
Multidimensional subscript operator
Document #: P2128R3
Date: 2021-02-13
Project: Programming Language C++
Audience: EWG, EWGI
Reply-to: Mark Hoemmen <mhoemmen@stellarscience.com>

Daisy Hollman <dshollm@sandia.gov>
Corentin Jabot <corentin.jabot@gmail.com>
Isabella Muerte <imuerte@hey.com>
Christian Trott <crtrott@sandia.gov>

Abstract

We propose that user-defined types can define a subscript operator with multiple arguments
to better support multi-dimensional containers and views.

Tony tables

Before After

template<class ElementType, class Extents>
class mdspan {
template<class... IndexType>
constexpr reference operator()(IndexType...);

};

int main() {
int buffer[2*3*4] = { };
auto s = mdspan<int, extents<2, 3, 4>>(buffer);
s(1, 1, 1) = 42;

template<class ElementType, class Extents>
class mdspan {
template<class... IndexType>
constexpr reference operator[](IndexType...);

};

int main() {
int buffer[2*3*4] = { };
auto s = mdspan<int, extents<2, 3, 4>> (buffer);
s[1, 1, 1] = 42;

}

Revisions

R3

• Add some discussions about interpreting t[a][b] as a syntactic rewrite for a variadic
operator[] (wich we are not proposing)

1

mailto:mhoemmen@stellarscience.com
mailto:dshollm@sandia.gov
mailto:corentin.jabot@gmail.com
mailto:imuerte@hey.com
mailto:crtrott@sandia.gov

R2

• Add explanation about not adapting this proposal to C arrays

• Remove the restriction to require at least one parameter

• Add a paragraph about valarray

Motivation

Types that represent multidimensional views (mdspan), containers (mdarray), grid, matrixes,
images, geometric spaces, etc, need to index multiple dimensions.

In the absence of a more suitable solution, these classes overload the call operator. While
this is functionally equivalent to the proposed multidimensional subscript operator, it does
not carry the same semantic, making the code harder to read and reason about. It also
encourages non-semantical operator overloading.

Proposal

We propose that the operator[] should be able to accept 0 or more arguments, including
variadic arguments. Both its use and definition would match that of operator().

We make the expressions deprecated in 20 ill-formed while allowing multi-dimensional sub-
scripts expressions in new standard types and user types. We do not propose modifications
to C arrays as to leave a cycle before giving newmeaning to syntax that was still valid in C++20.

What about comma expressions?

In C++20 we deprecated the use of comma expressions in subscript expressions [P1161R3][?].
This proposal would make these ill-formed and give a new meaning to commas in subscript
expressions. While the timeline is aggressive, we think it is important that this feature be
available for the benefit of mdspan and mdarray. At the time of writing [P1161R3], [?] has been
implemented by at least GCC, clang, and MSVC. [P1161R3][?] further denotes that the cases
where comma expressions appear in subscript are vanishingly rare.

However, an implementation could keep supporting the current behavior as an extension, for
example, they could fall-back to a comma expression if no overload is found for an expression
list, or always assume a comma expression in the presence of a C-array.

Because we should not make C++ more confusing, we think the standard should not continue
to support the old meaning of a comma in subscript expressions.

2

Should we adopt the same syntax for C arrays?

Code that is deprecated in 20, should be ill-formed in 23 rather than a potentially silent change.
As such we do not propose the proposed syntax to apply to C arrays. The usefulness of this
should be discussed in the C++26 time frame. However C arrays are not widely used by C++,
spending time on them might therefore not be useful.

Should we add a multidimentional operator to valarray?

Again, we shouldn’t change the meaning of existing code in C++23. We should only add
multidimensional operators to new in C++23 types such as mdspan. If there are users of
valarray interested in this feature, this can be done in C++26

What about [foo][bar]?

Asmentioned in [P1161R3][?], an operator[] can return anobjectwhich has itself an operator[].
Therefore chaining multiple [] to index a single object isn’t a viable proposal.

Should we interpret t[a][b] as a syntactic rewrite that looks for a
variadic operator[]?

After Richard Smith raised this possibility on the EWG reflector, there was some discussion
about this possibility. The rationale behind this suggestion was that current and future generic
code that usesmultidimensional array semantics (particularly code thatmay need to work with
C-style pointer-to-pointer-like multidimensional arrays) would be syntactically incompatible
with types that overload variadic operator[]. The authors have ultimately decided to reject
this direction for a number of reasons.

First of all, we reject the premise that significant generic code exists or will ever exist that needs
to be instantiated with types like double***. As experts in scientific computing (expected to
be the primary consumer of multidimensional arrays and thus of this proposal), we have seen
very little of this sort of generic code. The vast majority of such generic code in production
today uses overloads of operator(). No suggestion has been made to have operator() look
for operator[] when a sufficient operator() overload cannot be found, so such a proposal will
not be discussed here (though we find it equally unsatisfying).

Another important reason to shy away from the t[a][b] rewrite is related to one of the overall
motivations for the variadic subscript operator in general: t[a] looks like a valid subexpression,
even though it isn’t necessarily. This is a confusing and misleading user experience that we’d
like to avoid.

Finally, we believe the broader issue of generic interoperability with C-style pointer-to-pointer
arrays can be addressed with a non-breaking, follow-on proposal in the other direction: if t[a,
b] fails overload resolution, the compiler could look for (t[a])[b]. This would make things

3

like std::array<std::array<T, 3>, 4> work out of the box, without any library changes. The
authors would welcome such a proposal, but do not believe it should be a part of the initial
language change proposed herein. This potential extension also solves the problem that
t[a][b] is not a syntax that interacts favorably with parameter packs.

Ultimately, our proposal is one that satisfy the needs of library typeswithout adding complexity
to overload resolution. It leaves the door to future evolutions if these evolutions prove useful
and usable.

Wording

�? Expressions [expr]

�? Postfix expressions [expr.post]

Postfix expressions group left-to-right.

postfix-expression: primary-expression postfix-expression [expr-or-braced-init-list]
postfix-expression [expression-list] postfix-expression [braced-init-list] postfix-
expression (optexpression-list) simple-type-specifier (optexpression-list) typename-
specifier (optexpression-list) simple-type-specifier braced-init-list

�? Subscripting [expr.sub]

A postfix expression followed an expression in square brackets is a postfix expres-
sion. One of the expressions shall be a glvalue of type “array of T” or a prvalue of
type “pointer to T” and the other shall be a prvalue of unscoped enumeration or
integral type. The result is of type “T”. The type “T” shall be a completely-defined
object type.1 The expression E1[E2] is identical (by definition) to *((E1)+(E2)), ex-
cept that in the case of an array operand, the result is an lvalue if that operand
is an lvalue and an xvalue otherwise. The expression E1 is sequenced before the
expression E2.

[Note: A comma expression appearing as the expr-or-braced-init-list of a subscript-
ing expression is deprecated; see [depr.comma.subscript]. —end note]

[Note: Despite its asymmetric appearance, subscripting is a commutative operation
except for sequencing. See [expr.unary] and [expr.add] for details of * and + and
[dcl.array] for details of array types. —end note]

Abraced-init-list shall not beusedwWith the built-in subscript operator. abraced-init-list
shall not be used and a expression-list shall be a single expression.

1This is true even if the subscript operator is used in the following common idiom: &x[0].

4

�? Overloaded operators [over.oper]

�? Subscripting [over.sub]

A subscripting operator function is a function named operator[] that is a non-static member
function with exactly one parameter. For an expression of the forms

postfix-expression [expr-or-braced-init-list]

postfix-expression [expr-or-braced-init-list]

postfix-expression [expression-list]

the operator function is selected by overload resolution ([over.match.oper]). If a member
function is selected, the expression is interpreted as

the operator function is selected by overload resolution (xref). If amember function is selected,
the expression is interpreted, respectively, as

postfix-expression . operator [] (expr-or-braced-init-list)

postfix-expression . operator [] (expresssion-list)

postfix-expression . operator [] (braced-init-list)

[Example:

struct X {
Z operator[](std::initializer_list<int>);
Z operator[](auto...);

};
X x;
x[{1,2,3}] = 7; // OK: meaning x.operator[]({1,2,3})
x[1,2,3] = 7; // OK: meaning x.operator[](1,2,3)
int a[10];
a[{1,2,3}] = 7; // error: built-in subscript operator
a[1,2,3] = 7; // error: built-in subscript operator

—end example]

�? Comma operator [expr.comma]

In contexts where comma is given a special meaning, [Example: in lists of arguments to func-
tions ([expr.call]), subscript expressions and lists of initializers ([decl.init]) —end example] the
comma operator as described in this subclause can appear only in parentheses. [Example:

f(a, (t=3, t+2), c);

has three arguments, the second of which has the value 5. —end example]

[Note: A comma expression appearing as the expr-or-braced-init-list of a subscripting expres-
sion [expr.sub] is deprecated; see depr.comma.subscript. —end note]

5

�? C++ and ISO C++ 2020 [diff.cpp20]

�? [expr.sub]: declarations [diff.cpp20.expr.sub]

Change: Change the meaning of comma in subscript expressions.
Rationale: Enable repurposing a deprecated syntax to support multidimensional indexing.
Effect on original feature: Valid C++ program that uses a comma expression within a sub-
script expression may fail to compile.

arr[1, 2] //was equivalent to arr[(1, 2)], now equivalent to arr.operator[](1, 2) or ill-formed

�? Comma operator in subscript expressions[depr.comma.sub-
script]

A comma expression appearing as the expr-or-braced-init-list of a subscripting expression
is deprecated. [Note: A parenthesized comma expression is not deprecated. —end note]
[Example:

void f(int *a, int b, int c) {
a[b,c]; // deprecated
a[(b,c)]; // OK

}

—end example]

Implementation

A prototype has been implemented in Clang.

Compiler Explorer Demo.

Github: https://github.com/cor3ntin/llvm-project/tree/subscript

Acknowledgments

Thanks to Jens Maurer for his patient help with the wording, and to the many people who
provided valuable feedback. Thanks to Matt Godbolt for hosting an experimental compiler
with the implementation of this proposal on compiler explorer.

References

[N4861] Richard Smith Working Draft, Standard for Programming Language C++
https://wg21.link/N4861

6

https://gcc.godbolt.org/z/4szfLo
https://github.com/cor3ntin/llvm-project/tree/subscript
https://wg21.link/N4861

	1 Abstract
	2 Tony tables
	3 Revisions
	4 R3
	5 R2
	6 Motivation
	7 Proposal
	8 What about comma expressions?
	9 Should we adopt the same syntax for C arrays?
	10 Should we add a multidimentional operator to valarray?
	11 What about [foo][bar]?
	12 Should we interpret t[a][b] as a syntactic rewrite that looks for a variadic operator[]?
	13 Wording
	14 Expressions
	14.1 Postfix expressions
	14.1.1 Subscripting

	15 Overloaded operators
	15.1 Subscripting
	15.2 Comma operator

	16 C++ and ISO C++ 2020
	16.1 [expr.sub]: declarations

	17 Comma operator in subscript expressions
	18 Implementation
	19 Acknowledgments
	20 References

