conversions (except to void) shall not be applied to such an expression.
If an expression of any other type is evaluated as a void expression, its value or designator is
discarded. (A void expression is evaluated for its side effects.)

6.3.2.3 Pointers

A pointer to void may be converted to or from a pointer to any object type. A pointer to any object
type may be converted to a pointer to void and back again; the result shall compare equal to the
original pointer.

For any qualifier g, a pointer to a non-g-qualified type may be converted to a pointer to the g-qualified
version of the type; the values stored in the original and converted pointers shall compare equal.

An integer constant expression with the value 0, or such an expression cast to type void x, is called

72)Because this conversion does not occur, the operand of the sizeof operator remains a function designator and violates
the constraints in 6.5.3.4.

71t follows that lambdas of different type cannot be assigned to each other. Thus, in the conversion of a function literal
to a function pointer, the prototype of the originating lambda expression can be assumed to be known, and a diagnostic can
be issued if the prototypes do not aggree.

Language modifications to ISO/IEC 9899:2018, § 6.3.2.3 page 41

1

CORE 202101 (E) § 6.5.2, working draft — March 28, 2021 auto-return-C17.. N2694

default : assignment-expression

Constraints

A generic selection shall have no more than one default generic association. The type name in a
generic association shall specify a complete object type other than a variably modified type. No two
generic associations in the same generic selection shall specify compatible types. The type of the
controlling expression is the type of the expression as if it had undergone an lvalue conversion, !V
array to pointer conversion, or function to pointer conversion. That type shall be compatible with at
most one of the types named in the generic association list. If a generic selection has no default
generic association, its controlling expression shall have type compatible with exactly one of the
types named in its generic association list.

Semantics

The controlling expression of a generic selection is not evaluated. If a generic selection has a generic
association with a type name that is compatible with the type of the controlling expression, then the
result expression of the generic selection is the expression in that generic association. Otherwise, the
result expression of the generic selection is the expression in the default generic association. None
of the expressions from any other generic association of the generic selection is evaluated.

The type and value of a generic selection are identical to those of its result expression. It is an
lvalue, a function designator, or a void expression if its result expression is, respectively, an lvalue,
a function designator, or a void expression. A generic selection that is the operand of a typeof
specification behaves as if the selected assignment expression had been the operand.

EXAMPLE The cbrt type-generic macro could be implemented as follows:

#define cbrt(X) _Generic((X),
long double: chbrtl,
default: cbrt,
float: cbrtf
) (X)

~ s

6.5.2 Postfix operators

Syntax

postfix-expression:
primary-expression
postfix-expression [expression]
postfix-expression (argument-expression-listop)
postfix-expression . identifier
postfix-expression => identifier
postfix-expression ++
postfix-expression -
(type-name) { initializer-list }
(type-name) { initializer-list , }
lambda-expression

argument-expression-list:
assignment-expression
argument-expression-list , assignment-expression

101) An Ivalue conversion drops type qualifiers.

modifications to ISO/IEC 9899:2018, § 6.5.2 page 58 Language

N2694 auto-return-C17.. §6.5.2.1, working draft — March 28, 2021 CORE 202101 (E)

6.5.2.1 Array subscripting
Constraints

One of the expressions shall have type “pointer to complete object type”, the other expression shall
have integer type, and the result has type “type”.

Semantics

A postfix expression followed by an expression in square brackets [] is a subscripted designation of
an element of an array object. The definition of the subscript operator [] is that E1[E2] is identical
to (x((E1)+(E2))). Because of the conversion rules that apply to the binary + operator, if E1is an
array object (equivalently, a pointer to the initial element of an array object) and E2 is an integer,
E1[E2] designates the E2 -th element of E1 (counting from zero).

Successive subscript operators designate an element of a multidimensional array object. If E is an
n-dimensional array (n > 2) with dimensions i x j x --- x k, then E (used as other than an Ivalue) is
converted to a pointer to an (n — 1)-dimensional array with dimensions j x - -- x k. If the unary *
operator is applied to this pointer explicitly, or implicitly as a result of subscripting, the result is the
referenced (n — 1)-dimensional array, which itself is converted into a pointer if used as other than an
lvalue. It follows from this that arrays are stored in row-major order (last subscript varies fastest).

EXAMPLE Consider the array object defined by the declaration

int x[31[5];

Here x
isa 3 x 5 array of

int s; more precisely, x is an array of three element objects, each of which is an array of five int s. In the expression x[1i],
which is equivalent to (*((x)+(1))), x is first converted to a pointer to the initial array of five int s. Then 1 is adjusted
according to the type of x, which conceptually entails multiplying i by the size of the object to which the pointer points,
namely an array of five int objects. The results are added and indirection is applied to yield an array of five int s. When
used in the expression x[1][]j], that array is in turn converted to a pointer to the first of the int s, so x[1][]j] yields an int.

Forward references: additive operators (6.5.6), address and indirection operators (6.5.3.2), array
declarators (6.7.6.2).

6.5.2.2 Function calls
Constraints

The expression-that-denotes-the-ealled-funetionpostfix expression!?? shall have type-lambda type

or pointer to function type, returning void or returning a complete object type other than an array

type.

If the expression-that-denotes-the ealled-funetionhas-a-type that postfix expression is a lambda or if
the type of the function includes a prototype, the number of arguments shall agree with the number

of parameters of the function or lambda type. Each argument shall have a type such that its value
may be assigned to an object with the unqualified version of the type of its corresponding parameter.

Semantics

A postfix expression followed by parentheses () containing a possibly empty, comma-separated list
of expressions is a function call. The postfix expression denotes the called function or lambda. The
list of expressions specifies the arguments to the function or lambda.

An argument may be an expression of any complete object type. In preparing for the call to a
function, the arguments are evaluated, and each parameter is assigned the value of the corresponding
argument.'®®

If the expression that denotes the called function has lambda type or type pointer to function
returning an object type, the function call expression has the same type as that object type, and has
the value determined as specified in 6.8.6.4. Otherwise, the function call has type void.

192)Most often, this is the result of converting an identifier that is a function designator.

109 A function or lambda can change the values of its parameters, but these changes cannot affect the values of the arguments.
On the other hand, it is possible to pass a pointer to an object, and the function or lambda can then change the value of the
object pointed to. A parameter declared to have array or function type is adjusted to have a pointer type as described in 6.9.1.

Language modifications to ISO/IEC 9899:2018, § 6.5.2.2 page 59

10

11

12

CORE 202101 (E) § 6.5.2.3, working draft — March 28,2021 auto-return-C17.. N2694

If the expression that denotes the called function has a type that does not include a prototype, the
integer promotions are performed on each argument, and arguments that have type float are
promoted to double. These are called the default argument promotions. If the number of arguments
does not equal the number of parameters, the behavior is undefined. If the function is defined with
a type that includes a prototype, and either the prototype ends with an ellipsis (, ...) or the types
of the arguments after promotion are not compatible with the types of the parameters, the behavior
is undefined. If the function is defined with a type that does not include a prototype, and the types
of the arguments after promotion are not compatible with those of the parameters after promotion,
the behavior is undefined, except for the following cases:

— one promoted type is a signed integer type, the other promoted type is the corresponding
unsigned integer type, and the value is representable in both types;

— both types are pointers to qualified or unqualified versions of a character type or void.

If the expression that denotes the called function is a lambda or is a function has a type that does
include a prototype, the arguments are implicitly converted, as if by assignment, to the types of
the corresponding parameters, taking the type of each parameter to be the unqualified version of
its declared type. The ellipsis notation in a function prototype declarator causes argument type
conversion to stop after the last declared parameter. The default argument promotions are performed
on trailing arguments.

No other conversions are performed implicitly; in particular, the number and types of arguments are
not compared with those of the parameters in a function definition that does not include a function
prototype declarator.

If the lambda or function is defined with a type that is not compatible with the type (of the expression)
pointed to by the expression that denotes the called lambda or function, the behavior is undefined.

There is a sequence point after the evaluations of the function designator and the actual arguments
but before the actual call. Every evaluation in the calling function (including other function calls) that
is not otherwise specifically sequenced before or after the execution of the body of the called function
or lambda is indeterminately sequenced with respect to the execution of the called function.!¥

Recursive function calls shall be permitted, both directly and indirectly through any chain of other
functions or lambdas.

EXAMPLE In the function call

(xpf[f1()]1) (f2(), f3() + f4())

the functions f1, f2, 3, and f4 can be called in any order. All side effects have to be completed before the function pointed
toby pf[f1()] is called.

Forward references: function declarators (including prototypes) (6.7.6.3), function definitions
(6.9.1), the return statement (6.8.6.4), simple assignment (6.5.16.1).

6.5.2.3 Structure and union members

Constraints

The first operand of the . operator shall have an atomic, qualified, or unqualified structure or union
type, and the second operand shall name a member of that type.

The first operand of the-> operator shall have type “pointer to atomic, qualified, or unqualified
structure” or “pointer to atomic, qualified, or unqualified union”, and the second operand shall
name a member of the type pointed to.

Semantics

A postfix expression followed by the . operator and an identifier designates a member of a structure
or union object. The value is that of the named member,%%) and is an Ivalue if the first expression is

104
105

)In other words, function executions do not “interleave” with each other.
)If the member used to read the contents of a union object is not the same as the member last used to store a value in the
object, the appropriate part of the object representation of the value is reinterpreted as an object representation in the new

modifications to ISO/IEC 9899:2018, § 6.5.2.3 page 60 Language

CORE 202101 (E) § 6.5.2.6, working draft — March 28,2021 auto-return-C17.. N2694

The first always has static storage duration and has type array of char, but need not be modifiable; the last two have
automatic storage duration when they occur within the body of a function, and the first of these two is modifiable.

13 EXAMPLE 6 Like string literals, const-qualified compound literals can be placed into read-only memory and can even be
shared. For example,

(const char []){"abc"} == "abc"

might yield 1 if the literals” storage is shared.

14 EXAMPLE 7 Since compound literals are unnamed, a single compound literal cannot specify a circularly linked object. For
example, there is no way to write a self-referential compound literal that could be used as the function argument in place of
the named object endless_zeros below:

struct int_list { int car; struct int_list *cdr; };
struct int_list endless_zeros = {0, &endless_zeros};
eval(endless_zeros);

15 EXAMPLE 8 Each compound literal creates only a single object in a given scope:

struct s { int i; };
int f (void)
{
struct s xp = 0, xq;
int j = 0;
again:
q=mp, p=_&((struct s){ j++ });
if (j < 2) goto again;
return p == q && q->i == 1;
}

The function f () always returns the value 1.

16 Note that if an iteration statement were used instead of an explicit goto and a labeled statement, the lifetime of the unnamed
object would be the body of the loop only, and on entry next time around p would have an indeterminate value, which would
result in undefined behavior.

Forward references: type names (6.7.7), initialization (6.7.10).

6.5.2.6 Lambda expressions
Syntax

1 lambda-expression:
capture-clause parameter-clauseqp attribute-specifier-sequenceop: function-body

capture-clause:
[]
[capture-list]
[capture-default]

capture-list:
value-capture
capture-list , value-capture

capture-default:

value-capture:
capture
capture = assignment-expression

modifications to ISO/IEC 9899:2018, § 6.5.2.6 page 64 Language

N2694 auto-return-C17.. §6.5.2.6, working draft — March 28, 2021 CORE 202101 (E)

capture:
identifier

parameter-clause:
(parameter-listopy)

Constraints

A capture that is listed in the capture list is an explicit capture . If the capture clause is [=], id is
the name of an object with automatic storage duration in a surrounding scope that is not an array,
id is used within the function body of the lambda without redeclaration and id is not a parameter,

the effect is as if a capture list had been specified with id as a member. Such a capture is an implicit
capture . _

Captures without assignment expression shall be names of complete objects with automatic storage
duration in a scope surrounding the lambda expression that do not have array type and that are
visible at the point of evaluation of the lambda expression. An identifier shall appear at most once;

Within the lambda expression, identifiers (including explicit and implicit captures, and parameters

of the lambda) shall be used according to the usual scoping rules, but outside the assienment
expression of a value capture the following exceptions apply to identifiers that are declared in a
scope that strictly includes the lambda expression:

— Obijects or e definitions with VM type shall not be used.
— Obijects with automatic storage duration shall not be evaluated.!'?

The function body shall be such that a return type fype according to the rules in 6.8.6.4 can be

inferred.

Semantics

The optional attribute specifier sequence in a lambda expression appertains to the resulting lambda
value. If the parameter clause is omitted, a clause of the form () is assumed. A lambda expression
without any capture is called a function literal expression , otherwise it is called a closure expression .

A lambda value originating from a function literal expression is called a function literal , otherwise

Similar to a function definition, a lambda expression forms a single block scope that comprises its
capture clause, its parameter clause and its function body. Each explicit capture and parameter has
a scope of visibility that starts immediately after its definition is completed and extends to the end
of the function body. The scope of visibility of implicit captures is the function body. In particular,
captures and parameters are visible throughout the whole function body, unless they are redeclared
in a depending block within that function body. Captures and parameters have automatic storage
duration; in each function call to the formed lambda value, a new instance of each capture and
parameter is created and initialized in order of declaration and has a lifetime until the end of the
call, only that the addresses of captures are not necessarily unique.

If a capture id is defined without an assignment expression, the assignment expression is assumed
to be id itself, referring to the object of automatic storage duration of the surrounding scope that
exists according to the constraints.!'?

The implicit or explicit assicnment expression E in the definition of a value capture determines
a value Ey with type Ty, which is E after possible lvalue, array-to-pointer or function-to-pointer

12)1dentifiers of visible automatic objects that are not captures and that do not have a VM type, may still be used if they are
not evaluated, for example in sizeof expressions, in typeof specifiers (if they are not lambdas themselves) or as controllin

113)The evaluation rules in the next paragraph then stipulate that it is evaluated at the point of evaluation of the lambda
expression, and that within the body of the lambda an unmutable auto object of the same name, value and type is made

accesssible.

Language modifications to ISO/IEC 9899:2018, § 6.5.2.6 page 65

10

11

12

13

14

CORE 202101 (E) § 6.5.2.6, working draft — March 28,2021 auto-return-C17.. N2694

conversion. The type of the capture is Ty const and its value is E, for all evaluations in all function
calls to the lambda value. If, within the function body, the address of the capture id or one of
its members is taken, either explicitly by applying a unary & operator or by an array to pointer

conversion,!'¥) and that address is used to modify the underlying object, the behavior is undefined.

during each evaluation of the lambda expression. The evaluation of assignment expressions for
explicit value captures is sequenced in order of declaration; an earlier capture may occur within an
assignment expression of a later one. The objects of automatic storage duration corresponding to
implicit value captures are evaluated unsequenced among each other. The evaluation of a lambda
expression is sequenced before any use of the resulting lambda value. For each call to a lambda
value, explicit value captures (with type and value as determined during the evaluation of the
lambda expression) and then parameter types and values are determined in order of declaration.
Explicit value captures and earlier parameters may occur within the declaration of a later one.

For each lambda expression, the return type type is inferred as indicated in the constraints. A
lambda expression A has an unspecified lambda type L that is the same for every evaluation of .
As a result of the expression, a value of type L is formed that identifies A and the specific set of
values of the identifiers in the capture clause for the evaluation, if any. This is called a lambda value .
It is unspecified, whether two lambda expressions A and « share the same lambda type even if they

are lexically equal but appear at different points of the program. Obiects of lambda type shall not
be modified.

Recommended practice

To avoid their accidental modification, it is recommended that declarations of lambda type objects
are const qualified. Whenever possible, implementations are encouraged to diagnose any attempt
to modify a lambda type obiject.

EXAMPLE 1 The usual scoping rules extend to lambda expressions; the concept of captures only restricts which identifiers
may be evaluated or not.

static long var;

int main(void)

L 1(void){ printf("sld\n", var); }(); //_valid, prints 0
var](void){ printf("sld\n", var); }(); // invalid, var is static

[var] (void printf("sd\n", var); }(); // valid, prints 5
L 1(void printf("sd\n", var); }(); // invalid

) (
) (
void){ printf("%zu\n", sizeof var); }(); // valid, prints sizeof(int)
) (
)

(
(printf("%zu\n", sizeof var); rints sizeof(int)

Lo ; .
L. _1(void){ extern long var; printf("%ld\n", var; }(); // valid, prints 0
b3

EXAMPLE 2 The following uses a function literal as a comparison function argcument for qsort.

#define SORTFUNC(TYPE) [](size_t nmemb, TYPE A[nmemb]) \
(void constx x, void constx /*_comparison lambda */ \
TYPE X = *(TYPE constx)x \
TYPE Y = x(TYPE constx) \

return (X <Y) ? -1 : ((X>Y) ? 1 : 0); /x return of type int x/ \

§L

return A

114)The capture does not have array type, but if it has a union or structure e, one of its members may have such a type.

modifications to ISO/IEC 9899:2018, § 6.5.2.6 page 66 Language

15

N2694 auto-return-C17.. §6.5.2.6, working draft — March 28, 2021 CORE 202101 (E)

s
1o C[5]1 ={4, 3, 2,1, 0, };
SORTFUNC(long) (5, C); //_ lambda — (pointer —) function call

auto const sortDouble = SORTFUNC(double); // lambda value — lambda object

doublex (*sF)(size_t nmemb, double[nmemb]) = sortDouble; // conversion

doublex ap = sortDouble(4, (double {5, 8.9, 0.1, 99, });

double B[27] = { /x some values ... *x/ };

doublex (*sG)(size_t nmemb, double[nmemb]) = SORTFUNC(double); // conversion

This code evaluates the macro SORTFUNC twice, therefore in total four lambda expressions are formed.

The function literals of the “comparison lambdas” are not operands of a function call expression, and so by conversion a
pointer to function is formed and passed to the corresponding call of gsort. Since the respective captures are empty, the
effectis as if to define two comparison functions, that could equally well be implemented as static functions with auxiliary
names and these names could be used to pass the function pointers to gsort.

The outer lambdas are again without capture. In the first case, for Long, the lambda value is subject to a function call, and
it is unspecified if the function call uses a specific lambda type or directly uses a function pointer. For the second, a copy
of the lambda value is stored in the variable sortDouble and then converted to a function pointer sF. Other than for the
difference in the function arguments, the effect of calling the lambda value (for the compound literal) or the function pointer
(for array B) is the same.

For optimization purposes, an implementation may fold lambda values that are expanded at different points of the program
such that effectively only one function is generated. For example here the function pointers sF and sG may or may not be
equal

EXAMPLE 3

void matmult(size_t k, size_ t 1, size_t m

double const A[k][1], double const B[l][m], double const C[k][m
// dot product with stride of m for B

// ensure constant propagation of 1 and m
_auto const A6 = [1,m](double const v[l], double const B[l][m], size_t mO

ret += v[i]*B[i][m@];
Y §
return ret;
i
/L yector matrix product
// ensure constant propagation of 1L and m, and accessibility of A\J
_auto const \u = [1, m, Ad](double const v[l], double const B[l][m], double res[m])
for (size_t m0 = 0; mO < m; ++mO) {
res[m@] = Xo(v, B, mO);
Y §
.3

double (*Cp)[m] = C[KkO];
3
¥

This function evaluates two closures; Ad has a return type of double, Az of void. Both lambda values serve repeatedly as.
first operand to function evaluation but the evaluation of the captures is only done once for each of the closures. For the
purpose of optimization, an implementation could generate copies of the underlying functions for each evaluation of such
a dlosure such that the values of the captures 1 and m are replaced on a machine instruction level.

Language modifications to ISO/IEC 9899:2018, § 6.5.2.6 page 67

1

CORE 202101 (E) § 6.5.4, working draft — March 28, 2021 auto-return-C17.. N2694

sizeof array / sizeof array[0]

EXAMPLE 3 In this example, the size of a variable length array is computed and returned from a function:

#include <stddef.h>

size_t fsize3(int n)

{
char b[n+3]; // variable length array
return sizeof b; // execution time sizeof
}
int main()
{
size_t size;
size = fsize3(10); // fsize3 returns 13
return 0;
}

Forward references: common definitions <stddef . h>(7.19), declarations (6.7), structure and union
specifiers (6.7.2.1), type names (6.7.7), array declarators (6.7.6.2).

6.5.4 Cast operators

Syntax

cast-expression:
unary-expression
(type-name) cast-expression

Constraints

Unless the type name specifies a void type, the type name shall specify atomic, qualified, or
unqualified scalar type, and the operand shall have scalar type, or, the type name shall specify an

atomic, qualified, or unqualified pointer to function with prototype, and the operand is a function
literal such a conversion (6.3.2.1) from the function literal to the function pointer type is defined.

Conversions that involve pointers, other than where permitted by the constraints of 6.5.16.1, shall be
specified by means of an explicit cast.

A pointer type shall not be converted to any floating type. A floating type shall not be converted to
any pointer type.

Semantics

Preceding an expression by a parenthesized type name converts the value of the expression to the
unqualified version of the named type. This construction is called a cast.!'”) A cast that specifies no
conversion has no effect on the type or value of an expression.

If the value of the expression is represented with greater range or precision than required by the type
named by the cast (6.3.1.8), then the cast specifies a conversion even if the type of the expression is
the same as the named type and removes any extra range and precision.

Forward references: equality operators (6.5.9), function declarators (including prototypes) (6.7.6.3),
simple assignment (6.5.16.1), type names (6.7.7).

6.5.5 Multiplicative operators

Syntax

multiplicative-expression:
cast-expression

17) A cast does not yield an lvalue.

modifications to ISO/IEC 9899:2018, § 6.5.5 page 70 Language

N2694 auto-return-C17.. §6.5.16, working draft — March 28, 2021 CORE 202101 (E)

EXAMPLE The common type that results when the second and third operands are pointers is determined in two independent
stages. The appropriate qualifiers, for example, do not depend on whether the two pointers have compatible types.

Given the declarations

const void *c_vp;
void *vp;

const int xc_ip;
volatile int xv_ip;
int xip;

const char *c_cp;

the third column in the following table is the common type that is the result of a conditional expression in which the first two
columns are the second and third operands (in either order):

c_vp c_ip const void *

v_ip © volatile int x

c_ip v_ip const volatile int *
vp c_cp const void *

ip c_ip const int x

vp ip void x

6.5.16 Assignment operators

Syntax

assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression

assignment-operator: one of
= %= [= %= 4= == <<= >>= &= "= I =

Constraints
An assignment operator shall have a modifiable lvalue as its left operand.

Semantics

An assignment operator stores a value in the object designated by the left operand. An assignment
expression has the value of the left operand after the assignment,'?¥ but is not an Ivalue. The type of
an assignment expression is the type the left operand would have after lvalue conversion. The side
effect of updating the stored value of the left operand is sequenced after the value computations of
the left and right operands. The evaluations of the operands are unsequenced.

6.5.16.1 Simple assignment
Constraints
One of the following shall hold:!?

— the left operand has atomic, qualified, or unqualified arithmetic type, and the right has
arithmetic type;

— the left operand has an atomic, qualified, or unqualified version of a structure or union type
compatible with the type of the right;

— the left operand has the unqualified version of the lambda type of the right;

— the left operand has atomic, qualified, or unqualified pointer type, and (considering the type
the left operand would have after Ivalue conversion) both operands are pointers to qualified

129 The implementation is permitted to read the object to determine the value but is not required to, even when the object
has volatile-qualified type.

125 The asymmetric appearance of these constraints with respect to type qualifiers is due to the conversion (specified in
6.3.2.1) that changes lvalues to “the value of the expression” and thus removes any type qualifiers that were applied to the
type category of the expression (for example, it removes const but not volatile from the type int volatile * const).

Language modifications to ISO/IEC 9899:2018, § 6.5.16.1 page 77

CORE 202101 (E) § 6.5.16.1, working draft — March 28,2021 auto-return-C17.. N2694

or unqualified versions of compatible types, and the type pointed to by the left has all the
qualifiers of the type pointed to by the right;

— the left operand has atomic, qualified, or unqualified pointer type, and (considering the type
the left operand would have after Ivalue conversion) one operand is a pointer to an object type,
and the other is a pointer to a qualified or unqualified version of void, and the type pointed to
by the left has all the qualifiers of the type pointed to by the right;

— the left operand is an atomic, qualified, or unqualified pointer to function with a prototype,

the right operand is a function literal, and the prototypes of the function pointer and of the
function literal shall be such that a conversion from the function literal to the function pointer
type is defined;

— the left operand is an atomic, qualified, or unqualified pointer, and the right is a null pointer

constant; or

— the left operand has type atomic, qualified, or unqualified _Bool, and the right is a pointer.

Semantics
In simple assignment (=), the value of the right operand is converted to the type of the assignment
expression and replaces the value stored in the object designated by the left operand.

If the value being stored in an object is read from another object that overlaps in any way the
storage of the first object, then the overlap shall be exact and the two objects shall have qualified or
unqualified versions of a compatible type; otherwise, the behavior is undefined.

EXAMPLE 1 In the program fragment

int f(void);
char c;

the int value returned by the function could be truncated when stored in the char, and then converted back to int width
prior to the comparison. In an implementation in which “plain” char has the same range of values as unsigned char (and
char is narrower than int), the result of the conversion cannot be negative, so the operands of the comparison can never
compare equal. Therefore, for full portability, the variable c would be declared as int.

EXAMPLE 2 In the fragment:

char c;
int i;
long 1;

the value of 1 is converted to the type of the assignment expression ¢ = i, that is, char type. The value of the expression
enclosed in parentheses is then converted to the type of the outer assignment expression, that is, long int type.

EXAMPLE 3 Consider the fragment:

const char xxcpp;
char x*p;
const char c = 'A’;

cpp = &p; // constraint violation
xCcpp = &C; // valid
xp = 0; // valid

The first assignment is unsafe because it would allow the following valid code to attempt to change the value of the const
object c.

EXAMPLE 4 Lambda types can be assigned in a portable way, only if both lambda types originate from the same lambda
expression.

modifications to ISO/IEC 9899:2018, § 6.5.16.1 page 78 Language

N2694 § 6.5.16.2, working draft — March 28, 2021 CORE 202101 (E)

___auto A = [s = 0]() uts("hello"); };
___auto x = [s = 0]() uts("hello"); };

6.5.16.2 Compound assignment
Constraints

For the operators+= and-= only, either the left operand shall be an atomic, qualified, or unqualified
pointer to a complete object type, and the right shall have integer type; or the left operand shall have
atomic, qualified, or unqualified arithmetic type, and the right shall have arithmetic type.

For the other operators, the left operand shall have atomic, qualified, or unqualified arithmetic type,
and (considering the type the left operand would have after Ivalue conversion) each operand shall
have arithmetic type consistent with those allowed by the corresponding binary operator.

Semantics

A compound assignment of the form E1 op= E2 is equivalent to the simple assignment expression
El = El op (E2), except that the lvalue E1 is evaluated only once, and with respect to an inde-
terminately-sequenced function call, the operation of a compound assignment is a single evalu-
ation. If E1 has an atomic type, compound assignment is a read-modify-write operation with
memory_order_seq_cst memory order semantics.

NOTE Where a pointer to an atomic object can be formed and E1 and E2 have integer type, this is equivalent to the following
code sequence where T1 is the type of E1 and T2 is the type of E2:

Tl *xaddr = &E1;

T2 val = (E2);
Tl old = *addr;
Tl new;

do {

new = old op val;
} while (!atomic_compare_exchange_strong(addr, &old, new));

with new being the result of the operation.

If E1 or E2 has floating type, then exceptional conditions or floating-point exceptions encountered during discarded
evaluations of new would also be discarded in order to satisfy the equivalence of E1 op= E2 and E1 = E1 op (E2). For
example, if Annex F is in effect, the floating types involved have IEC 60559 formats, and FLT_EVAL_METHOD is O, the
equivalent code would be:

#include <fenv.h>
#pragma STDC FENV_ACCESS ON
/* ... %/
fenv_t fenv;
Tl *xaddr = &E1;
T2 val = E2;
T1 old = xaddr;
Tl new;
feholdexcept (&fenv);
for (;;) {
new = old op val;
if (atomic_compare_exchange_strong(addr, &old, new))
break;
feclearexcept (FE_ALL_EXCEPT) ;
}

feupdateenv (&fenv) ;

If FLT_EVAL_METHOD is not 0, then T2 is expected to be a type with the range and precision to which E2 is evaluated in order

Language modifications to ISO/IEC 9899:2018, § 6.5.16.2 page 79

N2694 auto-return-C17.. §6.7.6.1, working draft — March 28, 2021 CORE 202101 (E)

* type-qualifier-listop, pointer
type-qualifier-list:

type-qualifier

type-qualifier-list type-qualifier
parameter-type-list:

parameter-list

parameter-list ,
parameter-list:

parameter-declaration

parameter-list , parameter-declaration
parameter-declaration:

declaration-specifiers declarator

declaration-specifiers abstract-declaratorop;
identifier-list:

identifier

identifier-list , identifier

Semantics

Each declarator declares one identifier, and asserts that when an operand of the same form as
the declarator appears in an expression, it designates a function or object with the scope, storage
duration, and type indicated by the declaration specifiers.

A full declarator is a declarator that is not part of another declarator. If, in the nested sequence of
declarators in a full declarator, there is a declarator specifying a variable length array type, the type
specified by the full declarator is said to be variably modified. Furthermore, any type derived by
declarator type derivation from a variably modified type is itself variably modified.

In the following subclauses, consider a declaration

TD1

where T contains the declaration specifiers that specify a type T (such as int) and D1 is a declarator
that contains an identifier ident. The type specified for the identifier ident in the various forms of
declarator is described inductively using this notation.

If, in the declaration “T D1”, D1 has the form
identifier

then the type specified for ident is T.

If, in the declaration “T D1”, D1 has the form
(D)

then ident has the type specified by the declaration “T D”. Thus, a declarator in parentheses is
identical to the unparenthesized declarator, but the binding of complicated declarators may be
altered by parentheses.

Implementation limits

As discussed in 5.2.4.1, an implementation may limit the number of pointer, array, and function
declarators that modify an arithmetic, structure, union, or veid type, either directly or via one or
more typedef s.

Forward references: array declarators (6.7.6.2), type definitions (6.7.8)—, type inference (6.7.11).
6.7.6.1 Pointer declarators

Semantics
If, in the declaration “T D1”, D1 has the form

* type-qualifier-listope D
and the type specified for ident in the declaration “T D” is “derived-declarator-type-list T”, then the

Language modifications to ISO/IEC 9899:2018, § 6.7.6.1 page 99

CORE 202101 (E) § 6.7.9, working draft — March 28, 2021 auto-return-C17.. N2694

declare a typedef name t with type signed int, a typedef name plain with type int, and a structure with three bit-field
members, one named t that contains values in the range [0, 15], an unnamed const-qualified bit-field which (if it could
be accessed) would contain values in either the range [—15, +15] or [—16, +15], and one named r that contains values in
one of the ranges [0, 31], [—15, +15], or [—16, 4+15]. (The choice of range is implementation-defined.) The first two bit-field
declarations differ in that unsigned is a type specifier (which forces t to be the name of a structure member), while const is
a type qualifier (which modifies t which is still visible as a typedef name). If these declarations are followed in an inner scope

by

t f(t (t));
long t;

then a function f is declared with type “function returning signed int with one unnamed parameter with type pointer
to function returning signed int with one unnamed parameter with type signed int”, and an identifier t with type
long int.

EXAMPLE 4 On the other hand, typedef names can be used to improve code readability. All three of the following
declarations of the signal function specify exactly the same type, the first without making use of any typedef names.

typedef void fv(int), (xpfv)(int);

void (*signal(int, void (x)(int))) (int);
fv xsignal(int, fv x);
pfv signal(int, pfv);

EXAMPLE 5 If a typedef name denotes a variable length array type, the length of the array is fixed at the time the typedef
name is defined, not each time it is used:

void copyt(int n)

{
typedef int B[n]; // B 1is n ints, n evaluated now
n+= 1;
B a; // a is n ints, n without += 1
int b[n]; // a and b are different sizes
for (int i =1; 1 < n; i++)

ali-1] = b[i];
}

6.7.9 typeof specifier

Syntax
typeof-specifier:
typeof (type-name)
typeof (expression)
Constraints

The type name or expression shall be valid and have a function or object type, but not a lambda
type. No new type declaration shall be formed by the type name or expression themselves.!)

Semantics

A typeof specifier can be used in places where other type specifiers are used to declare or define
objects, members or functions. It stands in for the unmodified type of the type name or expression,
even where the expression cannot be used for type inference of its type (opaque types, function
types, array types), where a type-qualification should not be dropped, or where an identifier may
only be accessed for its type without evaluating it (within lambda expressions).

If it does not have a variably modified (VM) type, the type name or expression is not evaluated. For
VM types, the same rules for evaluation as for sizeof expressions apply. Analogous to typedef, a

160)This could for example happen if the expression contained the forward declaration of a tag type, such as in

(struct newStructx*)0 where struct newStruct has not yet been declared, or if it uses a compound literal that declares a
new structure or union type in its type-name component.

modifications to ISO/IEC 9899:2018, § 6.7.9 page 106 Language

37

38

39

CORE 202101 (E) § 6.7.11, working draft — March 28,2021 auto-return-C17.. N2694

| |
\ struct S 1= {1, .t =x, .t.1 =41, }; \
| |
L |

The value of 1.t.kis 42, because implicit initialization does not override explicit initialization.

EXAMPLE 13 Space can be “allocated” from both ends of an array by using a single designator:

int a[MAX] = {
1, 3, 5, 7, 9, [MAX-5] =8, 6, 4, 2, 0
T

In the above, if MAX is greater than ten, there will be some zero-valued elements in the middle; if it is less than ten, some of
the values provided by the first five initializers will be overridden by the second five.

EXAMPLE 14 Any member of a union can be initialized:

union { /* ... %/ } u = {.any_member = 42 };

Forward references: common definitions <stddef.h> (7.19).

6.7.11 Type inference

Constraints
An underspecified declaration shall contain the storage class specifier auto.

For an underspecified declaration of identifiers that is not a definition a prior definition for each
identifier shall be visible and there shall be a typeof specifier type that if used to replace the auto
specifier makes the adjusted declaration a valid declaration for each of the identifiers.

For an underspecified declaration that is also a definition of an object and that is not the declaration
of a parameter, the init-declarator corresponding to the object shall be of one of the forms

declarator = assignment-expression
declarator = { assignment-expression }
declarator = { assignment-expression , }

such that the declarator does not declare an array. If the assignment expression has lambda type, the
declaration shall only define one object and shall only consist of storage class specifiers, qualifiers,

the identifier that is to be declared, and the initializer.

For-Unless it is the definition of an object with an assienment expression of lambda type as above,
for an underspecified declaration that is also a definition there shall be a typeof specifier type that if

used to replace the auto specifier makes the adjusted declaration a valid declaration.'®® If it is the
definition of a function, it shall not additionally define objects and the return type of the function
after adjustment shall be the same as determined from return statements (or the lack thereof) as
in 6.9.1. Otherwise, type shall be such that for all defined objects the assignment expression in the
init-declarator, after possible lvalue, array-to-pointer or function-to-pointer conversion, has the
non-atomic, unqualified type of the declared object.!®”

For the correspondence of the declared type of an object and the type of its initializer, integer types
of the same rank and signedness but that are nevertheless different types shall not be considered.!®®
If the assignment-expression is the evaluation of a bit-field designator, the inferred type shall be the
standard integer type that would be chosen by a generic primary expression with the that bit-field as
controlling expression. If type is a VM type, the variable array bounds shall be such that the declared
types for all defined objects and their assignment expression correspond as required for all possible
executions of the current function.

160)The qualification of the type of an Ivalue that is the assignment expression, or the fact that it is atomic, can never be used

to infer such a property of the type of the defined object.

167 For most assignment expressions of integer or floating point type, there are several types that would make such a
declaration valid. The second part of the constraint ensures that among these a unique type is determined that does not need
further conversion to be a valid initializer for the object.

168)This can for example be two different enumerated types that are compatible to the same basic type. Note nevertheless,
that enumeration constants have type int, so using these will never lead to the inference of an enumerated type.

modifications to ISO/IEC 9899:2018, § 6.7.11 page 112 Language

N2694 § 6.7.11, working draft — March 28, 2021 CORE 202101 (E)

Description

Provided-Although there is no syntax derivation to form declarators of lambda type, values of

lambda type can be used as assignment expression and the inferred type is that lambda type,
ossibly qualified. Otherwise, provided the constraints above are respected, in an underspeci-

fied declaration the type of the declared identifiers is the type after the declaration would have been
adjusted by a choice for type as described. If the declaration is also an object definition, the assign-
ment expressions that are used to determine types and initial values of the objects are evaluated
at most once; the scope rules as described in 6.2.1 then also prohibit the use of the identifier of an
object within the assignment expression that determines its type and initial value.

NOTE 1 Because of the relatively complex syntax and semantics of type specifiers, the requirements for type use a typeof
specifier. If for example the identifier or tag name of the type of the initializer expression v in the initializer of x is shadowed

auto x = v;

a type type as required can still be found and the definition can be adjusted as follows:

typeof(v) x = v;

Such a possible adjustment not withstanding, if v is a VM type, the requirements ensure that v is evaluated at most once.

NOTE 2 The scope of the identifier for which the type is inferred only starts after the end of the initializer (6.2.1), so the
assignment expression cannot use the identifier to refer to the object or function that is declared, for example to take its
address. Any use of the identifier in the initializer is invalid, even if an entity with the same name exists in an outer scope.

{
double a = 7;
double b = 9;
{
double b = b * b; // error, RHS uses uninitialized variable
printf("%g\n", a); // valid, uses "a" from outer scope, prints 7
auto a =a *x aj; // error, "a" from outer scope is already shadowed
}
{
auto b = a x a; // valid, uses "a" from outer scope
auto a = b; // valid, shadows "a" from outer scope
printf("%sg\n", a); // valid, uses "a" from inner scope, prints 49
}
}

NOTE 3 Declarations that are the definition of several objects, may make type inferrence difficult and not portable.

enum A { aVal, } aObj = aVal;

enum B { bVal, } bObj = bVal;

int au = alObj, bu = bObj; // valid, values have type compatible to int
auto ax = alObj, bx = bObj; // invalid, same rank but different types

auto ay = albj; // valid, ay has type enum A
auto by = bObj; // valid, by has type enum B
auto az = aVal, bz = bval; // valid, az and bz have type int

struct set { int bits:32; } X = { .bits = 37, };
auto k = 37, m = X.bits; // possibly valid or invalid
double aVM[r];
double bVM[s];
double cVM[3];
double dVM[r];
auto vmPa = & VM, vmPa
auto vmPa &aVM, vmPc
auto vmPa &aVM, vmPd

&bVM; // invalid, different types for r !=s
&cVM; // invalid, even if for some executions r is 3
&dVM; // valid, same array sizes in all executions

Here, the definitions of ax and bx cannot be satified with the same typeof as a replacement for auto; any fixed choice would
require the conversion of at least one of the initializer expressions to the other type. For k and m the difficulty is that both

Language modifications to ISO/IEC 9899:2018, § 6.7.11 page 113

CORE 202101 (E) § 6.8, working draft — March 28, 2021 auto-return-C17.. N2694

6.8 Statements and blocks

Syntax
1 statement:

labeled-statement
compound-statement
expression-statement
selection-statement
iteration-statement
jump-statement

Semantics

2 A statement specifies an action to be performed. Except as indicated, statements are executed in
sequence.

3 A block allows a set of declarations and statements to be grouped into one syntactic unit. The
initializers of objects that have automatic storage duration, and the variable length array declarators
of ordinary identifiers with block scope, are evaluated and the values are stored in the objects
(including storing an indeterminate value in objects without an initializer) each time the declaration
is reached in the order of execution, as if it were a statement, and within each declaration in the
order that declarators appear.

4 A full expression is an expression that is not part of another expression, nor part of a declarator
or abstract declarator. There is also an implicit full expression in which the non-constant size
expressions for a variably modified type are evaluated; within that full expression, the evaluation of
different size expressions are unsequenced with respect to one another. There is a sequence point
between the evaluation of a full expression and the evaluation of the next full expression to be
evaluated.

5 NOTE Each of the following is a full expression:

— afull declarator for a variably modified type,

— an initializer that is not part of a compound literal,

— the expression in an expression statement,

— the controlling expression of a selection statement (if or switch),
— the controlling expression of a while or do statement,

— each of the (optional) expressions of a for statement,

— the (optional) expression in a return statement.

While a constant expression satisfies the definition of a full expression, evaluating it does not depend on nor produce any
side effects, so the sequencing implications of being a full expression are not relevant to a constant expression.

Forward references: expression and null statements (6.8.3), selection statements (6.8.4), iteration
statements (6.8.5), the return statement (6.8.6.4).

6.8.1 Labeled statements

Syntax
1 labeled-statement:
identifier : statement
case constant-expression : statement
default : statement
Constraints

2 A case or default label shall appear only in a switch statement —that is associated with the same

function body as the statement to which the label is attached.'®® Further constraints on such labels
are discussed under the switch statement.

169 Thus, a label that appears within a lambda expression may only be associated to a switch statement within the body of
the lambda.

modifications to ISO/IEC 9899:2018, § 6.8.1 page 116 Language

N2694 auto-return-C17.. §6.8.5.3, working draft — March 28, 2021 CORE 202101 (E)

6.8.5.3 The for statement
The statement

for (clause-1; expression-2; expression-3) statement

behaves as follows: The expression expression-2 is the controlling expression that is evaluated before
each execution of the loop body. The expression expression-3 is evaluated as a void expression after
each execution of the loop body. If clause-1 is a declaration, the scope of any identifiers it declares
is the remainder of the declaration and the entire loop, including the other two expressions; it is
reached in the order of execution before the first evaluation of the controlling expression. If clause-1
is an expression, it is evaluated as a void expression before the first evaluation of the controlling
expression.!”?

Both clause-1 and expression-3 can be omitted. An omitted expression-2 is replaced by a nonzero
constant.

6.8.6 Jump statements

Syntax

jump-statement:
goto identifier ;
continue ;
break ;
return expressionpt ;

Constraints
No jump statement other than return shall have a target that is found in another function body.}”®)

Semantics
A jump statement causes an unconditional jump to another place.

6.8.6.1 The goto statement

Constraints

The identifier in a goto statement shall name a label located somewhere in the enclosing function
body. A goto statement shall not jump from outside the scope of an identifier having a variably
modified type to inside the scope of that identifier.!””)

Semantics

A goto statement causes an unconditional jump to the statement prefixed by the named label in the
enclosing function.

EXAMPLE 1 It is sometimes convenient to jump into the middle of a complicated set of statements. The following outline
presents one possible approach to a problem based on these three assumptions:

1. The general initialization code accesses objects only visible to the current function.

2. The general initialization code is too large to warrant duplication.

3. The code to determine the next operation is at the head of the loop. (To allow it to be reached by continue statements,
for example.)

| /% o w/
\ goto first_time;
\ for (;;) {

179 Thus, clause-1 specifies initialization for the loop, possibly declaring one or more variables for use in the loop; the
controlling expression, expression-2, specifies an evaluation made before each iteration, such that execution of the loop
continues until the expression compares equal to 0; and expression-3 specifies an operation (such as incrementing) that is
performed after each iteration.

79 Thus jump statements other than return may notjump between different functions or cross the boundaries of a lambda
expression, that is, they may notjump into or out of the function body of a lambda. Other features such as signals (7.14) and
long jumps (7.13) may delegate control to points of the program that do not fall under these constraints.

17/ The visibility of labels is restricted such that a goto statement that jumps into or out of a different function body, even

if it is nested within a lambda, is a constraint violation.

Language modifications to ISO/IEC 9899:2018, § 6.8.6.1 page 121

4

CORE 202101 (E) § 6.8.6.2, working draft — March 28,2021 auto-return-C17.. N2694

// determine next operation
/* ... x/
if (need to reinitialize) {
// reinitialize-only code

/* ... x/
first_time:
// general initialization code
/* ... x/
continue;
}
// handle other operations
/* ... x/

EXAMPLE 2 A goto statement is not allowed to jump past any declarations of objects with variably modified types. A jump
within the scope, however, is permitted.

goto lab3; // invalid: going INTO scope of VLA.
{
double alnl;
aljl = 4.4;
lab3:
aljl = 3.3;
goto lab4; // valid: going WITHIN scope of VLA.
aljl = 5.5;
lab4:
aljl = 6.6;
}
goto lab4; // invalid: going INTO scope of VLA.

6.8.6.2 The continue statement

Constraints

A continue statement shall appear only in or as a loop body —that is associated to the same function
body.”

Semantics

A continue statement causes a jump to the loop-continuation portion of the smallest enclosing
iteration statement; that is, to the end of the loop body. More precisely, in each of the statements

while (/* ... x/) { do { for (/x ... x/) {
/* ... %/ /* ... x/ /* ... x/
continue; continue; continue;
/* .. *x/ /*x ... x/ /*x ... x/

contin:; contin:; contin:;

} } while (/* ... x/); }

unless the continue statement shown is in an enclosed iteration statement (in which case it is
interpreted within that statement), it is equivalent to goto contin;.'””

6.8.6.3 The break statement
Constraints
A break statement shall appear only in or as a switch body or loop body ~that is associated to the

same function body.8?

178)
179)

Thus a continue statement by itself may not be used to terminate the execution of the body of a lambda expresssion.

Following the contin: label is a null statement.

180 Thus a break statement by itself may not be used terminate the execution of the body of a lambda expresssion.

modifications to ISO/IEC 9899:2018, § 6.8.6.3 page 122 Language

N2694 auto-return-C17.. §6.8.6.4, working draft — March 28, 2021 CORE 202101 (E)

Semantics
A break statement terminates execution of the smallest enclosing switch or iteration statement.

6.8.6.4 The return statement
Constraints

A return statement with an expression shall not appear in a function body whose return type is
void. A return statement without an expression shall only appear in a function body whose return
type is void.

For a function thathas-body that corresponds to an underspecified definition of a function or to a
lambda, all return statements shall provide expressions with a consistent type or none at all. That
is, if any return statement has an expression, all return statements shall have an expression (after
lvalue, array-to-pointer or function-to-pointer conversion) with the same type; otherwise all return
expressions shall have no expression.

Semantics

A return statement is associated to the innermost function body in which appears. It evaluates
the expression, if any, terminates the execution of the-that function body and returns control to

the-eallerits caller; if it has an expression, the value of the expression is returned to the caller as the
value of the function call expression. A function body may have any number of return statements.

If a return statement with an expression is executed, the value of the expression is returned to the
caller as the value of the function call expression. If the expression has a type different from the
return type of the function in which it appears, the value is converted as if by assignment to an
object having the return type of the function.'8V

For a lambda or for a function that has an underspecified definition, the return type is determined
by the lexically first return statement, if any, that is associated to the function body and is specified
as the type of that expression, if any, after lvalue, array-to-pointer, function-to-pointer conversion, or
as void if there is no expression.

EXAMPLE In:

struct s { double i; } f(void);

union {
struct {
int f1;
struct s f2;
} oul;
struct {
struct s f3;
int f4;
}ou2;
} g
struct s f(void)
{
return g.ul.f2;
}
/* ... %/
g.u2.f3 = f();

there is no undefined behavior, although there would be if the assignment were done directly (without using a function call
to fetch the value).

18D)The return statement is not an assignment. The overlap restriction of 6.5.16.1 does not apply to the case of function
return. The representation of floating-point values can have wider range or precision than implied by the type; a cast can be
used to remove this extra range and precision.

Language modifications to ISO/IEC 9899:2018, § 6.8.6.4 page 123

N2694 auto-return-C17.. §7.1.4, working draft — March 28, 2021 CORE 202101 (E)

— If an argument to a function has an invalid value (such as a value outside the domain of the
function, or a pointer outside the address space of the program, or a null pointer, or a pointer
to non-modifiable storage when the corresponding parameter is not const-qualified) or a type
(after default argument promotion) not expected by a function with a variable number of
arguments, the behavior is undefined.

— If a function argument is described as being an array, the pointer actually passed to the function
shall have a value such that all address computations and accesses to objects (that would be
valid if the pointer did point to the first element of such an array) are in fact valid.

— Any function declared in a header may be additionally implemented as a function-like macro
defined in the header, so if a library function is declared explicitly when its header is included,
one of the techniques shown below can be used to ensure the declaration is not affected by
such a macro. Any macro definition of a function can be suppressed locally by enclosing
the name of the function in parentheses, because the name is then not followed by the left
parenthesis that indicates expansion of a macro function name. For the same syntactic reason,
it is permitted to take the address of a library function even if it is also defined as a macro.?'?
The use of #undef to remove any macro definition will also ensure that an actual function is
referred to.

— Any invocation of a library function that is implemented as a macro shall expand to code that
evaluates each of its arguments exactly once, fully protected by parentheses where necessary,
so it is generally safe to use arbitrary expressions as arguments.?!!)

— Likewise, those function-like macros described in the following subclauses may be invoked in
an expression anywhere a function with a compatible return type could be called.?!?

— All object-like macros listed as expanding to integer constant expressions shall additionally be
suitable for use in #if preprocessing directives.

Provided that a library function can be declared without reference to any type defined in a header, it
is also permissible to declare the function and use it without including its associated header.

There is a sequence point immediately before a library function returns.

The functions in the standard library are not guaranteed to be reentrant and may modify objects
with static or thread storage duration.?'?

Unless explicitly stated otherwise in the detailed descriptions that follow, library functions shall
prevent data races as follows: A library function shall not directly or indirectly access objects
accessible by threads other than the current thread unless the objects are accessed directly or
indirectly via the function’s arguments. A library function shall not directly or indirectly modify
objects accessible by threads other than the current thread unless the objects are accessed directly

210)0This means that an implementation is required to provide an actual function for each library function, even if it also
provides a macro for that function.
2DSuch macros might not contain the sequence points that the corresponding function calls do. Nevertheless, it

is recommended that implementations provide the same sequencing properties as for a function call, by, for example,
wrapping the macro expansion in a suitable lambda expression.

212)Because external identifiers and some macro names beginning with an underscore are reserved, implementations can
provide special semantics for such names. For example, the identifier _.BUILTIN_abs could be used to indicate generation of
in-line code for the abs function. Thus, the appropriate header could specify

#define abs(x) _BUILTIN_abs(x)

for a compiler whose code generator will accept it.
In this manner, a user desiring to guarantee that a given library function such as abs will be a genuine function can write

#undef abs

whether the implementation’s header provides a macro implementation of abs or a built-in implementation. The prototype
for the function, which precedes and is hidden by any macro definition, is thereby revealed also.
23)Thus, a signal handler cannot, in general, call standard library functions.

Library modifications to ISO/IEC 9899:2018, § 7.1.4 page 145

CORE 202101 (E) §7.13.2.1, working draft — March 28,2021 auto-return-C17.. N2694

Description

The longjmp function restores the environment saved by the most recent invocation of the setjmp
macro in the same invocation of the program with the corresponding jmp_buf argument. If there
has been no such invocation, or if the invocation was from another thread of execution, or if the
function body containing the invocation of the setjmp macro has terminated execution?”? in the
interim, or if the invocation of the setjmp macro was within the scope of an identifier with variably
modified type and execution has left that scope in the interim, the behavior is undefined.

All accessible objects have values, and all other components of the abstract machine?’? have state,

as of the time the longjmp function was called, except that the values of objects of automatic
storage duration that are local to the function containing the invocation of the corresponding setjmp
macro?”” that do not have volatile-qualified type and have been changed between the setjmp
invocation and longjmp call are indeterminate.

Returns

After longjmp is completed, thread execution continues as if the corresponding invocation of the
setjmp macro had just returned the value specified by val. The longjmp function cannot cause the
setjmp macro to return the value 0; if val is 0, the setjmp macro returns the value 1.

EXAMPLE The longjmp function that returns control back to the point of the setjmp invocation might cause memory
associated with a variable length array object to be squandered.

#include <setjmp.h>
jmp_buf buf;

void g(int n);

void h(int n);

int n = 6;

void f(void)

{
int x[n]; // valid: f is not terminated
setjmp(buf);
g(n);
}
void g(int n)
{
int a[n]; // a may remain allocated
h(n);
}
void h(int n)
{
int b[n]; // b may remain allocated
longjmp(buf, 2); // might cause memory loss
}

273)For example, by executing a return statement or because another longjmp call has caused a transfer to a setjmp

invocation in a function or lambda earlier in the set of nested calls.

27 This includes, but is not limited to, the floating-point status flags and the state of open files.

275)Such a function contains the call to setjmp either directly or within a set of nested lambdas. All local variables of the

function and the nested lambdas that have been modified between the corresponding calls to setjmp and longjmp function

are affected.

modifications to ISO/IEC 9899:2018, § 7.13.2.1 page 204 Library

N2694 auto-return-C17.. § 7.14, working draft — March 28, 2021 CORE 202101 (E)

7.14 Signal handling <signal.h>

The header <signal.h> declares a type and two functions and defines several macros, for handling
various signals (conditions that may be reported during program execution).

The type defined is

sig_atomic_t

which is the (possibly volatile-qualified) integer type of an object that can be accessed as an atomic
entity, even in the presence of asynchronous interrupts.

The macros defined are

SIG_DFL
SIG_ERR
SIG_IGN

which expand to constant expressions with distinct values that have type compatible with the second
argument to, and the return value of, the signal function, and whose values compare unequal to
the address of any declarable function; and the following, which expand to positive integer constant
expressions with type int and distinct values that are the signal numbers, each corresponding to
the specified condition:

SIGABRT abnormal termination, such as is initiated by the abort function

SIGFPE an erroneous arithmetic operation, such as zero divide or an operation resulting in
overflow

SIGILL detection of an invalid function image, such as an invalid instruction
SIGINT receipt of an interactive attention signal
SIGSEGV an invalid access to storage

SIGTERM a termination request sent to the program

An implementation need not generate any of these signals, except as a result of explicit calls to the
raise function. Additional signals and pointers to undeclarable functions, with macro definitions
beginning, respectively, with the letters SIG and an uppercase letter or with SIG_ and an uppercase
letter,”®) may also be specified by the implementation. The complete set of signals, their semantics,
and their default handling is implementation-defined; all signal numbers shall be positive.

7.14.1 Specify signal handling
7.14.1.1 The signal function
Synopsis

#include <signal.h>
void (xsignal(int sig, void (xfunc)(int))) (int);

Description

The signal function chooses one of three ways in which receipt of the signal number sig is to
be subsequently handled. If the value of func is SIG_DFL, default handling for that signal will
occur. If the value of func is SIG_IGN, the signal will be ignored. Otherwise, func shall point to a
function or shall be the result of a conversion of a function literal to a function pointer. The function
or lambda value is then to be called when that signal occurs—, An invocation of such a function or
function literal because of a signal, or (recursively) of any further functions or lambdas called by

that invocation (other than functions in the standard library),””) is called a signal handler.

276)See “future library directions” (7.31.7). The names of the signal numbers reflect the following terms (respectively): abort,
floating-point exception, illegal instruction, interrupt, segmentation violation, and termination.

27)This includes functions called indirectly via standard library functions (e.g., a SIGABRT handler called via the abort
function).

Library modifications to ISO/IEC 9899:2018, § 7.14.1.1 page 205

CORE 202101 (E) §7.14.2, working draft — March 28, 2021 N2694

When a signal occurs and func points to a function,?® it is implementation-defined whether the
equivalent of signal(sig, SIG_DFL); is executed or the implementation prevents some imple-
mentation-defined set of signals (at least including sig) from occurring until the current signal
handling has completed; in the case of SIGILL, the implementation may alternatively define that
no action is taken. Then the equivalent of (xfunc) (sig); is executed. If and when the function
returns, if the value of sig is SIGFPE, SIGILL, SIGSEGV, or any other implementation-defined value
corresponding to a computational exception, the behavior is undefined; otherwise the program will
resume execution at the point it was interrupted.

If the signal occurs as the result of calling the abort or raise function, the signal handler shall not
call the raise function.

If the signal occurs other than as the result of calling the abort or raise function, the behavior is
undefined if the signal handler refers to any object with static or thread storage duration that is
not a lock-free atomic object other than by assigning a value to an object declared as volatile
sig_atomic_t, or the signal handler calls any function in the standard library other than

— the abort function,
— the _Exit function,
— the quick_exit function,

— the functions in <stdatomic.h> (except where explicitly stated otherwise) when the atomic
arguments are lock-free,

— the atomic_is_lock_free function with any atomic argument, or

— the signal function with the first argument equal to the signal number corresponding to the
signal that caused the invocation of the handler. Furthermore, if such a call to the signal
function results in a SIG_ERR return, the value of errno is indeterminate.?’?)

At program startup, the equivalent of

signal(sig, SIG_IGN);

may be executed for some signals selected in an implementation-defined manner; the equivalent of

signal(sig, SIG_DFL);

is executed for all other signals defined by the implementation.
Use of this function in a multi-threaded program results in undefined behavior. The implementation
shall behave as if no library function calls the signal function.

Returns

If the request can be honored, the signal function returns the value of func for the most recent
successful call to signal for the specified signal sig. Otherwise, a value of SIG_ERR is returned and
a positive value is stored in errno.

Forward references: the abort function (7.22.4.1), the exit function (7.22.4.4), the _Exit function
(7.22.4.5), the quick_exit function (7.22.4.7).
7.14.2 Send signal

7.14.2.1 The raise function
Synopsis

#include <signal.h>
int raise(int sig);

278)
279

Or, equivalently, it is the result of a conversion of a function literal to a function pointer.

)If any signal is generated by an asynchronous signal handler, the behavior is undefined.

modifications to ISO/IEC 9899:2018, § 7.14.2.1 page 206 Library

N2694 auto-return-C17.. §7.16, working draft — March 28, 2021 CORE 202101 (E)

7.16 Variable arguments <stdarg.h>

The header <stdarg.h> declares a type and defines four macros, for advancing through a list of
arguments whose number and types are not known to the called function when it is translated.

A function may be called with a variable number of arguments of varying types. As described in
6.9.1, its parameter list contains one or more parameters. The rightmost parameter plays a special
role in the access mechanism, and will be designated parmN in this description.

The type declared is

va_list

which is a complete object type suitable for holding information needed by the macros va_start,
va_arg, va_end, and va_copy. If access to the varying arguments is desired, the called function
shall declare an object (generally referred to as ap in this subclause) having type va_list. The object
ap may be passed as an argument to another function ;-if-thatfunetioncall; if the called function
or lambda invokes the va_arg macro with parameter ap, the value of ap in the calling function or
lambda is indeterminate and shall be passed to the va_end macro prior to any further reference to
ap.20

NOTE Because the ... parameter syntax is not valid for lambda expressions, these macros can never be applied directl
to process a variable list of argcuments to the call of a lambda. In contrast to that, the type va_list itself can be a parameter
e of a lambda expression to process the argument list of a function.

7.16.1 Variable argument list access macros

The va_start and va_arg macros described in this subclause shall be implemented as macros,
not functions. It is unspecified whether va_copy and va_end are macros or identifiers declared
with external linkage. If a macro definition is suppressed in order to access an actual function,
or a program defines an external identifier with the same name, the behavior is undefined. Each
invocation of the va_start and va_copy macros shall be matched by a corresponding invocation of
the va_end macro in the same function or lambda expression.

7.16.1.1 The va_arg macro
Synopsis

#include <stdarg.h>
type va_arg(va_list ap, type);

Description

The va_arg macro expands to an expression that has the specified type and the value of the next
argument in the call. The parameter ap shall have been initialized by the va_start or va_copy
macro (without an intervening invocation of the va_end macro for the same ap). Each invocation of
the va_arg macro modifies ap so that the values of successive arguments are returned in turn. The
parameter fype shall be a type name specified such that the type of a pointer to an object that has the
specified type can be obtained simply by postfixing a * to type. If there is no actual next argument,
or if type is not compatible with the type of the actual next argument (as promoted according to the
default argument promotions), the behavior is undefined, except for the following cases:

— one type is a signed integer type, the other type is the corresponding unsigned integer type,
and the value is representable in both types;

— one type is pointer to void and the other is a pointer to a character type.

Returns

The first invocation of the va_arg macro after that of the va_start macro returns the value of the
argument after that specified by parmN. Successive invocations return the values of the remaining
arguments in succession.

28001t is permitted to create a pointer to a va_list and pass that pointer to another function or lambda, in which case the
originat-calling function or lambda can make further use of the original list after the other function returns.

Library modifications to ISO/IEC 9899:2018, § 7.16.1.1 page 209

CORE 202101 (E) §7.16.1.2, working draft — March 28,2021 auto-return-C17.. N2694

7.16.1.2 The va_copy macro
Synopsis

#include <stdarg.h>
void va_copy(va_list dest, va_list src);

Description

The va_copy macro initializes dest as a copy of src, as if the va_start macro had been applied
to dest followed by the same sequence of uses of the va_arg macro as had previously been used
to reach the present state of src. Neither the va_copy nor va_start macro shall be invoked to
reinitialize dest without an intervening invocation of the va_end macro for the same dest.

Returns
The va_copy macro returns no value.

7.16.1.3 The va_end macro
Synopsis

\ #include <stdarg.h>
\ void va_end(va_list ap);

Description

The va_end macro facilitates a normal return from the function whose variable argument list was
referred to by the expansion of the va_start macro, or the function or lambda expression containing
the expansion of the va_copy macro, that initialized the va_list ap. The va_end macro may modify
ap so that it is no longer usable (without being reinitialized by the va_start or va_copy macro). If
there is no corresponding invocation of the va_start or va_copy macro, or if the va_end macro is
not invoked before the return, the behavior is undefined.

Returns
The va_end macro returns no value.

7.16.1.4 The va_start macro
Synopsis

#include <stdarg.h>
void va_start(va_list ap, parmN);

Description
The va_start macro shall be invoked before any access to the unnamed arguments.
The va_start macro initializes ap for subsequent use by the va_arg and va_end macros. Neither the

va_start nor va_copy macro shall be invoked to reinitialize ap without an intervening invocation
of the va_end macro for the same ap.

The parameter parmN is the identifier of the rightmost parameter in the variable parameter list in
the function definition (the one just before the , ...). If the parameter parmN is declared with the
register storage class, with a function or array type, or with a type that is not compatible with the
type that results after application of the default argument promotions, the behavior is undefined.

Returns
The va_start macro returns no value.

EXAMPLE 1 The function f1 gathers into an array a list of arguments that are pointers to strings (but not more than MAXARGS
arguments), then passes the array as a single argument to function f2. The number of pointers is specified by the first
argument to f1.

modifications to ISO/IEC 9899:2018, § 7.16.1.4 page 210 Library

CORE 202101 (E) §7.22.4, working draft — March 28,2021 auto-return-C17.. N2694

Returns

The realloc function returns a pointer to the new object (which may have the same value as a
pointer to the old object), or a null pointer if the new object has not been allocated.

7.22.4 Communication with the environment

7.22.4.1 The abort function
Synopsis

#include <stdlib.h>
_Noreturn void abort(void);

Description

The abort function causes abnormal program termination to occur, unless the signal SIGABRT
is being caught and the signal handler does not return. Whether open streams with unwritten
buffered data are flushed, open streams are closed, or temporary files are removed is implementa-
tion-defined. An implementation-defined form of the status unsuccessful termination is returned to
the host environment by means of the function call raise (SIGABRT).

Returns
The abort function does not return to its caller.

7.22.4.2 The atexit function
Synopsis

#include <stdlib.h>
int atexit(void (xfunc) (void));

Description
The atexit function registers the function or function literal pointed to by func, to be called without

arguments at normal program termination.’” It is unspecified whether a call to the atexit function
that does not happen before the exit function is called will succeed.

Environmental limits

The implementation shall support the registration of at least 32 functionsfunction pointers.

Returns
The atexit function returns zero if the registration succeeds, nonzero if it fails.

Forward references: the at_quick_exit function (7.22.4.3), the exit function (7.22.4.4).

7.22.4.3 The at_quick_exit function
Synopsis

#include <stdlib.h>
int at_quick_exit(void (xfunc) (void));

Description
The at_quick_exit function registers the function or function literal pointed to by func, to be

called without arguments should quick_exit be called.?® It is unspecified whether a call to
the at_quick_exit function that does not happen before the quick_exit function is called will
succeed.

32)The atexit function registrations are distinct from the at_quick_exit registrations, so applications might need to call

both registration functions with the same argument.
320)The at_quick_exit function registrations are distinct from the atexit registrations, so applications might need to call
both registration functions with the same argument.

modifications to ISO/IEC 9899:2018, § 7.22.4.3 page 268 Library

N2694 auto-return-C17.. §7.22.4.4, working draft — March 28, 2021 CORE 202101 (E)

Environmental limits
The implementation shall support the registration of at least 32 functionsfunction pointers.

Returns
The at_quick_exit function returns zero if the registration succeeds, nonzero if it fails.
Forward references: the quick_exit function (7.22.4.7).

7.22.4.4 The exit function
Synopsis

#include <stdlib.h>
_Noreturn void exit(int status);

Description

The exit function causes normal program termination to occur. No funetions-function pointers
registered by the at_quick_exit function are called. If a program calls the exit function more than
once, or calls the quick_exit function in addition to the exit function, the behavior is undefined.

First, all funetions-function pointers registered by the atexit function are called, in the reverse
order of their registration,*””) except that a function pointer is called after any previously registered
funetions-function pointers that had already been called at the time it was registered. If, during
the call to any such function or function literal, a call to the Longjmp function is made that would
terminate the call to the registered function or function literal, the behavior is undefined.

Next, all open streams with unwritten buffered data are flushed, all open streams are closed, and all
files created by the tmpfile function are removed.

Finally, control is returned to the host environment. If the value of status is zero or EXIT_SUCCESS,
an implementation-defined form of the status successful termination is returned. If the value of
status is EXIT_FAILURE, an implementation-defined form of the status unsuccessful termination is
returned. Otherwise the status returned is implementation-defined.

Returns
The exit function cannot return to its caller.

7.22.4.5 The _Exit function
Synopsis

#include <stdlib.h>
_Noreturn void _Exit(int status);

Description

The _Exit function causes normal program termination to occur and control to be returned to
the host environment. No funetions—function pointers registered by the atexit function, the
at_quick_exit function, or signal handlers registered by the signal function are called. The
status returned to the host environment is determined in the same way as for the exit function
(7.22.4.4). Whether open streams with unwritten buffered data are flushed, open streams are closed,
or temporary files are removed is implementation-defined.

Returns
The _Exit function cannot return to its caller.

7.22.4.6 The getenv function

Synopsis
| #include <stdlib.h>

327)Each function is called as many times as it was registered, and in the correct order with respect to other registered

funetionsfunction pointers.

Library modifications to ISO/IEC 9899:2018, § 7.22.4.6 page 269

CORE 202101 (E) §7.22.4.7, working draft — March 28,2021 auto-return-C17.. N2694

\ char xgetenv(const char *xname);
L

Description

The getenv function searches an environment list, provided by the host environment, for a string that
matches the string pointed to by name. The set of environment names and the method for altering
the environment list are implementation-defined. The getenv function need not avoid data races
with other threads of execution that modify the environment list.>*®)

The implementation shall behave as if no library function calls the getenv function.

Returns

The getenv function returns a pointer to a string associated with the matched list member. The
string pointed to shall not be modified by the program, but may be overwritten by a subsequent call
to the getenv function. If the specified name cannot be found, a null pointer is returned.

7.22.4.7 The quick_exit function
Synopsis

#include <stdlib.h>
_Noreturn void quick_exit(int status);

Description

The quick_exit function causes normal program termination to occur. No funetionsfunction
pointers registered by the atexit function or signal handlers registered by the signal function
are called. If a program calls the quick_exit function more than once, or calls the exit function
in addition to the quick_exit function, the behavior is undefined. If a signal is raised while the
quick_exit function is executing, the behavior is undefined.

The quick_exit function first calls all funetions function pointers registered by the at_quick_exit
function, in the reverse order of their registration,®?? except that a function pointer is called after
any previously registered funetionsfunction pointers that had already been called at the time it was
registered. If, during the call to any such function or function literal, a call to the Longjmp function
is made that would terminate the call to the registered function pointer, the behavior is undefined.

Then control is returned to the host environment by means of the function call _Exit(status).

Returns
The quick_exit function cannot return to its caller.

7.22.4.8 The system function
Synopsis

#include <stdlib.h>
int system(const char *string);

Description

If string is a null pointer, the system function determines whether the host environment has a
command processor. If string is not a null pointer, the system function passes the string pointed to
by string to that command processor to be executed in a manner which the implementation shall
document; this might then cause the program calling system to behave in a non-conforming manner
or to terminate.

Returns

If the argument is a null pointer, the system function returns nonzero only if a command processor
is available. If the argument is not a null pointer, and the system function does return, it returns an

328
329

)Many implementations provide non-standard functions that modify the environment list.
)Each function pointer is called as many times as it was registered, and in the correct order with respect to other registered

funetionsfunction pointers.

modifications to ISO/IEC 9899:2018, § 7.22.4.8 page 270 Library

N2694 auto-return-C17.. §7.22.5, working draft — March 28, 2021 CORE 202101 (E)

implementation-defined value.

7.22.5 Searching and sorting utilities

These utilities make use of a comparison function or function literal to search or sort arrays of
unspecified type. Where an argument declared as size_t nmemb specifies the length of the array
for a function, nmemb can have the value zero on a call to that function; the comparison function
or function literal is not called, a search finds no matching element, and sorting performs no
rearrangement. Pointer arguments on such a call shall still have valid values, as described in 7.1.4.

The implementation shall ensure that the second argument of the comparison function or function
literal (when called from bsearch), or both arguments (when called from gsort), are pointers to
elements of the array.®® The first argument when called from bsearch shall equal key.

The comparison function or function literal shall not alter the contents of the array. The implementa-
tion may reorder elements of the array between calls to the comparison function or function literal,
but shall not alter the contents of any individual element.

When the same objects (consisting of size bytes, irrespective of their current positions in the
array) are passed more than once to the comparison function or function literal, the results shall be
consistent with one another. That is, for gsort they shall define a total ordering on the array, and for
bsearch the same object shall always compare the same way with the key.

A sequence point occurs immediately before and immediately after each call to the comparison
function or function literal, and also between any call to the comparison function or function literal
and any movement of the objects passed as arguments to that call.

7.22.5.1 The bsearch function
Synopsis

#include <stdlib.h>

void xbsearch(const void *key, const void xbase,
size_t nmemb, size_t size,
int (xcompar) (const void *, const void x*));

Description

The bsearch function searches an array of nmemb objects, the initial element of which is pointed to
by base, for an element that matches the object pointed to by key. The size of each element of the
array is specified by size.

The comparison function or function literal pointed to by compar is called with two arguments that
point to the key object and to an array element, in that order. The funetion-A function call shall
return an integer less than, equal to, or greater than zero if the key object is considered, respectively,
to be less than, to match, or to be greater than the array element. The array shall consist of: all the
elements that compare less than, all the elements that compare equal to, and all the elements that
compare greater than the key object, in that order.33?

Returns

The bsearch function returns a pointer to a matching element of the array, or a null pointer if no
match is found. If two elements compare as equal, which element is matched is unspecified.

330)That is, if the value passed is p, then the following expressions are always nonzero:

((char x)p - (char x)base) % size ==
(char x)p >= (char x)base
(char *x)p < (char x)base + nmemb * size

33DIn practice, the entire array is sorted according to the comparison function.

Library modifications to ISO/IEC 9899:2018, § 7.22.5.1 page 271

CORE 202101 (E) §7.22.5.2, working draft — March 28,2021 auto-return-C17.. N2694

7.22.5.2 The qsort function
Synopsis

#include <stdlib.h>
void qgsort(void xbase, size_t nmemb, size_t size,
int (xcompar)(const void *, const void x));

Description
The gsort function sorts an array of nmemb objects, the initial element of which is pointed to by
base. The size of each object is specified by size.

The contents of the array are sorted into ascending order according to a comparison function or
function literal pointed to by compar, which is called with two arguments that point to the objects
being compared. Thefunetion-A function call shall return an integer less than, equal to, or greater
than zero if the first argument is considered to be respectively less than, equal to, or greater than the
second.

If two elements compare as equal, their order in the resulting sorted array is unspecified.

Returns
The gsort function returns no value.

7.22.6 Integer arithmetic functions

7.22.6.1 The abs, labs and dlabs functions
Synopsis

#include <stdlib.h>

int abs(int j);

long int labs(long int j);

long long int llabs(long long int j);

Description

The abs, labs, and 1labs functions compute the absolute value of an integer j. If the result cannot
be represented, the behavior is undefined.33?

Returns
The abs, labs, and 1labs, functions return the absolute value.

7.22.6.2 The div, ldiv, and 1ldiv functions
Synopsis

#include <stdlib.h>

div_t div(int numer, int denom);

ldiv_t ldiv(long int numer, long int denom);

1ldiv_t 1ldiv(long long int numer, long long int denom);

Description
The div, ldiv, and 1ldiv, functions compute numer/denom and numerSsdenom in a single operation.

Returns

The div, ldiv, and 1ldiv functions return a structure of type div_t, ldiv_t, and 1ldiv_t, respec-
tively, comprising both the quotient and the remainder. The structures shall contain (in either order)
the members quot (the quotient) and rem (the remainder), each of which has the same type as
the arguments numer and denom. If either part of the result cannot be represented, the behavior is
undefined.

332)The absolute value of the most negative number cannot be represented in two’s complement.

modifications to ISO/IEC 9899:2018, § 7.22.6.2 page 272 Library

CORE 202101 (E) §7.26.2, working draft — March 28,2021 auto-return-C17.. N2694

which is passed to mtx_init to create a mutex object that does not support timeout;

mtx_recursive

which is passed to mtx_init to create a mutex object that supports recursive locking;

mtx_timed

which is passed to mtx_init to create a mutex object that supports timeout;

thrd_timedout

which is returned by a timed wait function to indicate that the time specified in the call was reached
without acquiring the requested resource;

thrd_success

which is returned by a function to indicate that the requested operation succeeded;

thrd_busy

which is returned by a function to indicate that the requested operation failed because a resource
requested by a test and return function is already in use;

thrd_error

which is returned by a function to indicate that the requested operation failed; and

thrd_nomem

which is returned by a function to indicate that the requested operation failed because it was unable
to allocate memory.

For function pointers that are passed to the functions call_once, tss_create, and thrd_create
calls to the underlying function or function literal are sequenced as if they where directly called b
the application from the indicated thread.

Forward references: date and time (7.27).

7.26.2 Initialization functions
7.26.2.1 The call_once function
Synopsis

#include <threads.h>
void call_once(once_flag *flag, void (xfunc)(void));

Description

The call_once function uses the once_flag pointed to by flag to ensure that func is called exactly
once, the first time the call_once function is called with that value of flag. Completion of an
effective call to the call_once function synchronizes with all subsequent calls to the call_once
function with the same value of flag.

Returns
The call_once function returns no value.

7.26.3 Condition variable functions
7.26.3.1 The cnd_broadcast function

modifications to ISO/IEC 9899:2018, § 7.26.3.1 page 288 Library

	Motivation
	Design choices
	Expression versus function definition
	Capture model
	Call sequence
	Interoperability
	Invariability
	Recursion
	Variable argument lists
	Variably modified (VM) types

	Caveats for implementors
	Syntax
	Visibility of non-captures

	Syntax and terminology
	Lambda expressions
	Adjustments to other constructs

	Semantics
	Library
	Constraints and requirements
	Questions for WG14
	References
	Proposed wording

