blas_interface.md 4/14/2021

P1673R3: A free function linear algebra interface based
on the BLAS

Authors

¢ Mark Hoemmen (mhoemmen@stellarscience.com) (Stellar Science)

* Daisy Hollman (dshollm@sandia.gov) (Sandia National Laboratories)

e Christian Trott (crtrott@sandia.gov) (Sandia National Laboratories)

* Daniel Sunderland (dsunder@sandia.gov) (Sandia National Laboratories)
* Nevin Liber (nliber@anl.gov) (Argonne National Laboratory)

® Li-Ta Lo (ollie@lanl.gov) (Los Alamos National Laboratory)

* Damien Lebrun-Grandie (lebrungrandt@ornl.gov) (Oak Ridge National Laboratories)
® Graham Lopez (glopez@nvidia.com) (NVIDIA)

® Peter Caday (peter.caday@intel.com) (Intel)

® Sarah Knepper (sarah.knepper@intel.com) (Intel)

® Piotr Luszczek (luszczek@icl.utk.edu) (University of Tennessee)

¢ Timothy Costa (tcosta@nvidia.com) (NVIDIA)

Contributors

® Chip Freitag (chip.freitag@amd.com) (AMD)

® Bryce Lelbach (blelbach@nvidia.com) (NVIDIA)

¢ Srinath Vadlamani (Srinath.Vadlamani@arm.com) (ARM)
® Rene Vanoostrum (Rene.Vanoostrum@amd.com) (AMD)

Date: 2021-04-15

Revision history
® Revision 0 (pre-Cologne) submitted 2019-06-17
© Received feedback in Cologne from SG6, LEWGI, and (???).
® Revision 1 (pre-Belfast) to be submitted 2019-10-07
© Account for Cologne 2019 feedback
= Make interface more consistent with existing Standard algorithms

= Change , , , and to imitate , S0 that
they return their result, instead of taking an output parameter. Users may set the
result type via optional parameter.

© Minor changes to "expression template” classes, based on implementation experience
o Briefly address LEWGI request of exploring concepts for input arguments.

© Lazy ranges style APl was NOT explored.

1/141

blas_interface.md 4/14/2021

® Revision 2 (pre-Cologne) to be submitted 2020-01-13
© Add "Future work" section.
© Remove "Options and votes" section (which were addressed in SG6, SG14, and LEWGI).
© Remove overloads.
© Remove batched linear algebra operations.
© Remove over- and underflow requirement for

© Mandate any extent compatibility checks that can be done at compile time.

© Add missing functions and
© Remove function.
© Fix wording for , so that
implementations may optimize the return type. Make sure that of a
matrix returns a matrix with opposite
and

o Remove second template parameter T from
°© Make and exposition only.

© Add in-place overloads of ,
, and

o Add overloads to
© Add Cholesky factorization and solve examples.
® Revision 3 (electronic) to be submitted 2021-04-15

© Per LEWG request, add a section on our investigation of constraining template parameters with
concepts, in the manner of P1813R0 with the numeric algorithms. We concluded that we
disagree with the approach of P1813R0, and that the Standard's current GENERALIZED_SUM
approach better expresses numeric algorithms' behavior.

© Update references to the current revision of PO009 ().
o Per LEWG request, introduce namespace and put everything in there.
© Per LEWG request, replace the prefix with the aforementioned namespace. We renamed
to , to , and to
© Per LEWG request, do not use as a suffix, to avoid confusion with "views" in the sense of
Ranges. We renamed to , to
, to , and to

2/141

blas_interface.md 4/14/2021

o Change wording from "then implementations will use T's precision or greater for intermediate
terms in the sum," to "then intermediate terms in the sum use T's precision or greater." Thanks to
Jens Maurer for this suggestion (and many others!).

o Before, a Note on said, "We recommend that implementers document their
guarantees regarding overflow and underflow of for floating-point return types."
Implementations always document "implementation-defined behavior" per [defs.impl.defined].
(Thanks to Jens Maurer for pointing out that "We recommend..." does not belong in the
Standard.) Thus, we changed this from a Note to normative wording in Remarks: "If either

or T are floating-point types or complex versions thereof, then

any guarantees regarding overflow and underflow of are implementation-
defined."
© Define return types of the , , , and overloads with

return type.

© Remove the explicitly stated constraint on and that the rank of the array arguments be
no more than 2. This is redundant, because we already impose this via the existing constraints on
template parameters named , , or . If we later
wish to relax this restriction, then we only have to do so in one place.

°© Add . First, this gives implementers a path to implementing
in a way that achieves the over/underflow guarantees intended by the BLAS
Standard. Second, this is a useful algorithm in itself for parallelizing vector 2-norm computation.

o Add , ,and (thanks to coauthor Piotr
Luszczek).

© Address LEWG request for us to investigate support for GPU memory. See section "Explicit
support for asynchronous return of scalar values."

o Add overloads of the in-place versions of

l l

, , and

Purpose of this paper

This paper proposes a C++ Standard Library dense linear algebra interface based on the dense Basic Linear
Algebra Subroutines (BLAS). This corresponds to a subset of the BLAS Standard. Our proposal implements the
following classes of algorithms on arrays that represent matrices and vectors:

* Elementwise vector sums

* Multiplying all elements of a vector or matrix by a scalar

® 2-norms and 1-norms of vectors

* \ector-vector, matrix-vector, and matrix-matrix products (contractions)
* Low-rank updates of a matrix

* Triangular solves with one or more "right-hand side" vectors

® Generating and applying plane (Givens) rotations

3/141

http://www.netlib.org/blas/blast-forum/blas-report.pdf

blas_interface.md 4/14/2021

Our algorithms work with most of the matrix storage formats that the BLAS Standard supports:

"General" dense matrices, in column-major or row-major format
Symmetric or Hermitian (for complex numbers only) dense matrices, stored either as general dense
matrices, or in a packed format

Dense triangular matrices, stored either as general dense matrices or in a packed format

Our proposal also has the following distinctive characteristics:

It uses free functions, not arithmetic operator overloading.
The interface is designed in the spirit of the C++ Standard Library's algorithms.

It uses (POO09R10), a multidimensional array view, to represent matrices and vectors. In
the future, it could support other proposals' matrix and vector data structures.

The interface permits optimizations for matrices and vectors with small compile-time dimensions; the
standard BLAS interface does not.

Each of our proposed operations supports all element types for which that operation makes sense,
unlike the BLAS, which only supports four element types.

Our operations permit "mixed-precision" computation with matrices and vectors that have different
element types. This subsumes most functionality of the Mixed-Precision BLAS specification (Chapter 4
of the BLAS Standard).

Like the C++ Standard Library's algorithms, our operations take an optional execution policy argument.
This is a hook to support parallel execution and hierarchical parallelism (through the proposed executor
extensions to execution policies, see P1019R2).

Unlike the BLAS, our proposal can be expanded to support "batched" operations (see P1417R0) with
almost no interface differences. This will support machine learning and other applications that need to

do many small matrix or vector operations at once.

Interoperable with other linear algebra proposals

We believe this proposal is complementary to P1385, a proposal for a C++ Standard linear algebra library that

introduces matrix and vector classes and overloaded arithmetic operators. In fact, we think that our proposal

would make a natural foundation for a library like what P1385 proposes. However, a free function interface --

which clearly separates algorithms from data structures -- more naturally allows for a richer set of operations

such as what the BLAS provides. A natural extension of the present proposal would include accepting P1385's

matrix and vector objects as input for the algorithms proposed here. A straightforward way to do that would

be for P1385's matrix and vector objects to make views of their data available as

Why include dense linear algebra in the C++ Standard Library?

1. C++ applications in "important application areas" (see P0939R0) have depended on linear algebra for a

long time.

2. Linear algebra is like : obvious algorithms are slow, and the fastest implementations call for

hardware-specific tuning.

4/141

http://wg21.link/p0009r10
http://www.netlib.org/blas/blast-forum/blas-report.pdf
http://wg21.link/p1019r2
http://wg21.link/p1417r0
http://wg21.link/p1385
http://wg21.link/p0939r0

blas_interface.md 4/14/2021

3. Dense linear algebra is core functionality for most of linear algebra, and can also serve as a building
block for tensor operations.

4. The C++ Standard Library includes plenty of "mathematical functions.” Linear algebra operations like
matrix-matrix multiply are at least as broadly useful.

5. The set of linear algebra operations in this proposal are derived from a well-established, standard set of
algorithms that has changed very little in decades. It is one of the strongest possible examples of
standardizing existing practice that anyone could bring to C++.

6. This proposal follows in the footsteps of many recent successful incorporations of existing standards
into C++, including the UTC and TAI standard definitions from the International Telecommunications
Union, the time zone database standard from the International Assigned Numbers Authority, and the
ongoing effort to integrate the ISO unicode standard.

Linear algebra has had wide use in C++ applications for nearly three decades (see P1417R0 for a historical
survey). For much of that time, many third-party C++ libraries for linear algebra have been available. Many
different subject areas depend on linear algebra, including machine learning, data mining, web search,

statistics, computer graphics, medical imaging, geolocation and mapping, engineering, and physics-based

simulations.

"Directions for ISO C++" (P0939R0) offers the following in support of adding linear algebra to the C++
Standard Library:

® P0939RO calls out "Support for demanding applications in important application areas, such as medical,
finance, automotive, and games (e.g., key libraries...)" as an area of general concern that "we should not
ignore." All of these areas depend on linear algebra.

* "Is my proposal essential for some important application domain?" Many large and small private
companies, science and engineering laboratories, and academics in many different fields all depend on
linear algebra.

* "We need better support for modern hardware": Modern hardware spends many of its cycles in linear
algebra. For decades, hardware vendors, some represented at WG21 meetings, have provided and
continue to provide features specifically to accelerate linear algebra operations. Some of them even
implement specific linear algebra operations directly in hardware. Examples include NVIDIA's Tensor
Cores and Cerebras' Wafer Scale Engine. Several large computer system vendors offer optimized linear
algebra libraries based on or closely resembling the BLAS; these include AMD's BLIS, ARM's
Performance Libraries, Cray's LibSci, Intel's Math Kernel Library (MKL), IBM's Engineering and Scientific
Subroutine Library (ESSL), and NVIDIA's cuBLAS.

Obvious algorithms for some linear algebra operations like dense matrix-matrix multiply are asymptotically
slower than less-obvious algorithms. (Please refer to a survey one of us coauthored, "Communication lower
bounds and optimal algorithms for numerical linear algebra.") Furthermore, writing the fastest dense matrix-
matrix multiply depends on details of a specific computer architecture. This makes such operations
comparable to in the C++ Standard Library: worth standardizing, so that Standard Library implementers
can get them right and hardware vendors can optimize them. In fact, almost all C++ linear algebra libraries
end up calling non-C++ implementations of these algorithms, especially the implementations in optimized
BLAS libraries (see below). In this respect, linear algebra is also analogous to standard library features like

: often implemented directly in assembly or even with special hardware, and thus an essential

5/141

http://wg21.link/p1417r0
http://wg21.link/p0939r0
https://www.nvidia.com/en-us/data-center/tensorcore/
https://www.cerebras.net/product/#chip
https://doi.org/10.1017/S0962492914000038

blas_interface.md 4/14/2021

component of allowing no room for another language "below" C++ (see notes on this philosophy in P0939R0
and Stroustrup's seminal work "The Design and Evolution of C++").

Dense linear algebra is the core component of most algorithms and applications that use linear algebra, and

the component that is most widely shared over different application areas. For example, tensor computations
end up spending most of their time in optimized dense linear algebra functions. Sparse matrix computations
get best performance when they spend as much time as possible in dense linear algebra.

The C++ Standard Library includes many "mathematical special functions" ([sf.cmath]), like incomplete elliptic
integrals, Bessel functions, and other polynomials and functions named after various mathematicians. Any of
them comes with its own theory and set of applications for which robust and accurate implementations are
indispensible. We think that linear algebra operations are at least as broadly useful, and in many cases
significantly more so.

Why base a C++ linear algebra library on the BLAS?
1. The BLAS is a standard that codifies decades of existing practice.

2. The BLAS separates out "performance primitives" for hardware experts to tune, from mathematical
operations that rely on those primitives for good performance.

3. Benchmarks reward hardware and system vendors for providing optimized BLAS implementations.
4. Writing a fast BLAS implementation for common element types is nontrivial, but well understood.
5. Optimized third-party BLAS implementations with liberal software licenses exist.

6. Building a C++ interface on top of the BLAS is a straightforward exercise, but has pitfalls for unaware
developers.

Linear algebra has had a cross-language standard, the Basic Linear Algebra Subroutines (BLAS), since 2002.
The Standard came out of a standardization process that started in 1995 and held meetings three times a year
until 1999. Participants in the process came from industry, academia, and government research laboratories.
The dense linear algebra subset of the BLAS codifies forty years of evolving practice, and has existed in
recognizable form since 1990 (see P1417RO0).

The BLAS interface was specifically designed as the distillation of the "computer science" / performance-
oriented parts of linear algebra algorithms. It cleanly separates operations most critical for performance, from
operations whose implementation takes expertise in mathematics and rounding-error analysis. This gives
vendors opportunities to add value, without asking for expertise outside the typical required skill set of a
Standard Library implementer.

Well-established benchmarks such as the LINPACK benchmark reward computer hardware vendors for
optimizing their BLAS implementations. Thus, many vendors provide an optimized BLAS library for their
computer architectures. Writing fast BLAS-like operations is not trivial, and depends on computer architecture.
However, it is a well-understood problem whose solutions could be parameterized for a variety of computer
architectures. See, for example, Goto and van de Geijn 2008. There are optimized third-party BLAS
implementations for common architectures, like ATLAS and GotoBLAS. A (slow but correct) reference
implementation of the BLAS exists and it has a liberal software license for easy reuse.

6/141

http://wg21.link/p0939r0
http://www.netlib.org/blas/blast-forum/
http://wg21.link/p1417r0
https://www.top500.org/project/linpack/
https://doi.org/10.1145/1356052.1356053
http://math-atlas.sourceforge.net/
https://www.tacc.utexas.edu/research-development/tacc-software/gotoblas2
http://www.netlib.org/blas/#_reference_blas_version_3_8_0

blas_interface.md 4/14/2021

We have experience in the exercise of wrapping a C or Fortran BLAS implementation for use in portable C++
libraries. We describe this exercise in detail in our paper "Evolving a Standard C++ Linear Algebra Library from
the BLAS" (P1674). It is straightforward for vendors, but has pitfalls for developers. For example, Fortran's
application binary interface (ABI) differs across platforms in ways that can cause run-time errors (even
incorrect results, not just crashing). Historical examples of vendors' C BLAS implementations have also had ABI
issues that required work-arounds. This dependence on ABI details makes availability in a standard C++
library valuable.

Criteria for including algorithms

We include algorithms in our proposal based on the following criteria, ordered by decreasing importance.
Many of our algorithms satisfy multiple criteria.

1. Getting the desired asymptotic run time is nontrivial
2. Opportunity for vendors to provide hardware-specific optimizations

3. Opportunity for vendors to provide quality-of-implementation improvements, especially relating to
accuracy or reproducibility with respect to floating-point rounding error

4. User convenience (familiar name, or tedious to implement)

Regarding (1), "nontrivial" means "at least for novices to the field." Dense matrix-matrix multiply is a good
example. Getting close to the asymptotic lower bound on the number of memory reads and writes matters a
lot for performance, and calls for a nonintuitive loop reordering. An analogy to the current C++ Standard
Library is , Where intuitive algorithms that many humans use are not asymptotically optimal.

Regarding (2), a good example is copying multidimensional arrays. The Kokkos library spends about 2500 lines
of code on multidimensional array copy, yet still relies on system libraries for low-level optimizations. An
analogy to the current C++ Standard Library is or even

Regarding (3), accurate floating-point summation is nontrivial. Well-meaning compiler optimizations might
defeat even simple techngiues, like compensated summation. The most obvious way to compute a vector's
Euclidean norm (square root of sum of squares) can cause overflow or underflow, even when the exact answer
is much smaller than the overflow threshold, or larger than the underflow threshold. Some users care deeply
about sums, even parallel sums, that always get the same answer, despite rounding error. This can help
debugging, for example. It is possible to make floating-point sums completely independent of parallel
evaluation order. See e.g., the ReproBLAS effort. Naming these algorithms and providing

customization hooks gives vendors a chance to provide these improvements. An analogy to the current C++
Standard Library is , whose language in the C++ Standard alludes to the tighter POSIX requirements.

Regarding (4), the C++ Standard Library is not entirely minimalist. One example is
Existing Standard Library algorithms already offered this functionality, but a member function is
easy for novices to find and use, and avoids the tedium of comparing the result of to

The BLAS exists mainly for the first two reasons. It includes functions that were nontrivial for compilers to
optimize in its time, like scaled elementwise vector sums, as well as functions that generally require human
effort to optimize, like matrix-matrix multiply.

Notation and conventions

71141

http://wg21.link/p1674
file:///c%3A/Users/mhoemmen/Documents/CPP/P1673/cpp-proposals-pub/D1673/github.com/kokkos/kokkos
https://bebop.cs.berkeley.edu/reproblas/

blas_interface.md 4/14/2021

The BLAS uses Fortran terms

The BLAS' "native" language is Fortran. It has a C binding as well, but the BLAS Standard and documentation
use Fortran terms. Where applicable, we will call out relevant Fortran terms and highlight possibly confusing
differences with corresponding C++ ideas. Our paper P1674R0 ("Evolving a Standard C++ Linear Algebra
Library from the BLAS") goes into more detail on these issues.

We call "subroutines" functions

Like Fortran, the BLAS distinguishes between functions that return a value, and subroutines that do not return
a value. In what follows, we will refer to both as "BLAS functions" or "functions."

Element types and BLAS function name prefix

The BLAS implements functionality for four different matrix, vector, or scalar element types:

. (in C++ terms)

. (in C++ terms)

] (in C++ terms)

. (in C++ terms)

The BLAS' Fortran 77 binding uses a function name prefix to distinguish functions based on element type:

e < for ("single")

e D for

e (for

e 7 for
For example, the four BLAS functions , , , and all perform the vector update

for vectors ¥ and ¥ and scalar , but for different vector and scalar element types.

The convention is to refer to all of these functions together as . In general, a lower-case x is a
placeholder for all data type prefixes that the BLAS provides. For most functions, the x is a prefix, but for a few
functions like , the data type "prefix" is not the first letter of the function name. (is a Fortran
function that returns , and therefore follows the old Fortran implicit naming rule that integers start
with 1, J, etc.)

Not all BLAS functions exist for all four data types. These come in three categories:

1. The BLAS provides only real-arithmetic (5 and D) versions of the function, since the function only makes
mathematical sense in real arithmetic.

2. The complex-arithmetic versions perform a slightly different mathematical operation than the real-
arithmetic versions, so they have a different base name.

3. The complex-arithmetic versions offer a choice between nonconjugated or conjugated operations.

As an example of the second category, the BLAS functions and compute the sums of absolute
values of a vector's elements. Their complex counterparts and compute the sums of absolute
values of real and imaginary components of a vector v, that is, the sum of

87141

blas_interface.md 4/14/2021

for all 1 in the domain of v. The latter operation is still useful as a vector norm, but it
requires fewer arithmetic operations.

Examples of the third category include the following:

* nonconjugated dot product and conjugated dot product ; and
* rank-1 symmetric () vs. Hermitian () matrix update.

The conjugate transpose and the (nonconjugated) transpose are the same operation in real arithmetic (if one
considers real arithmetic embedded in complex arithmetic), but differ in complex arithmetic. Different
applications have different reasons to want either. The C++ Standard includes complex numbers, so a
Standard linear algebra library needs to respect the mathematical structures that go along with complex

numbers.

What we exclude from the design

Functions not in the Reference BLAS

The BLAS Standard includes functionality that appears neither in the Reference BLAS library, nor in the classic
BLAS "level" 1, 2, and 3 papers. (For history of the BLAS "levels" and a bibliography, see P1417R0. For a paper
describing functions not in the Reference BLAS, see "An updated set of basic linear algebra subprograms
(BLAS)," listed in "Other references" below.) For example, the BLAS Standard has

¢ several new dense functions, like a fused vector update and dot product;

* sparse linear algebra functions, like sparse matrix-vector multiply and an interface for constructing
sparse matrices; and

* extended- and mixed-precision dense functions (though we subsume some of their functionality; see
below).

Our proposal only includes core Reference BLAS functionality, for the following reasons:

1. Vendors who implement a new component of the C++ Standard Library will want to see and test

against an existing reference implementation.
2. Many applications that use sparse linear algebra also use dense, but not vice versa.

3. The Sparse BLAS interface is a stateful interface that is not consistent with the dense BLAS, and would
need more extensive redesign to translate into a modern C++ idiom. See discussion in P1417RO0.

4. Our proposal subsumes some dense mixed-precision functionality (see below).

LAPACK or related functionality
The LAPACK Fortran library implements solvers for the following classes of mathematical problems:

® linear systems,
® linear least-squares problems, and

® eigenvalue and singular value problems.

It also provides matrix factorizations and related linear algebra operations. LAPACK deliberately relies on the
BLAS for good performance; in fact, LAPACK and the BLAS were designed together. See history presented in

9/141

http://www.netlib.org/lapack/explore-html/d1/df9/group__blas.html
http://wg21.link/p1417r0
http://wg21.link/p1417r0
http://www.netlib.org/lapack/

blas_interface.md 4/14/2021

P1417R0.

Several C++ libraries provide slices of LAPACK functionality. Here is a brief, noninclusive list, in alphabetical
order, of some libraries actively being maintained:

¢ Armadillo,

® Boost.uBLAS,

* Eigen,

* Matrix Template Library, and
® Trilinos.

P1417R0 gives some history of C++ linear algebra libraries. The authors of this proposal have designed,
written, and maintained LAPACK wrappers in C++. Some authors have LAPACK founders as PhD advisors.
Nevertheless, we have excluded LAPACK-like functionality from this proposal, for the following reasons:

1. LAPACK is a Fortran library, unlike the BLAS, which is a multilanguage standard.

2. We intend to support more general element types, beyond the four that LAPACK supports. It's much
more straightforward to make a C++ BLAS work for general element types, than to make LAPACK
algorithms work generically.

First, unlike the BLAS, LAPACK is a Fortran library, not a standard. LAPACK was developed concurrently with
the "level 3" BLAS functions, and the two projects share contributors. Nevertheless, only the BLAS and not
LAPACK got standardized. Some vendors supply LAPACK implementations with some optimized functions, but
most implementations likely depend heavily on "reference" LAPACK. There have been a few efforts by LAPACK
contributors to develop C++ LAPACK bindings, from Lapack++ in pre-templates C++ circa 1993, to the recent
"C++ API for BLAS and LAPACK". (The latter shares coauthors with this proposal.) However, these are still just
C++ bindings to a Fortran library. This means that if vendors had to supply C++ functionality equivalent to
LAPACK, they would either need to start with a Fortran compiler, or would need to invest a lot of effort in a
C++ reimplementation. Mechanical translation from Fortran to C++ introduces risk, because many LAPACK
functions depend critically on details of floating-point arithmetic behavior.

Second, we intend to permit use of matrix or vector element types other than just the four types that the BLAS
and LAPACK support. This includes "short" floating-point types, fixed-point types, integers, and user-defined
arithmetic types. Doing this is easier for BLAS-like operations than for the much more complicated numerical
algorithms in LAPACK. LAPACK strives for a "generic” design (see Jack Dongarra interview summary in
P1417R0), but only supports two real floating-point types and two complex floating-point types. Directly
translating LAPACK source code into a "generic" version could lead to pitfalls. Many LAPACK algorithms only
make sense for number systems that aim to approximate real numbers (or their complex extentions). Some
LAPACK functions output error bounds that rely on properties of floating-point arithmetic.

For these reasons, we have left LAPACK-like functionality for future work. It would be natural for a future
LAPACK-like C++ library to build on our proposal.

Extended-precision BLAS

Our interface subsumes some functionality of the Mixed-Precision BLAS specification (Chapter 4 of the BLAS
Standard). For example, users may multiply two 16-bit floating-point matrices (assuming that a 16-bit
floating-point type exists) and accumulate into a 32-bit floating-point matrix, just by providing a 32-bit
floating-point matrix as output. Users may specify the precision of a dot product result. If it is greater than the

10/ 141

http://wg21.link/p1417r0
http://arma.sourceforge.net/
https://github.com/boostorg/ublas
http://eigen.tuxfamily.org/index.php?title=Main_Page
http://www.simunova.com/de/mtl4/
https://github.com/trilinos/Trilinos/
http://wg21.link/p1417r0
https://www.icl.utk.edu/files/publications/2017/icl-utk-1031-2017.pdf
https://github.com/kokkos/kokkos-kernels
https://github.com/trilinos/Trilinos/tree/master/packages/teuchos/numerics/src
https://math.nist.gov/lapack++/
https://www.icl.utk.edu/files/publications/2017/icl-utk-1031-2017.pdf
http://wg21.link/p1417r0

blas_interface.md 4/14/2021

input vectors' element type precisions (e.g., Vs.), then this effectively performs accumulation in
higher precision. Our proposal imposes semantic requirements on some functions, like , to
behave in this way.

However, we do not include the "Extended-Precision BLAS" in this proposal. The BLAS Standard lets callers
decide at run time whether to use extended precision floating-point arithmetic for internal evaluations. We
could support this feature at a later time. Implementations of our interface also have the freedom to use more
accurate evaluation methods than typical BLAS implementations. For example, it is possible to make floating-

point sums completely independent of parallel evaluation order.

Arithmetic operators and associated expression templates
Our proposal omits arithmetic operators on matrices and vectors. We do so for the following reasons:
1. We propose a low-level, minimal interface.

2. could have multiple meanings for matrices and vectors. Should it mean elementwise
product (like) or matrix product? Should libraries reinterpret "vector times vector" as a dot
product (row vector times column vector)? We prefer to let a higher-level library decide this, and make

everything explicit at our lower level.

3. Arithmetic operators require defining the element type of the vector or matrix returned by an
expression. Functions let users specify this explicitly, and even let users use different output types for
the same input types in different expressions.

4. Arithmetic operators may require allocation of temporary matrix or vector storage. This prevents use of

nonowning data structures.

5. Arithmetic operators strongly suggest expression templates. These introduce problems such as
dangling references and aliasing.

Our goal is to propose a low-level interface. Other libraries, such as that proposed by P1385, could use our
interface to implement overloaded arithmetic for matrices and vectors. PO939R0 advocates using "an
incremental approach to design to benefit from actual experience." A constrained, function-based, BLAS-like
interface builds incrementally on the many years of BLAS experience.

Arithmetic operators on matrices and vectors would require the library, not necessarily the user, to specify the
element type of an expression's result. This gets tricky if the terms have mixed element types. For example,

what should the element type of the result of the vector sum be, if x has element type
and v has element type ? It's tempting to use , but
is . This loses precision. Some users may want
; others may want or something else, and others may want to

choose different types in the same program.

P1385 lets users customize the return type of such arithmetic expressions. However, different algorithms may
call for the same expression with the same inputs to have different output types. For example, iterative
refinement of linear systems can work either with an extended-precision intermediate residual vector

, or with a residual vector that has the same precision as the input linear system. Each choice
produces a different algorithm with different convergence characteristics, per-iteration run time, and memory

1/141

https://bebop.cs.berkeley.edu/reproblas/
http://wg21.link/p1385
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0939r0.pdf
http://wg21.link/p1385

blas_interface.md 4/14/2021

requirements. Thus, our library lets users specify the result element type of linear algebra operations explicitly,
by calling a named function that takes an output argument explicitly, rather than an arithmetic operator.

Arithmetic operators on matrices or vectors may also need to allocate temporary storage. Users may not want
that. When LAPACK's developers switched from Fortran 77 to a subset of Fortran 90, their users rejected the
option of letting LAPACK functions allocate temporary storage on their own. Users wanted to control memory
allocation. Also, allocating storage precludes use of nonowning input data structures like , that
do not know how to allocate.

Arithmetic expressions on matrices or vectors strongly suggest expression templates, as a way to avoid
allocation of temporaries and to fuse computational kernels. They do not require expression templates. For
example, offers overloaded operators for vector arithmetic, but the Standard lets implementers
decide whether to use expression templates. However, all of the current C++ linear algebra libraries that we
mentioned above have some form of expression templates for overloaded arithmetic operators, so users will
expect this and rely on it for good performance. This was, indeed, one of the major complaints about initial
implementations of :its lack of mandate for expression templates meant that initial
implementations were slow, and thus users did not want to rely on it. (See Josuttis 1999, p. 547, and
Vandevoorde and Josuttis 2003, p. 342, for a summary of the history. Fortran has an analogous issue, in which
(under certain conditions) it is implementation defined whether the run-time environment needs to copy
noncontiguous slices of an array into contiguous temporary storage.)

Expression templates work well, but have issues. Our papers P1417R0 and "Evolving a Standard C++ Linear
Algebra Library from the BLAS" (P1674R0) give more detail on these issues. A particularly troublesome one is
that modern C++ makes it easy for users to capture expressions before their evaluation and writing into
an output array. For matrices and vectors with container semantics, this makes it easy to create dangling
references. Users might not realize that they need to assign expressions to named types before actual work
and storage happen. Eigen's documentation describes this common problem.

Our , , , and functions make use of one aspect of
expression templates, namely modifying the array access operator. However, we intend these
functions for use only as in-place modifications of arguments of a function call. Also, when modifying

, these functions merely view the same data that their input views. They
introduce no more potential for dangling references than itself. The use of views like

is self-documenting; it tells users that they need to take responsibility for scope of the viewed
data.

Banded matrix layouts

This proposal omits banded matrix types. It would be easy to add the required layouts and specializations of
algorithms later. The packed and unpacked symmetric and triangular layouts in this proposal cover the major
concerns that would arise in the banded case, like nonstrided and nonunique layouts, and matrix types that
forbid access to some multi-indices in the Cartesian product of extents.

Tensors

We exclude tensors from this proposal, for the following reasons. First, tensor libraries naturally build on

optimized dense linear algebra libraries like the BLAS, so a linear algebra library is a good first step. Second,
has natural use as a low-level representation of dense tensors, so we are already partway there. Third,

even simple tensor operations that naturally generalize the BLAS have infintely many more cases than linear

127141

http://wg21.link/p1417r0
https://eigen.tuxfamily.org/dox/TopicPitfalls.html

blas_interface.md 4/14/2021

algebra. It's not clear to us which to optimize. Fourth, even though linear algebra is a special case of tensor
algebra, users of linear algebra have different interface expectations than users of tensor algebra. Thus, it
makes sense to have two separate interfaces.

Explicit support for asynchronous return of scalar values

After we presented revision 2 of this paper, LEWG asked us to consider support for discrete graphics
processing units (GPUs). GPUs have two features of interest here. First, they might have memory that is not
accessible from ordinary C++ code, but could be accessed in a standard algorithm (or one of our proposed
algorithms) with the right implementation-specific . (For instance, a policy could say "run
this algorithm on the GPU.") Second, they might execute those algorithms asynchronously. That is, they might
write to output arguments at some later time after the algorithm invocation returns. This would imply
different interfaces in some cases. For instance, a hypothetical asynchronous vector 2-norm might write its
scalar result via a pointer to GPU memory, instead of returning the result "on the CPU."

Nothing in principle prevents from viewing memory that is inaccessible from ordinary C++
code. This is a major feature of the class from the Kokkos library, and directly
inspired . The C++ Standard does not currently define how such memory behaves, but
implementations could define its behavior and make it work with . This would, in turn, let
implementations define our algorithms to operate on such memory efficiently, if given the right
implementation-specific

Our proposal excludes algorithms that might write to their output arguments at some time after after the
algorithm returns. First, LEWG insisted that our proposed algorithms that compute a scalar result, like

, return that result in the manner of , rather than writing the result to an output
reference or pointer. (Previous revisions of our proposal used the latter interface pattern.) Second, it's not
clear whether writing a scalar result to a pointer is the right interface for asynchronous algorithms. Follow-on
proposals to Executors (P0443R14) include asynchronous algorithms, but none of these suggest returning
results asynchronously by pointer. Our proposal deliberately imitates the existing standard algorithms. Right
now, we have no standard asynchronous algorithms to imitate.

Design justification

We take a step-wise approach. We begin with core BLAS dense linear algebra functionality. We then deviate
from that only as much as necessary to get algorithms that behave as much as reasonable like the existing
C++ Standard Library algorithms. Future work or collaboration with other proposals could implement a
higher-level interface.

We propose to build the initial interface on top of , and plan to extend that later with overloads
for a new variant of with container semantics as well as any type
implementing a customization point. We explain the value of these choices below.

Please refer to our papers "Evolving a Standard C++ Linear Algebra Library from the BLAS" (P1674R0) and
"Historical lessons for C++ linear algebra library standardization" (P1417R0). They will give details and
references for many of the points that we summarize here.

We do not require using the BLAS library

137141

https://github.com/kokkos/kokkos
http://wg21.link/p0443R14
http://wg21.link/p1674r0
http://wg21.link/p1417r0

blas_interface.md 4/14/2021

Our proposal is based on the BLAS interface, and it would be natural for implementers to use an existing C or
Fortran BLAS library. However, we do not require an underlying BLAS C interface. Vendors should have the
freedom to decide whether they want to rely on an existing BLAS library.

They may also want to write a "pure" C++ implementation that does not depend on an external library. They
will, in any case, need a "generic" C++ implementation for matrix and vector element types other than the
four that the BLAS supports.

Why use ?
* C++ does not currently have a data structure for representing multidimensional arrays.

* The BLAS' C interface takes a large number of pointer and integer arguments that represent matrices
and vectors. Using multidimensional array data structures in the C++ interface reduces the number of
arguments and avoids common errors.

. supports row-major, column-major, and strided layouts out of the box, and it has
as an extension point. This lets our interface support layouts beyond what the BLAS Standard

permits.
* Using lets our algorithms exploit any dimensions or strides known at compile time.
o has built-in "slicing" capabilities via
. 's layout and accessor policies let us simplify our interfaces, by encapsulating transpose,

conjugate, and scalar arguments. See below for details.

. is low level; it imposes no mathematical meaning on multidimensional arrays. This gives
users the freedom to develop mathematical libraries with the semantics they want. (Some users object
to calling something a "matrix" or "tensor" if it doesn't have the right mathematical properties. The C++
Standard has already taken the word)

® Using offers us a hook for future expansion to support heterogeneous memory spaces.
(This is a key feature of , the data structure that inspired)

. 's encapsulation of matrix indexing makes C++ implementations of BLAS-like operations
much less error prone and easier to read.

* Using will make it easier for us to add an efficient "batched" interface in future
proposals.

Defining a concept for the data structures instead

LEWGI requested in the 2019 Cologne meeting that we explore using a concept instead of to
define the arguments for the linear algebra functions. We investigated this option, and rejected it, for the
following reasons.

1. Our proposal uses enough features of that any concept generally applicable to all
functions we propose would largely replicate the definition of

2. This proposal could support most multidimensional array types, if the array types just made themselves
convertible to

14 /141

blas_interface.md 4/14/2021

3. We could always generalize our algorithms later.
4. Any multidimensional array concept would need revision in the light of P2128R3.

This proposal refers to almost all of 's features, including , ,and
. We expect implementations to use all of them for optimizations, for example to extract

the scaling factor from the return value of in order to call an optimized BLAS library directly.

Suppose that a general customization point existed, that takes a reference to a multidimensional
array type and returns a that views the array. Then, our proposal could support most
multidimensional array types. "Most" includes all such types that refer to a subset of a contiguous span of
memory.

Requiring that a multidimensional array refer to a subset of a contiguous span of memory would exclude
multidimensional array types that have a noncontiguous backing store, such as a . If we later wanted to
support such types, we could always generalize our algorithms later.

Finally, any multidimensional array concept would need revision in the light of P2128R3, which finished LEWG
review in March 2021. P2128 proposes letting take multiple parameters. Its authors intend to let
use instead of

After further discussion at the 2019 Belfast meeting, LEWGI accepted our position that having our algorithms
take instead of template parameters constrained by a multidimensional array concept would
be fine for now.

Function argument aliasing and zero scalar multipliers
Summary:

1. The BLAS Standard forbids aliasing any input (read-only) argument with any output (write-only or read-
and-write) argument.

2. The BLAS uses (read-and-write) arguments to express "updates" to a vector or matrix.
By contrast, C++ Standard algorithms like take input and output iterator ranges as different
parameters, but may let input and output ranges be the same.

3. The BLAS uses the values of scalar multiplier arguments (“alpha" or "beta") of vectors or matrices at run
time, to decide whether to treat the vectors or matrices as write only. This matters both for
performance and semantically, assuming IEEE floating-point arithmetic.

4. We decide separately, based on the category of BLAS function, how to translate
arguments into a C++ idiom:

a. For triangular solve and triangular multiply, in-place behavior is essential for computing matrix
factorizations in place, without requiring extra storage proportional to the input matrix's dimensions.
However, in-place functions cannot be parallelized for arbitrary execution policies. Thus, we have both
not-in-place and in-place overloads, and only the not-in-place overloads take an optional

b. Else, if the BLAS function unconditionally updates (like), we retain read-and-write behavior for
that argument.

157141

http://wg21.link/p2128
http://wg21.link/p2128

blas_interface.md 4/14/2021

c. Else, if the BLAS function uses a scalar argument to decide whether to read the output
argument as well as write to it (like), we provide two versions: a write-only version (as if is
zero), and a read-and-write version (as if is nonzero).

For a detailed analysis, see "Evolving a Standard C++ Linear Algebra Library from the BLAS" (P1674R0).

Support for different matrix layouts
Summary:

1. The dense BLAS supports several different dense matrix "types." Type is a mixture of "storage format"
(e.g., packed, banded) and "mathematical property" (e.g., symmetric, Hermitian, triangular).

2. Some "types" can be expressed as custom layouts. Other types actually represent
algorithmic constraints: for instance, what entries of the matrix the algorithm is allowed to access.

3. Thus, a C++ BLAS wrapper cannot overload on matrix "type" simply by overloading on
specialization. The wrapper must use different function names, tags, or some other way to decide what
the matrix type is.

For more details, including a list and description of the matrix "types" that the dense BLAS supports, see our
paper "Evolving a Standard C++ Linear Algebra Library from the BLAS" (P1674R0) lists the different matrix

types.

A C++ linear algebra library has a few possibilities for distinguishing the matrix "type™:

1. It could imitate the BLAS, by introducing different function names, if the layouts and accessors do not
sufficiently describe the arguments.

2. It could introduce a hierarchy of higher-level classes for representing linear algebra objects, use
(or something like it) underneath, and write algorithms to those higher-level classes.

3. It could use the layout and accessor types in simply as tags to indicate the matrix "type."
Algorithms could specialize on those tags.

We have chosen Approach 1. Our view is that a BLAS-like interface should be as low-level as possible.
Approach 2 is more like a "Matlab in C++"; a library that implements this could build on our proposal's lower-
level library. Approach 3 sounds attractive. However, most BLAS matrix "types" do not have a natural
representation as layouts. Trying to hack them in would pollute -- a simple class meant to be
easy for the compiler to optimize -- with extra baggage for representing what amounts to sparse matrices. We
think that BLAS matrix "type" is better represented with a higher-level library that builds on our proposal.

Over- and underflow wording for vector 2-norm

SG6 recommended to us at Belfast 2019 to change the special overflow / underflow wording for

to imitate the BLAS Standard more closely. The BLAS Standard does say something about
overflow and underflow for vector 2-norms. We reviewed this wording and conclude that it is either a
nonbinding quality of implementation (Qol) recommendation, or too vaguely stated to translate directly into
C++ Standard wording. Thus, we removed our special overflow / underflow wording. However, the BLAS
Standard clearly expresses the intent that implementations document their underflow and overflow
guarantees for certain functions, like vector 2-norms. The C++ Standard requires documentation of

16/ 141

blas_interface.md 4/14/2021

"implementation-defined behavior." Therefore, we added language to our proposal that makes "any
guarantees regarding overflow and underflow" of those certain functions "implementation-defined."

Previous versions of this paper asked implementations to compute vector 2-norms "without undue overflow
or underflow at intermediate stages of the computation." "Undue" imitates existing C++ Standard wording for

. This wording hints at the stricter requirements in F.9 (normative, but optional) of the C Standard for
math library functions like , without mandating those requirements. In particular, paragraph 9 of F.9
says:

Whether or when library functions raise an undeserved "underflow" floating-point exception is
unspecified. Otherwise, as implied by F.7.6, the <math.h> functions do not raise spurious floating-
point exceptions (detectable by the user) [including the "overflow" exception discussed in paragraph
6], other than the "inexact" floating-point exception.

However, these requirements are for math library functions like , ot for general algorithms that return
floating-point values. SG6 did not raise a concern that we should treat like a math library
function; their concern was that we imitate the BLAS Standard's wording.

The BLAS Standard says of several operations, including vector 2-norm: "Here are the exceptional routines
where we ask for particularly careful implementations to avoid unnecessary over/underflows, that could make
the output unnecessarily inaccurate or unreliable" (p. 35).

The BLAS Standard does not define phrases like "unnecessary over/underflows." The likely intent is to avoid
naive implementations that simply add up the squares of the vector elements. These would overflow even if
the norm in exact arithmetic is significantly less than the overflow threshold. The POSIX Standard (IEEE Std
1003.1-2017) analogously says that must "take precautions against overflow during intermediate steps
of the computation."

The phrase "precautions against overflow" is too vague for us to translate into a requirement. The authors
likely meant to exclude naive implementations, but not require implementations to know whether a result
computed in exact arithmetic would overflow or underflow. The latter is a special case of computing floating-
point sums exactly, which is costly for vectors of arbitrary length. While it would be a useful feature, it is
difficult enough that we do not want to require it, especially since the BLAS Standard itself does not. The
Reference BLAS implementation of vector 2-norms maintains the current maximum absolute value of
all the vector entries seen thus far, and scales each vector entry by that maximum, in the same way as the
LAPACK routine . Implementations could also first compute the sum of squares in a straightforward
loop. They could then recompute if needed, for example by testing if the result is or

For all of the functions listed on p. 35 of the BLAS Standard as needing "particularly careful implementations,”
except vector norm, the BLAS Standard has an "Advice to implementors" section with extra accuracy
requirements. The BLAS Standard does have an "Advice to implementors" section for matrix norms (see
Section 2.8.7, p. 69), which have similar over- and underflow concerns as vector norms. However, the Standard
merely states that "[h]igh-quality implementations of these routines should be accurate" and should
document their accuracy, and gives examples of "accurate implementations" in LAPACK.

The BLAS Standard never defines what "Advice to implementors" means. However, the BLAS Standard shares
coauthors and audience with the Message Passing Interface (MPI) Standard, which defines "Advice to
implementors" as "primarily commentary to implementors"” and permissible to skip (see e.g., MPI 3.0, Section

177141

https://www.netlib.org/lapack/explore-html/da/d7f/dnrm2_8f_source.html

blas_interface.md 4/14/2021

2.1, p. 9). We thus interpret "Advice to implementors" in the BLAS Standard as a nonbinding quality of
implementation (Qol) recommendation.

Why no concepts for template parameters?
We need adverbs, not adjectives

LEWG's 2020 review of P1673R2 asked us to investigate conceptification of its algorithms. "Conceptification"
here refers to an effort like that of P1813R0 ("A Concept Design for the Numeric Algorithms"), to come up
with concepts that could be used to constrain the template parameters of numeric algorithms like or
. (We are not referring to LEWGI's request for us to consider generalizing our algorithm's
parameters from to a hypothetical multidimensional array concept. We discuss that above; see
"Defining a concept for the data structures instead.") The numeric algorithms are relevant to P1673 because
many of the algorithms proposed in P1673 look like generalizations of or . We intend for
our algorithms to be generic on their matrix and vector element types, so these questions matter a lot to us.

We agree that it is useful to set constraints that make it possible to reason about correctness of algorithms.
However, our concern is that P1813R0 imposes requirements that are too strict to be useful for practical types,
like associativity. Concepts give us adjectives, that describe the element types of input and output arrays. What
we actually want are adverbs, that describe the algorithms we apply to those arrays. The Standard already has
machinery like GENERALIZED_SUM that we can (and do) use to describe our algorithms in an adverbial way.

Associativity is too strict

P1813R0 requires associative addition for many algorithms, such as . However, many practical
arithmetic systems that users might like to use with algorithms like have non-associative addition.
These include

* systems with rounding;
* systems with an "infinity": e.g., if 10 is Inf, 3 + 8 - 7 could be either Inf or 4; and
® saturating arithmetic: e.g., if 10 saturates, 3 + 8 - 7 could be either 3 or 4.

Note that the latter two arithmetic systems have nothing to do with rounding error. With saturating integer
arithmetic, parenthesizing a sum in different ways might give results that differ by as much as the saturation
threshold. It's true that many non-associative arithmetic systems behave "associatively enough" that users
don't fear parallelizing sums. However, a concept with an exact property (like "commutative semigroup") isn't
the right match for "close enough," just like isn't the right match for describing "nearly the
same." For some number systems, a rounding error bound might be more appropriate, or guarantees on
when underflow or overflow may occur (as in POSIX's).

The problem is a mismatch between the constraint we want to express -- that "the algorithm may
reparenthesize addition" -- and the constraint that "addition is associative." The former is an adverb,
describing what the algorithm (a verb) does. The latter is an adjective, describing the type (a noun) used with
an algorithm. Given the huge variety of possible arithmetic systems, an approach like the Standard's use of
GENERALIZED _SUM to describe and its kin seems more helpful. If the Standard describes an
algorithm in terms of GENERALIZED_SUM, then that tells the caller what the algorithm might do. The caller
then takes responsibility for interpreting the algorithm's results.

187141

blas_interface.md 4/14/2021

We think this is important both for adding new algorithms (like those in this proposal) and for defining

behavior of an algorithm with respect to different arguments. (For instance,
could imply that the algorithm might change the order of terms in a sum, while need not. Compare to
's parameter, that affects the behavior of algorithms like when used

with the resulting user-defined reduction operator.)
Generalizing associativity does not help

Suppose we accept that associativity and related properties are not useful for describing our proposed
algorithms. Could there be a generalization of associativity that would be useful? P1813R0's most general
concept is a . Mathematically, a magma is a set M with a binary operation x, such that if a and b are in
M, then a x b is in M. The operation need not be associative or commutative. While this seems almost too
general to be useful, there are two reasons why even a magma is too specific for our proposal.

* It only assumes one set, that is, one type. This does not accurately describe what the algorithms do, and
it excludes useful features like mixed precision and types that use expression templates.
* Magma is too specific, because algorithms are useful even if the binary operation is not closed.

First, even for simple linear algebra operations that "only" use plus and times, there is no one "set M" over
which plus and times operate. There are actually three operations: plus, times, and assignment. Each operation
may have completely heterogeneous input(s) and output. The sets (types) that may occur vary from algorithm
to algorithm, depending on the input type(s), and the algebraic expression(s) that the algorithm is allowed to
use. We might need several different concepts to cover all the expressions that algorithms use, and the
concepts would end up being less useful to users than the expressions themselves.

For instance, consider the Level 1 BLAS "AXPY" function. This computes

elementwise. What type does the expression have? It doesn't need to have the same

type as ; it just needs to be assignable to . The types of , , and could all differ. As a

simple example, might be , might be , and might be . The types of

and might be more complicated; e.g., might be a polynomial with coefficients, and a

polynomial with coefficients. If those polynomials use expression templates, then the expression
might have a completely different type than (possibly with references removed),

and might also have a completely different type than

We could try to describe this with a concept that expresses a sum type. The sum type would include all the
types that might show up in the expression. However, we do not think this would improve clarity over just the
expression. Furthermore, different algorithms may need different expressions, so we would need multiple
concepts, one for each expression. Why not just use the expressions to describe what the algorithms can do?

Second, the magma concept is not helpful even if we only had one set M, because our algorithms would still
be useful even if binary operations were not closed over that set. For example, consider a hypothetical user-
defined rational number type, where plus and times throw if representing the result of the operation would
take more than a given fixed amount of memory. Programmers might handle this exception by falling back to
different algorithms. Neither plus or times on this type would satisfy the magma requirement, but the
algorithms would still be useful for such a type. One could consider the magma requirement satisfied in a
purely syntactic sense, because of the return type of plus and times. However, saying that would not
accurately express the type's behavior.

197141

blas_interface.md 4/14/2021

This point returns us to the concerns we expressed earlier about assuming associativity. "Approximately
associative" or "usually associative" are not useful concepts without further refinement. The way to refine
these concepts usefully is to describe the behavior of a type fully, e.g., the way that IEEE 754 describes the
behavior of floating-point numbers. However, algorithms rarely depend on all the properties in a specification
like IEEE 754. The problem, again, is that we need adverbs, not adjectives. We want to describe what the
algorithms do -- e.g., that they can rearrange terms in a sum -- not how the types that go into the algorithms
behave.

Summary

* Many useful types have nonassociative or even non-closed arithmetic.

* Lack of (e.g.,) associativity is not just a rounding error issue.

® |t can be useful to let algorithms do things like reparenthesize sums or products, even for types that are
not associative.

® Permission for an algorithm to reparenthesize sums is not the same as a concept constraining the terms
in the sum.

* We can and do use existing Standard language, like GENERALIZED_SUM, for expressing permissions
that algorithms have.

Future work

Summary:

1. Generalize function parameters to take any type that implements the customization point,
including

2. Add batched linear algebra overloads.

Generalize function parameters

Our functions differ from the C++ Standard algorithms, in that they take a concrete type with
template parameters, rather than any type that satisfies a concept. We think that the template parameters of
fully describe the multidimensional equivalent of a multipass iterator, and that
"conceptification" of multidimensional arrays would unnecessarily delay both this proposal. and PO009 (the

proposal).

In a future proposal, we plan to generalize our function's template parameters, to permit any type besides
that implements the customization point, as long as the return value of
satisfies the current requirements. will return a that views its
argument's data.

, proposed in P1684, is the container analog of . Itis a new kind of container,
with the same copy behavior as containers like . It has the same extension points as ,
and also has the ability to use any contiguous container (see [container.requirements.general]) for storage.
Contiguity matters because views a subset of a contiguous pointer range, and we want to be
able to get a that views the . will come with support for two
different underlying containers: and A (see P0O009) of a will return a

with the appropriate layout and corresponding accessor. Users must guard against dangling

pointers, just as they currently must do when using to view a subset of a

20/141

http://wg21.link/p0009r10
http://wg21.link/p1684
http://wg21.link/p0009r10

blas_interface.md 4/14/2021

Previous versions of this proposal included function overloads that took directly. The goals
were user convenience, and to avoid any potential overhead of conversion to , especially for
very small matrices and vectors. In a future revision of P1684, will implement

This will let users use directly in our functions. This customization point approach would also
simplify using our functions with other matrix and vector types, such as those proposed by P1385.
Implementations may optionally add direct overloads of our functions for or other types. This
would address any concerns about overhead of converting from to

Batched linear algebra

We plan to write a separate proposal that will add "batched" versions of linear algebra functions to this
proposal. "Batched" linear algebra functions solve many independent problems all at once, in a single function
call. For discussion, see Section 6.2 of our background paper P1417R0. Batched interfaces have the following
advantages:

* They expose more parallelism and vectorization opportunities for many small linear algebra operations.
* They are useful for many different fields, including machine learning.

* Hardware vendors currently offer both hardware features and optimized software libraries to support
batched linear algebra.

* There is an ongoing interface standardization effort, in which we participate.

The data structure makes it easy to represent a batch of linear algebra objects, and to
optimize their data layout.

With few exceptions, the extension of this proposal to support batched operations will not require new
functions or interface changes. Only the requirements on functions will change. Output arguments can have
an additional rank; if so, then the leftmost extent will refer to the batch dimension. Input arguments may also
have an additional rank to match; if they do not, the function will use ("broadcast") the same input argument
for all the output arguments in the batch.

Data structures and utilities borrowed from other proposals

This proposal depends on POO09R10, which is a proposal for adding multidimensional arrays to the C++
Standard Library. is the main class in PO009. It is a "view" (in the sense of)of a
multidimensional array. The rank (number of dimensions) is fixed at compile time. Users may specify some
dimensions at run time and others at compile time; the type of the expresses this.

also has two customization points:

. expresses the array's memory layout: e.g., row-major (C++ style), column-major (Fortran style),
or strided. We use a custom later in this paper to implement a "transpose view" of an existing
. defines the storage handle (i.e.,) stored in the , as well as the reference type

returned by its access operator. This is an extension point for modifying how access happens, for

217141

http://wg21.link/p1385
http://wg21.link/p1417r0
http://icl.utk.edu/bblas/
http://wg21.link/p0009r10

blas_interface.md 4/14/2021

example by using to get atomic access to every element. We use custom s later
in this paper to implement "scaled views" and "conjugated views" of an existing

The class has an alias that uses the default and . In this paper, when
we refer to without other qualifiers, we mean the most general

New layouts in this proposal

Our proposal uses the layout mapping policy of in order to represent different matrix and

vector data layouts. Layout mapping policies as described by POO09R10 have three basic properties:

¢ Unique

¢ Contiguous

e Strided
POO09R10 includes three different layouts -- , , and -- all of
which are unique and strided. Only and are contiguous.

This proposal includes the following additional layouts:

. : Generalization of and ; describes layout used by
General (GE) matrix "type"

. : Describes layout used by the BLAS' Symmetric Packed (SP), Hermitian Packed
(HP), and Triangular Packed (TP) "types"

These layouts have "tag" template parameters that control their properties; see below.

We do not include layouts for unpacked "types," such as Symmetric (SY), Hermitian (HE), and Triangular (TR).
P1674 explains our reasoning. In summary: Their actual layout -- the arrangement of matrix elements in
memory -- is the same as General. The only differences are constraints on what entries of the matrix
algorithms may access, and assumptions about the matrix's mathematical properties. Trying to express those
constraints or assumptions as "layouts" or "accessors" violates the spirit (and sometimes the law) of

. We address these different matrix types with different function names.

The packed matrix "types" do describe actual arrangements of matrix elements in memory that are not the
same as in General. This is why we provide . Note that is the first
addition to the layouts in POOO9R10 that is neither always unique, nor always strided.

Algorithms cannot be written generically if they permit output arguments with nonunique layouts. Nonunique
output arguments require specialization of the algorithm to the layout, since there's no way to know
generically at compile time what indices map to the same matrix element. Thus, we will impose the following
rule: Any output argument to our functions must always have unique layout

(is), unless otherwise specified.

Some of our functions explicitly require outputs with specific nonunique layouts. This includes low-rank
updates to symmetric or Hermitian matrices.

Acknowledgments

22 /141

blas_interface.md 4/14/2021

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology &
Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Special thanks to Bob Steagall and Guy Davidson for boldly leading the charge to add linear algebra to the
C++ Standard Library, and for many fruitful discussions. Thanks also to Andrew Lumsdaine for his pioneering
efforts and history lessons.

References

References by coathors

* G. Ballard, E. Carson, J. Demmel, M. Hoemmen, N. Knight, and O. Schwartz, "Communication lower
bounds and optimal algorithms for numerical linear algebra,", Acta Numerica, Vol. 23, May 2014, pp. 1-
155.

e (. Trott, D. S. Hollman, D. Lebrun-Grande, M. Hoemmen, D. Sunderland, H. C. Edwards, B. A. Lelbach, M.
Bianco, B. Sander, A. lliopoulos, and J. Michopoulos, " :a Non-Owning Multidimensional Array
Reference," POOO9R10, Feb. 2020.

* M. Hoemmen, D. S. Hollman, and C. Trott, "Evolving a Standard C++ Linear Algebra Library from the
BLAS," P1674R0, Jun. 2019.

¢ M. Hoemmen, J. Badwaik, M. Brucher, A. lliopoulos, and J. Michopoulos, "Historical lessons for C++
linear algebra library standardization,” (P1417R0), Jan. 2019.

* M. Hoemmen, D. S. Hollman, C. Jabot, I. Muerte, and C. Trott, "Multidimensional subscript operator,"
P2128R3, Feb. 2021.

¢ D.S. Hollman, C. Trott, M. Hoemmen, and D. Sunderland, " : An Owning Multidimensional Array
Analog of ", P1684R0, Jun. 2019.

* D.S. Hollman, C. Kohlhoff, B. A. Lelbach, J. Hoberock, G. Brown, and M. Dominiak, "A General Property
Customization Mechanism," P1393R0, Jan. 2019.

Other references

® Basic Linear Algebra Subprograms Technical (BLAST) Forum Standard, International Journal of High
Performance Applications and Supercomputing, Vol. 16. No. 1, Spring 2002.

e L. S. Blackford, J. Demmel, J. Dongarra, |. Duff, S. Hammarling, G. Henry, M. Heroux, L. Kaufman, A.
Lumsdaine, A. Petitet, R. Pozo, K. Remington, and R. C. Whaley, "An updated set of basic linear algebra
subprograms (BLAS)," ACM Transactions on Mathematical Software (TOMS), Vol. 28, No. 2, Jun. 2002, pp.
135-151.

* G. Davidson and B. Steagall, "A proposal to add linear algebra support to the C++ standard library,"
P1385R4, Nov. 2019.

* B. Dawes, H. Hinnant, B. Stroustrup, D. Vandevoorde, and M. Wong, "Direction for ISO C++," PO939R0,
Feb. 2018.

237141

https://doi.org/10.1017/S0962492914000038
http://wg21.link/p0009r10
http://wg21.link/p1417r0
http://wg21.link/p2128r3
https://isocpp.org/files/papers/P1684R0.pdf
http://wg21.link/p1393r0
http://netlib.org/blas/blast-forum/blas-report.pdf
https://doi.org/10.1145/567806.567807
http://wg21.link/p1385r4
http://wg21.link/p0939r0

blas_interface.md 4/14/2021

¢ J.Dongarra, R. Pozo, and D. Walker, "LAPACK++: A Design Overview of Object-Oriented Extensions for
High Performance Linear Algebra," in Proceedings of Supercomputing '93, IEEE Computer Society Press,
1993, pp. 162-171.

* M. Gates, P. Luszczek, A. Abdelfattah, J. Kurzak, J. Dongarra, K. Arturov, C. Cecka, and C. Freitag, "C++
API for BLAS and LAPACK," SLATE Working Notes, Innovative Computing Laboratory, University of
Tennessee Knoxville, Feb. 2018.

* K Goto and R. A. van de Geijn, "Anatomy of high-performance matrix multiplication,"]
(https://doi.org/10.1145/1356052.1356053), ACM Transactions on Mathematical Software (TOMS), Vol.
34, No. 3, May 2008.

*). Hoberock, "Integrating Executors with Parallel Algorithms," P1019R2, Jan. 2019.
* N. A Josuttis, "The C++ Standard Library: A Tutorial and Reference," Addison-Wesley, 1999.
* M. Kretz, "Data-Parallel Vector Types & Operations,” P0214r9, Mar. 2018.

* D.Vandevoorde and N. A. Josuttis, "C++ Templates: The Complete Guide," Addison-Wesley
Professional, 2003.

Wording

Text in blockquotes is not proposed wording, but rather instructions for generating proposed wording.
The @ character is used to denote a placeholder section number which the editor shall determine. First,
apply all wording from POO09R10 (this proposal is a "rebase" atop the changes proposed by
POO09R10). At the end of Table € (“Numerics library summary") in [numerics.general], add the

following: [linalg], Linear algebra, . At the end of [numerics], add all the material that follows.
Header synopsis [linalg.syn]
namespace ::1linalg {

// [linalg.tags.order], storage order tags
struct column_major_t;

inline constexpr column_major_t column_major;
struct row_major_t;

inline constexpr row_major_t row_major;

// [linalg.tags.triangle], triangle tags

struct upper_triangle t;

inline constexpr upper_triangle_t upper_triangle;
struct lower_triangle t;

inline constexpr lower_triangle_t lower_triangle;

// [linalg.tags.diagonal], diagonal tags

struct implicit_unit_diagonal_t;

inline constexpr implicit_unit_diagonal t implicit_unit_diagonal;
struct explicit diagonal t;

inline constexpr explicit_diagonal_t explicit_diagonal;

// [linalg.layouts.general], class template layout blas general

247141

https://www.icl.utk.edu/files/publications/2017/icl-utk-1031-2017.pdf
http://wg21.link/p1019r2
http://wg21.link/p0214r9

blas_interface.md 4/14/2021

template<class StorageOrder>
class layout_blas general;

// [linalg.layouts.packed], class template layout_blas_packed
template<class Triangle,

class StorageOrder>
class layout_blas_packed;

// [linalg.scaled.accessor_scaled], class template accessor_scaled
template<class ScalingFactor,

class Accessor>
class accessor_scaled;

// [linalg.scaled.scaled], scaled in-place transformation
template<class ScalingFactor,
class ElementType,
class Extents,
class Layout,
class Accessor>
/* see-below */
scaled(
const ScalingFactor& s,
const basic_mdspan<ElementType, Extents, Layout, Accessor>& a);

// [linalg.conj.accessor_conjugate], class template accessor_conjugate
template<class Accessor>
class accessor_conjugate;

// [linalg.conj.conjugated], conjugated in-place transformation
template<class ElementType,
class Extents,
class Layout,
class Accessor>
/* see-below */
conjugated(
basic_mdspan<ElementType, Extents, Layout, Accessor> a);

// [linalg.transp.layout_transpose], class template layout_transpose
template<class Layout>
class layout_transpose;

// [linalg.transp.transposed], transposed in-place transformation
template<class ElementType,
class Extents,
class Layout,
class Accessor>
/* see-below */
transposed(
basic_mdspan<ElementType, Extents, Layout, Accessor> a);

// [linalg.conj_transp],
// conjugated transposed in-place transformation
template<class ElementType,

class Extents,

25/141

blas_interface.md 4/14/2021

class Layout,
class Accessor>
/* see-below */
conjugate_transposed(
basic_mdspan<ElementType, Extents, Layout, Accessor> a);

// [linalg.algs.blasl.givens.lartg], compute Givens rotation
template<class Real>
void givens_rotation_setup(const Real a,
const Real b,
Real& c,
Real& s,
Real& r);
template<class Real>
void givens_rotation_setup(const complex<Real>& a,
const complex<Real>& a,
Real& c,
complex<Real>& s,
complex<Real>& r);

// [linalg.algs.blasl.givens.rot], apply computed Givens rotation
template<class inout vector 1 t,
class inout_vector_2_t,
class Real>
void givens_rotation_apply(
inout_vector_1_t x,
inout_vector 2 t vy,
const Real c,
const Real s);
template<class ExecutionPolicy,
class inout_vector_1 _t,
class inout_vector 2 t,
class Real>
void givens_rotation_apply(
ExecutionPolicy&& exec,
inout_vector_1_t x,
inout_vector 2 t vy,
const Real c,
const Real s);
template<class inout_vector 1 t,
class inout_vector_2_t,
class Real>
void givens_rotation_apply(
inout_vector_1_t x,
inout_vector 2 t vy,
const Real c,
const complex<Real> s);
template<class ExecutionPolicy,
class inout_vector_1_t,
class inout_vector_2_t,
class Real>
void givens_rotation_apply(
ExecutionPolicy&& exec,
inout_vector 1 t x,

26 /141

blas_interface.md 4/14/2021

inout_vector_2 t vy,
const Real c,
const complex<Real> s);

}

// [linalg.algs.blasl.swap], swap elements
template<class inout_object 1 t,
class inout_object 2 t>
void swap_elements(inout_object_1_t x,
inout_object_2_t y);
template<class ExecutionPolicy,
class inout_object_1_t,
class inout_object_2_t>
void swap_elements(ExecutionPolicy&& exec,
inout_object_1 t x,
inout_object 2 t y);

// [linalg.algs.blasl.scal], multiply elements by scalar
template<class Scalar,
class inout_object_t>
void scale(const Scalar alpha,
inout_object_t obj);
template<class ExecutionPolicy,
class Scalar,
class inout_object_t>
void scale(ExecutionPolicy&& exec,
const Scalar alpha,
inout_object_t obj);

// [linalg.algs.blasl.copy], copy elements
template<class in_object_t,
class out_object t>
void copy(in_object_t x,
out_object_t y);
template<class ExecutionPolicy,
class in_object_t,
class out_object t>
void copy(ExecutionPolicy&& exec,
in_object_t x,
out_object t y);

// [linalg.algs.blasl.add], add elementwise
template<class in_object_1_t,
class in_object 2 t,
class out_object t>
void add(in_object_1_t x,
in_object 2 t vy,
out object t z);
template<class ExecutionPolicy,
class in_object_1_t,
class in_object 2 t,
class out_object_t>
void add(ExecutionPolicy&& exec,
in_object_1_t x,
271141

blas_interface.md 4/14/2021

in_object 2 _t vy,
out_object_t z);

// [linalg.algs.blasl.dot],
// dot product of two vectors

// [linalg.algs.blasl.dot.dotu],
// nonconjugated dot product of two vectors
template<class in_vector_1_t,
class in_vector_2_t,
class T
T dot(in_vector_1_t vi,
in_vector_2_t v2,
T init);
template<class ExecutionPolicy,
class in_vector_ 1 t,
class in_vector_2_t,
class T>
T dot(ExecutionPolicy&& exec,
in_vector_1 t vi,
in_vector_2_t v2,
T init);
template<class in_vector_1_t,
class in_vector_ 2 t>
auto dot(in_vector_1_t vi,
in_vector_2_t v2) -> /* see-below */;
template<class ExecutionPolicy,
class in_vector_1_t,
class in_vector_2_t>
auto dot(ExecutionPolicy&& exec,
in_vector_1 t vi,
in_vector 2 t v2) -> /* see-below */;

// [linalg.algs.blasl.dot.dotc],
// conjugated dot product of two vectors
template<class in_vector_1 _t,
class in_vector_2 t,
class T>
T dotc(in_vector_ 1 t vi,
in_vector_2_t v2,
T init);
template<class ExecutionPolicy,
class in_vector_ 1 t,
class in_vector_2_t,
class T>
T dotc(ExecutionPolicy&& exec,
in_vector_1 t vi,
in_vector_2_t v2,
T init);
template<class in_vector_1_t,
class in_vector_ 2 t>
auto dotc(in_vector_1 t vi,
in_vector 2 t v2) -> /* see-below */;
template<class ExecutionPolicy,
28 /141

blas_interface.md 4/14/2021

class in_vector_1_t,
class in_vector_2_t>
auto dotc(ExecutionPolicy&& exec,
in_vector_1_t vi,
in_vector 2 t v2) -> /* see-below */;

// [linalg.algs.blasl.ssq],
// Scaled sum of squares of a vector's elements
template<class T>
struct sum_of squares_result {
T scaling_factor;
T scaled_sum_of_squares;
¥
template<class in_vector_t,
class T>
sum_of _squares_result<T> vector sum of squares(
in_vector_t v,
sum_of_squares_result init);
sum_of _squares _result<T> vector sum of squares(
ExecutionPolicy&& exec,
in_vector_t v,
sum_of squares result init);

// [linalg.algs.blasl.nrm2],
// Euclidean norm of a vector
template<class in_vector_t,
class T>
T vector_norm2(in_vector_t v,
T init);
template<class ExecutionPolicy,
class in_vector_t,
class T>
T vector_norm2(ExecutionPolicy&& exec,
in_vector_t v,
T init);
template<class in_vector_t>
auto vector norm2(in_vector_t v) -> /* see-below */;
template<class ExecutionPolicy,
class in_vector_t>
auto vector norm2(ExecutionPolicy&& exec,
in_vector_t v) -> /* see-below */;

// [linalg.algs.blasl.asum],
// sum of absolute values of vector elements
template<class in_vector_t,
class T
T vector_abs_sum(in_vector_t v,
T init);
template<class ExecutionPolicy,
class in_vector_t,
class T
T vector_abs_sum(ExecutionPolicy&& exec,
in_vector_t v,
T init);
29 /141

blas_interface.md 4/14/2021

template<class in_vector_t>
auto vector_abs_sum(in_vector_t v) -> /* see-below */;
template<class ExecutionPolicy,
class in_vector_t>
auto vector_abs_sum(ExecutionPolicy&& exec,
in_vector_ t v) -> /* see-below */;

// [linalg.algs.blasl.iamax],
// index of maximum absolute value of vector elements
template<class in_vector_t>
ptrdiff t idx_abs max(in_vector t v);
template<class ExecutionPolicy,
class in_vector_t>
ptrdiff_t idx_abs_max(ExecutionPolicy&& exec,
in_vector_t v);

// [linalg.algs.blasl.matfrobnorm],
// Frobenius norm of a matrix
template<class in_matrix_t,
class T>
T matrix_frob_norm(
in_matrix_t A,
T init);
template<class ExecutionPolicy,
class in_matrix_t,
class T>
T matrix_frob_norm(
ExecutionPolicy&& exec,
in_matrix_t A,
T init);
template<class in_matrix_t>
auto matrix_frob_norm(
in_matrix_t A) -> /* see-below */;
template<class ExecutionPolicy,
class in_matrix_t>
auto matrix_frob_norm(
ExecutionPolicy&& exec,
in_matrix_t A) -> /* see-below */;

// [linalg.algs.blasl.matonenorm],
// One norm of a matrix
template<class in_matrix_t,
class T
T matrix_one_norm(
in_matrix_t A,
T init);
template<class ExecutionPolicy,
class in_matrix_t,
class T>
T matrix_one_norm(
ExecutionPolicy&& exec,
in_matrix_t A,
T init);
template<class in _matrix_t>
30/141

blas_interface.md 4/14/2021

auto matrix_one_norm(
in_matrix_t A) -> /* see-below */;
template<class ExecutionPolicy,
class in_matrix_t>
auto matrix_one_norm(
ExecutionPolicy&& exec,
in_matrix_t A) -> /* see-below */;

// [linalg.algs.blasl.matinfnorm],
// Infinity norm of a matrix
template<class in_matrix_t,
class T>
T matrix_inf_norm(
in_matrix_t A,
T init);
template<class ExecutionPolicy,
class in_matrix_t,
class T>
T matrix_inf _norm(
ExecutionPolicy&& exec,
in_matrix_t A,
T init);
template<class in_matrix_t>
auto matrix_inf_norm(
in_matrix_t A) -> /* see-below */;
template<class ExecutionPolicy,
class in_matrix_t>
auto matrix_inf_norm(
ExecutionPolicy&& exec,
in_matrix_t A) -> /* see-below */;

// [linalg.algs.blas2.gemv],
// general matrix-vector product
template<class in_vector_t,
class in _matrix_t,
class out_vector_t>
void matrix_vector product(in_matrix_t A,
in_vector_t x,
out_vector_t y);
template<class ExecutionPolicy,
class in_vector_t,
class in_matrix_t,
class out_vector t>
void matrix_vector_product(ExecutionPolicy&& exec,
in_matrix_t A,
in_vector_t x,
out_vector_t y);
template<class in_vector_ 1 t,
class in_matrix_t,
class in_vector_2_t,
class out_vector t>
void matrix_vector_product(in_matrix_t A,
in_vector_1_t x,
in_vector_2 t vy,
317141

blas_interface.md 4/14/2021

out_vector_t z);
template<class ExecutionPolicy,
class in_vector_ 1 t,
class in_matrix_t,
class in_vector_2 t,
class out_vector t>
void matrix_vector_ product(ExecutionPolicy&& exec,
in_matrix_t A,
in_vector_1_t x,
in_vector_2_t vy,
out vector t z);

// [linalg.algs.blas2.symv],
// symmetric matrix-vector product
template<class in_matrix_t,
class Triangle,
class in_vector_t,
class out_vector_t>
void symmetric_matrix_vector_ product(in_matrix_t A,
Triangle t,
in_vector_t x,
out_vector_t y);
template<class ExecutionPolicy,
class in_matrix_t,
class Triangle,
class in_vector_t,
class out_vector t>
void symmetric_matrix_vector_product(ExecutionPolicy&& exec,
in_matrix_t A,
Triangle t,
in_vector_t x,
out_vector_ t y);
template<class in_matrix_t,
class Triangle,
class in_vector_ 1 t,
class in_vector_2_t,
class out_vector_t>
void symmetric_matrix_vector_product(
in_matrix_t A,
Triangle t,
in_vector_1_t x,
in_vector_2 t vy,
out_vector_ t z);

template<class ExecutionPolicy,
class in _matrix_t,
class Triangle,
class in_vector_1 t,
class in_vector_2_t,
class out_vector_t>
void symmetric_matrix_vector_ product(
ExecutionPolicy&& exec,
in_matrix_t A,
Triangle t,
32/141

blas_interface.md 4/14/2021

in_vector_1_t x,
in_vector_2_t vy,
out_vector t z);

// [linalg.algs.blas2.hemv],
// Hermitian matrix-vector product
template<class in_matrix_t,
class Triangle,
class in_vector_t,
class out_vector_t>
void hermitian_matrix_vector_ product(in_matrix_t A,
Triangle t,
in_vector_t x,
out_vector_t y);
template<class ExecutionPolicy,
class in_matrix_t,
class Triangle,
class in_vector_t,
class out_vector t>
void hermitian_matrix_vector_product(ExecutionPolicy&& exec,
in_matrix_t A,
Triangle t,
in_vector_t x,
out_vector_ t y);
template<class in_matrix_t,
class Triangle,
class in_vector_ 1 t,
class in_vector_2_t,
class out_vector_t>
void hermitian_matrix_vector product(in_matrix _t A,
Triangle t,
in_vector_1_t x,
in_vector_2 t vy,
out_vector_t z);

template<class ExecutionPolicy,
class in_matrix_t,
class Triangle,
class in_vector_1_t,
class in_vector_ 2 t,
class out_vector_t>
void hermitian_matrix_vector_product(ExecutionPolicy&& exec,
in_matrix_t A,
Triangle t,
in_vector_1_t x,
in_vector_2 t vy,
out_vector_t z);

// [linalg.algs.blas2.trmv],
// Triangular matrix-vector product

// [linalg.algs.blas2.trmv.ov],
// Overwriting triangular matrix-vector product
template<class in _matrix_t,

33/141

blas_interface.md

class Triangle,

class DiagonalStorage,
class in_vector_t,
class out_vector_t>

void triangular_matrix_vector_product(

in_matrix_t A,

Triangle t,

DiagonalStorage d,

in_vector_t x,

out_vector_t y);

template<class ExecutionPolicy,

class in_matrix_t,
class Triangle,
class DiagonalStorage,
class in_vector_t,
class out_vector t>

void triangular_matrix_vector_product(

ExecutionPolicy&& exec,
in_matrix_t A,

Triangle t,
DiagonalStorage d,
in_vector_t x,
out_vector_t y);

// [linalg.algs.blas2.trmv.in-place],

// In-place triangular matrix-vector product

template<class in_matrix_t,
class Triangle,
class DiagonalStorage,
class inout_vector_ t>

void triangular_matrix_vector_product(

in_matrix_t A,
Triangle t,
DiagonalStorage d,
inout_vector_t y);

// [linalg.algs.blas2.trmv.up],

// Updating triangular matrix-vector product

template<class in_matrix_t,
class Triangle,
class DiagonalStorage,
class in_vector_1_t,
class in_vector 2 t,
class out_vector_t>

void triangular_matrix_vector_product(in_matrix_t A,

template<class ExecutionPolicy,
class in_matrix_t,
class Triangle,
class DiagonalStorage,

Triangle t,
DiagonalStorage d,
in_vector_1_t x,
in_vector_2 t vy,
out_vector_t z);

34 /141

4/14/2021

blas_interface.md 4/14/2021

class in_vector_1_t,

class in_vector_2_t,

class out_vector t>

void triangular_matrix_vector_product(ExecutionPolicy&& exec,

in_matrix_t A,
Triangle t,
DiagonalStorage d,
in_vector_1_t x,
in_vector_2 t vy,
out_vector_t z);

// [linalg.algs.blas2.trsv],
// Solve a triangular linear system

// [linalg.algs.blas2.trsv.not-in-place],
// Solve a triangular linear system, not in place
template<class in_matrix_t,
class Triangle,
class DiagonalStorage,
class in_vector_t,
class out_vector_t>
void triangular_matrix_vector_solve(
in_matrix_t A,
Triangle t,
DiagonalStorage d,
in_vector_t b,
out_vector_ t x);
template<class ExecutionPolicy,
class in_matrix_t,
class Triangle,
class DiagonalStorage,
class in_vector_t,
class out_vector_t>
void triangular_matrix_vector_solve(
ExecutionPolicy&& exec,
in_matrix_t A,
Triangle t,
DiagonalStorage d,
in_vector_t b,
out_vector_t x);

// [linalg.algs.blas2.trsv.in-place],
// Solve a triangular linear system, in place
template<class in_matrix_t,
class Triangle,
class DiagonalStorage,
class inout_vector_t>
void triangular_matrix_vector_solve(
in_matrix_t A,
Triangle t,
DiagonalStorage d,
inout_vector_t b);
template<class ExecutionPolicy,
class in _matrix_t,

357141

blas_interface.md 4/14/2021

class Triangle,
class DiagonalStorage,
class inout_vector_t>
void triangular_matrix_vector_solve(
ExecutionPolicy&& exec,
in_matrix_t A,
Triangle t,
DiagonalStorage d,
inout_vector_t b);

// [linalg.algs.blas2.rankl.geru],
// nonconjugated rank-1 matrix update
template<class in_vector_1 t,
class in_vector 2 t,
class inout_matrix_t>
void matrix_rank_1 update(
in_vector_1_t x,
in_vector_2_t vy,
inout_matrix_t A);
template<class ExecutionPolicy,
class in_vector_1 t,
class in_vector 2 t,
class inout_matrix_t>
void matrix_rank_1 update(
ExecutionPolicy&& exec,
in_vector_1_t x,
in_vector 2 t vy,
inout_matrix_t A);

// [linalg.algs.blas2.rankl.gerc],
// conjugated rank-1 matrix update
template<class in_vector_ 1 t,
class in_vector_2_t,
class inout_matrix_t>
void matrix_rank_1 update c(
in_vector_1 t x,
in_vector_2_ t vy,
inout_matrix_t A);
template<class ExecutionPolicy,
class in_vector_1 t,
class in_vector_2_t,
class inout_matrix_t>
void matrix_rank_1 update c(
ExecutionPolicy&& exec,
in_vector_1_t x,
in_vector_2 t vy,
inout_matrix_t A);

// [linalg.algs.blas2.rankl.syr],
// symmetric rank-1 matrix update
template<class in_vector_t,
class inout_matrix_t,
class Triangle>
void symmetric_matrix_rank_1_update(
36/141

blas_interface.md

in_vector_t x,
inout_matrix_t A,

Triangle t);
template<class
class

class

class

void symmetric

ExecutionPolicy,
in_vector_t,
inout_matrix_t,
Triangle>

_matrix_rank_1 update(

ExecutionPolicy&& exec,
in_vector_t x,

inout_matrix_

Triangle t);

template<class

class

class

class

void symmetric
T alpha,

t A,

T,

in_vector_t,
inout_matrix_t,
Triangle>

_matrix_rank_1_update(

in_vector_t x,

inout_matrix_

Triangle t);
template<class
class

class

class

class

void symmetric

t A,

ExecutionPolicy,
T)

in_vector_t,
inout_matrix_t,
Triangle>

_matrix_rank_1 update(

ExecutionPolicy&& exec,

T alpha,

in_vector_t x,
inout_matrix_t A,

Triangle t);

// [linalg.algs.blas2.rankl.her],
// Hermitian rank-1 matrix update

template<class
class
class

in_vector_t,
inout_matrix_t,
Triangle>

void hermitian_matrix_rank_1_ update(
in_vector_t x,
inout_matrix_t A,

Triangle t);
template<class
class

class

class

void hermitian_

ExecutionPolicy,
in_vector_t,
inout_matrix_t,
Triangle>
matrix_rank_1 update(

ExecutionPolicy&& exec,
in_vector_t x,
inout_matrix_t A,

Triangle t);
template<class
class

class

T,
in_vector_t,
inout_matrix_t,

4/14/2021

blas_interface.md

class

void hermitian_

T alpha,

Triangle>
matrix_rank_1 update(

in_vector_t x,

inout_matrix_

Triangle t);
template<class
class

class

class

class

void hermitian_

t A,

ExecutionPolicy,

T,

in_vector_t,
inout_matrix_t,
Triangle>
matrix_rank_1_ update(

ExecutionPolicy&& exec,

T alpha,

in_vector_t x,

inout_matrix_

Triangle t);

t A,

// [linalg.algs.blas2.rank2.syr2],
// symmetric rank-2 matrix update

template<class
class
class
class
void symmetric

in_vector_1 t,
in_vector_ 2 t,
inout_matrix_t,
Triangle>

_matrix_rank_2_update(

in_vector_1_t x,
in_vector 2 t vy,

inout_matrix_

Triangle t);
template<class
class

class

class

class

void symmetric

t A,

ExecutionPolicy,
in_vector_1_t,
in_vector_2 t,
inout_matrix_t,
Triangle>

_matrix_rank_ 2 update(

ExecutionPolicy&& exec,
in_vector_1_t x,
in_vector_2 t vy,

inout_matrix_

Triangle t);

t A,

// [linalg.algs.blas2.rank2.her2],
// Hermitian rank-2 matrix update

template<class
class
class
class

void hermitian_

in_vector_1_t,
in_vector_2 t,
inout_matrix_t,
Triangle>
matrix_rank_2 update(

in_vector_1_t x,
in_vector_2_t vy,

inout_matrix_

Triangle t);

t A,

template<class ExecutionPolicy,
class in_vector 1 t,

38/141

4/14/2021

blas_interface.md 4/14/2021

class in_vector_2_t,
class inout_matrix_t,
class Triangle>
void hermitian_matrix_rank_2_ update(
ExecutionPolicy&& exec,
in_vector 1 t x,
in_vector_2 t vy,
inout_matrix_t A,
Triangle t);

// [linalg.algs.blas3.gemm],
// general matrix-matrix product
template<class in_matrix 1 t,
class in _matrix 2 t,
class out_matrix_t>
void matrix_product(in_matrix 1 t A,
in_matrix_2_t B,
out_matrix_t C);
template<class ExecutionPolicy,
class in_matrix_1_t,
class in_matrix_2_t,
class out _matrix_t>
void matrix_product(ExecutionPolicy&& exec,
in_matrix_1_t A,
in_matrix_2_t B,
out_matrix_t C);
template<class in matrix 1 t,
class in_matrix_2_t,
class in_matrix_3_t,
class out _matrix_t>
void matrix_product(in_matrix_1 t A,
in_matrix_2_t B,
in_matrix_3_t E,
out_matrix_t C);
template<class ExecutionPolicy,
class in_matrix_1_t,
class in_matrix_2_t,
class in_matrix 3 t,
class out_matrix_t>
void matrix_product(ExecutionPolicy&& exec,
in_matrix_1_t A,
in_matrix_2_t B,
in_matrix 3 t E,
out_matrix_t C);

// [linalg.algs.blas3.symm],
// symmetric matrix-matrix product

// [linalg.algs.blas3.symm.ov.left],
// overwriting symmetric matrix-matrix left product
template<class in matrix 1 t,
class Triangle,
class in_matrix_2_t,
class out _matrix_t>
39/141

blas_interface.md 4/14/2021

void symmetric_matrix_left_product(
in_matrix_1_t A,
Triangle t,
in_matrix_2_t B,
out_matrix_t C);
template<class ExecutionPolicy,
class in_matrix_1_t,
class Triangle,
class in_matrix_2_t,
class out_matrix_t>
void symmetric_matrix_left product(
ExecutionPolicy&& exec,
in_matrix_1_t A,
Triangle t,
in_matrix_2 t B,
out_matrix t C);

// [linalg.algs.blas3.symm.ov.right],
// overwriting symmetric matrix-matrix right product
template<class in_matrix_1_t,
class Triangle,
class in _matrix 2 t,
class out_matrix_t>
void symmetric_matrix_right product(
in_matrix_1_t A,
Triangle t,
in_matrix 2 t B,
out_matrix_t C);
template<class ExecutionPolicy,
class in _matrix 1 t,
class Triangle,
class in_matrix_2_t,
class out_matrix_t>
void symmetric_matrix_right_product(
ExecutionPolicy&& exec,
in_matrix_1 t A,
Triangle t,
in_matrix 2 t B,
out_matrix_t C);

// [linalg.algs.blas3.symm.up.left],
// updating symmetric matrix-matrix left product
template<class in matrix 1 t,
class Triangle,
class in_matrix_2_t,
class in_matrix 3 t,
class out_matrix_t>
void symmetric_matrix_left product(
in_matrix_1_t A,
Triangle t,
in_matrix 2 t B,
in_matrix_3 t E,
out_matrix_t C);
template<class ExecutionPolicy,

40/141

blas_interface.md 4/14/2021

class in_matrix_1_t,
class Triangle,
class in _matrix 2 t,
class in_matrix_3_t,
class out_matrix_t>
void symmetric_matrix_left_product(
ExecutionPolicy&& exec,
in_matrix_1_t A,
Triangle t,
in_matrix_2_t B,
in_matrix 3 t E,
out_matrix_t C);

// [linalg.algs.blas3.symm.up.right],
// updating symmetric matrix-matrix right product
template<class in matrix 1 t,
class Triangle,
class in_matrix_2_t,
class in_matrix 3 t,
class out_matrix_t>
void symmetric_matrix_right product(
in _matrix 1 t A,
Triangle t,
in_matrix_2_t B,
in_matrix_3_t E,
out_matrix_t C);
template<class ExecutionPolicy,
class in_matrix_1_t,
class Triangle,
class in _matrix 2 t,
class in_matrix_3_t,
class out_matrix_t>
void symmetric_matrix_right_product(
ExecutionPolicy&& exec,
in_matrix 1 t A,
Triangle t,
in_matrix_2_t B,
in_matrix 3 t E,
out_matrix_t C);

// [linalg.algs.blas3.hemm],
// Hermitian matrix-matrix product

// [linalg.algs.blas3.hemm.ov.left],
// overwriting Hermitian matrix-matrix left product
template<class in matrix 1 t,
class Triangle,
class in_matrix_2_t,
class out_matrix_t>
void hermitian_matrix_left_product(
in_matrix 1 t A,
Triangle t,
in_matrix_2_t B,
out_matrix t C);
41 /141

blas_interface.md 4/14/2021

template<class ExecutionPolicy,
class in_matrix_1_t,
class Triangle,
class in_matrix_2_t,
class out_matrix_t>
void hermitian_matrix_left product(
ExecutionPolicy&& exec,
in_matrix_1_t A,
Triangle t,
in_matrix_2_t B,
out_matrix t C);

// [linalg.algs.blas3.hemm.ov.right],
// overwriting Hermitian matrix-matrix right product
template<class in_matrix_1_t,
class Triangle,
class in_matrix_2_t,
class out_matrix_t>
void hermitian_matrix_right_product(
in_matrix_1 t A,
Triangle t,
in_matrix 2 t B,
out_matrix_t C);
template<class ExecutionPolicy,
class in_matrix_1_t,
class Triangle,
class in_matrix 2 t,
class out_matrix_t>
void hermitian_matrix_right_ product(
ExecutionPolicy&& exec,
in_matrix_1 t A,
Triangle t,
in_matrix_2_t B,
out_matrix_t C);

// [linalg.algs.blas3.hemm.up.left],
// updating Hermitian matrix-matrix left product
template<class in matrix 1 t,
class Triangle,
class in_matrix_2_t,
class in_matrix_3_t,
class out_matrix_t>
void hermitian_matrix_left product(
in_matrix_1 t A,
Triangle t,
in_matrix 2 t B,
in_matrix_3 t E,
out_matrix t C);
template<class ExecutionPolicy,
class in_matrix_1_t,
class Triangle,
class in_matrix_2_t,
class in_matrix_3_t,
class out _matrix_t>
42 /141

blas_interface.md

void hermitian_matrix_left_product(

ExecutionPolicy&& exec,
in_matrix 1 t A,

Triangle t,

in_matrix_2_t B,
in_matrix 3 t E,

out_matrix_t

// [linalg.algs.blas3.hemm.up.right],
// updating Hermitian matrix-matrix right product

template<class
class
class
class
class

Qs

in_matrix_1 t,
Triangle,

in_matrix_2_t,
in_matrix 3 t,
out_matrix_t>

4/14/2021

void hermitian_matrix_right product(
in_matrix_1_t A,
Triangle t,
in_matrix 2 t B,
in_matrix_3 t E,
out_matrix_t C);
template<class ExecutionPolicy,
class in_matrix_1_t,
class Triangle,
class in_matrix_2_t,
class in_matrix_3_t,
class out_matrix_t>
void hermitian_matrix_right_product(
ExecutionPolicy&& exec,
in_matrix 1 t A,
Triangle t,
in_matrix_2_t B,
in_matrix_3_t E,
out_matrix_t C);

// [linalg.algs.blas3.trmm],
// triangular matrix-matrix product

// [linalg.algs.blas3.trmm.ov.left],
// overwriting triangular matrix-matrix left product
template<class in_matrix_1_t,
class Triangle,
class DiagonalStorage,
class in_matrix_2_t,
class out_matrix_t>
void triangular_matrix_left_product(
in_matrix_1 t A,
Triangle t,
DiagonalStorage d,
in_matrix_2_t B,
out_matrix t C);
template<class ExecutionPolicy,
class in_matrix_1_t,
class Triangle,
43 /141

blas_interface.md 4/14/2021

class DiagonalStorage,
class in_matrix_2_t,
class out_matrix_t>
void triangular_matrix_left_product(
ExecutionPolicy&& exec,
in_matrix 1 t A,
Triangle t,
DiagonalStorage d,
in_matrix_2_t B,
out_matrix_t C);
template<class in matrix 1 t,
class Triangle,
class DiagonalStorage,
class inout_matrix_t>
void triangular_matrix_left_product(
in_matrix_1_t A,
Triangle t,
DiagonalStorage d,
inout_matrix_t C);
template<class ExecutionPolicy,
class in_matrix_1_t,
class Triangle,
class DiagonalStorage,
class inout_matrix_ t>
void triangular_matrix_left_product(
ExecutionPolicy®&& exec,
in_matrix 1 t A,
Triangle t,
DiagonalStorage d,
inout_matrix_t C);

// [linalg.algs.blas3.trmm.ov.right],
// overwriting triangular matrix-matrix right product
template<class in_matrix_1_t,
class Triangle,
class DiagonalStorage,
class in_matrix_2_t,
class out _matrix_t>
void triangular_matrix_right_product(
in_matrix_1_t A,
Triangle t,
DiagonalStorage d,
in_matrix 2 t B,
out_matrix_t C);
template<class ExecutionPolicy,
class in _matrix 1 t,
class Triangle,
class DiagonalStorage,
class in_matrix_2_t,
class out_matrix_t>
void triangular_matrix_right_product(
ExecutionPolicy&& exec,
in_matrix_1_t A,
Triangle t,
44 /141

blas_interface.md 4/14/2021

DiagonalStorage d,
in_matrix_2_t B,
out_matrix t C);
template<class in_matrix_1_t,
class Triangle,
class DiagonalStorage,
class inout_matrix_t>
void triangular_matrix_right product(
in_matrix_1_t A,
Triangle t,
DiagonalStorage d,
inout_matrix_t C);
template<class ExecutionPolicy,
class in _matrix 1 t,
class Triangle,
class DiagonalStorage,
class inout_matrix_t>
void triangular_matrix_right_product(
ExecutionPolicy&& exec,
in_matrix_1 t A,
Triangle t,
DiagonalStorage d,
inout_matrix_t C);

// [linalg.algs.blas3.trmm.up.left],
// updating triangular matrix-matrix left product
template<class in matrix 1 t,
class Triangle,
class DiagonalStorage,
class in _matrix 2 t,
class in_matrix_3_t,
class out_matrix_t>
void triangular_matrix_left_product(
in_matrix_1_t A,
Triangle t,
DiagonalStorage d,
in_matrix_2_t B,
in_matrix 3 t E,
out_matrix_t C);
template<class ExecutionPolicy,
class in_matrix_1_t,
class Triangle,
class DiagonalStorage,
class in_matrix_2_t,
class in_matrix_3_t,
class out _matrix_t>
void triangular_matrix_left_product(
ExecutionPolicy&& exec,
in_matrix_1_t A,
Triangle t,
DiagonalStorage d,
in_matrix_2_t B,
in_matrix_3_t E,
out_matrix t C);
45 /141

blas_interface.md 4/14/2021

// [linalg.algs.blas3.trmm.up.right],
// updating triangular matrix-matrix right product
template<class in_matrix_1_t,
class Triangle,
class DiagonalStorage,
class in_matrix_2_t,
class in_matrix 3 t,
class out_matrix_t>
void triangular_matrix_right_product(
in_matrix 1 t A,
Triangle t,
DiagonalStorage d,
in_matrix 2 t B,
in_matrix_3 t E,
out_matrix t C);
template<class ExecutionPolicy,
class in_matrix_1_t,
class Triangle,
class DiagonalStorage,
class in_matrix_2_t,
class in _matrix 3 t,
class out_matrix_t>
void triangular_matrix_right product(
ExecutionPolicy&& exec,
in_matrix_1_t A,
Triangle t,
DiagonalStorage d,
in_matrix_2_t B,
in_matrix 3 t E,
out_matrix_t C);

// [linalg.alg.blas3.rank-k.syrk],
// rank-k symmetric matrix update
template<class in matrix 1 t,
class inout_matrix_t,
class Triangle>
void symmetric_matrix_rank_k_update(
in_matrix_1 t A,
inout_matrix_t C,
Triangle t);
template<class ExecutionPolicy,
class in _matrix 1 t,
class inout_matrix_t,
class Triangle>
void symmetric_matrix_rank_k_update(
ExecutionPolicy&& exec,
in_matrix_1_t A,
inout_matrix_t C,
Triangle t);
template<class T,
class in_matrix_1_t,
class inout_matrix_t,
class Triangle>

46 /141

blas_interface.md

void symmetric_

T alpha,

matrix_rank_k_update(

in_matrix 1 t A,

inout_matrix_

Triangle t);
template<class
class

class

class

class

void symmetric_

t C,

T)

ExecutionPolicy,
in_matrix_1_t,
inout_matrix_t,
Triangle>
matrix_rank_k_update(

ExecutionPolicy&& exec,

T alpha,

in_matrix 1 t A,

inout_matrix_

Triangle t);

// [linalg.alg.

(I

blas3.rank-k.herk],

// rank-k Hermitian matrix update

template<class
class
class

void hermitian_

in_matrix_1_t,
inout_matrix_t,
Triangle>
matrix_rank_k_update(

in_matrix_1_t A,

inout_matrix_

Triangle t);
template<class
class

class

class

void hermitian_

tC,

ExecutionPolicy,
in_matrix_1_t,
inout_matrix_t,
Triangle>
matrix_rank_k_update(

ExecutionPolicy&& exec,
in_matrix_1_t A,

inout_matrix_

Triangle t);
template<class
class

class

class

void hermitian_

T alpha,

t G,

T)

in_matrix_1_t,
inout_matrix_t,
Triangle>
matrix_rank_k_update(

in_matrix_1_t A,
inout_matrix t C,

Triangle t);
template<class
class

class

class

class

void hermitian_

ExecutionPolicy,

T)

in_matrix_1_t,
inout_matrix_t,
Triangle>
matrix_rank_k_update(

ExecutionPolicy&& exec,

T alpha,

in_matrix_1_t A,
inout_matrix t C,

471141

4/14/2021

blas_interface.md 4/14/2021
Triangle t);

// [linalg.alg.blas3.rank2k.syr2k],
// rank-2k symmetric matrix update

template<class
class
class
class
void symmetric

in_matrix_1_t,
in_matrix 2 t,
inout_matrix_t,
Triangle>

_matrix_rank_2k_update(

in_matrix_1_t A,
in_matrix 2 t B,
inout_matrix_t C,
Triangle t);
template<class ExecutionPolicy,
class in_matrix_1_t,
class in_matrix_2_t,
class inout_matrix_t,
class Triangle>
void symmetric_matrix_rank_ 2k _update(
ExecutionPolicy&& exec,
in_matrix_1_t A,
in_matrix 2 t B,
inout_matrix_t C,
Triangle t);

// [linalg.alg.blas3.rank2k.her2k],
// rank-2k Hermitian matrix update
template<class in_matrix_1_t,
class in_matrix_2_t,
class inout_matrix_t,
class Triangle>
void hermitian_matrix_rank_ 2k _update(
in_matrix_1_t A,
in_matrix_2_t B,
inout_matrix t C,
Triangle t);
template<class ExecutionPolicy,
class in _matrix 1 t,
class in_matrix_2_t,
class inout_matrix_t,
class Triangle>
void hermitian_matrix_rank_2k_update(
ExecutionPolicy&& exec,
in_matrix_1_t A,
in_matrix_2_t B,
inout_matrix t C,
Triangle t);

// [linalg.alg.blas3.trsm],
// solve multiple triangular linear systems

// [linalg.alg.blas3.trsm.left],
// solve multiple triangular linear systems
// with triangular matrix on the left

48 /141

blas_interface.md 4/14/2021

template<class in_matrix_1_t,
class Triangle,
class DiagonalStorage,
class in_matrix_2_t,
class out_matrix_t>
void triangular_matrix_matrix_left_solve(
in_matrix_1 t A,
Triangle t,
DiagonalStorage d,
in_matrix_2_t B,
out_matrix_t X);
template<class ExecutionPolicy,
class in_matrix_1_t,
class Triangle,
class DiagonalStorage,
class in_matrix_2_t,
class out_matrix_t>
void triangular_matrix_matrix_left_solve(
ExecutionPolicy&& exec,
in_matrix_1 t A,
Triangle t,
DiagonalStorage d,
in_matrix_2_t B,
out_matrix_t X);
template<class in_matrix_1_t,
class Triangle,
class DiagonalStorage,
class inout_matrix_t>
void triangular matrix_matrix_left solve(
in_matrix 1 t A,
Triangle t,
DiagonalStorage d,
inout_matrix_t B);
template<class ExecutionPolicy,
class in _matrix 1 t,
class Triangle,
class DiagonalStorage,
class inout_matrix_t>
void triangular_matrix_matrix_left_solve(
ExecutionPolicy&& exec,
in_matrix_1_t A,
Triangle t,
DiagonalStorage d,
inout_matrix_t B);

// [linalg.alg.blas3.trsm.right],
// solve multiple triangular linear systems
// with triangular matrix on the right
template<class in_matrix_1_t,

class Triangle,

class DiagonalStorage,

class in_matrix_2_t,

class out_matrix_t>
void triangular_matrix_matrix_right_solve(

497141

blas_interface.md 4/14/2021

in_matrix 1 t A,
Triangle t,
DiagonalStorage d,
in_matrix_2_t B,
out_matrix_t X);
template<class ExecutionPolicy,
class in_matrix_1_t,
class Triangle,
class DiagonalStorage,
class in_matrix_2_t,
class out_matrix_t>
void triangular_matrix_matrix_right_solve(
ExecutionPolicy&& exec,
in_matrix_t A,
Triangle t,
DiagonalStorage d,
in_matrix_t B,
out_matrix_t X);
template<class in_matrix 1 t,
class Triangle,
class DiagonalStorage,
class inout_matrix_t>
void triangular_matrix_matrix_right_solve(
in_matrix_1_t A,
Triangle t,
DiagonalStorage d,
inout_matrix_t B);
template<class ExecutionPolicy,
class in_matrix_1_t,
class Triangle,
class DiagonalStorage,
class inout_matrix_t>
void triangular_matrix_matrix_right_solve(
ExecutionPolicy®&& exec,
in_matrix_1_t A,
Triangle t,
DiagonalStorage d,
inout_matrix_t B);

Tag classes [linalg.tags]

Storage order tags [linalg.tags.order]

struct column_major_t { };
inline constexpr column_major_t column_major = { };

struct row_major_t { };
inline constexpr row_major_t row_major = { };

50/141

blas_interface.md 4/14/2021

indicates a column-major order, and indicates a row-major order. The
interpretation of each depends on the specific layout that uses the tag. See and
below.

Triangle tags [linalg.tags.triangle]

Some linear algebra algorithms distinguish between the "upper triangle," "lower triangle," and "diagonal” of a
matrix.

* The upper triangle of a matrix A is the set of all elements of A accessed by with i >=
* The lower triangle of / is the set of all elements of 2 accessed by with i <=
* The diagonal is the set of all elements of A accessed by . It is included in both the upper triangle

and the lower triangle.

struct upper_triangle t { };

inline constexpr upper_triangle t upper_triangle = { };

struct lower_triangle t { };

inline constexpr lower_triangle t lower_triangle = { };
These tag classes specify whether algorithms and other users of a matrix (represented as a)
should access the upper triangle () or lower triangle () of the
matrix. This is also subject to the restrictions of if that tag is also applied; see

below.

Diagonal tags [linalg.tags.diagonal]

struct implicit_unit_diagonal_t { };
inline constexpr implicit unit_diagonal_t
implicit_unit_diagonal = { };

struct explicit_diagonal_t { };
inline constexpr explicit_diagonal_t explicit_diagonal = { };

These tag classes specify what algorithms and other users of a matrix should assume about the diagonal
entries of the matrix, and whether algorithms and users of the matrix should access those diagonal entries
explicitly.

The tag indicates two things:
® the function will never access the element of the matrix, and
* the matrix has a diagonal of ones (a "unit diagonal").

The tag indicates that algorithms and other users of the viewer may access the
matrix's diagonal entries directly.

51/141

blas_interface.md 4/14/2021

Layouts for general and packed matrix types [linalg.layouts]
[linalg.layouts.general]

is a layout mapping policy. Its template parameter
determines whether the matrix's data layout is column major or row major.

represents a column-major matrix layout, where the stride
between consecutive rows is always one, and the stride between consecutive columns may be greater than or
equal to the number of rows. [Note: This is a generalization of . --end note]

represents a row-major matrix layout, where the stride between
consecutive rows may be greater than or equal to the number of columns, and the stride between consecutive
columns is always one. [Note: This is a generalization of . --end note]

[Note:

represents exactly the data layout assumed by the General (GE) matrix type in the
BLAS' C binding. It has two advantages:

1. Unlike and , any "submatrix" (subspan of consecutive rows and
consecutive columns) of a matrix with layout also has
layout.
2. Unlike , it always has compile-time unit stride in one of the matrix's two extents.

BLAS functions call the possibly nonunit stride of the matrix the "leading dimension” of that matrix. For
example, a BLAS function argument corresponding to the leading dimension of the matrix 2 is called , for
“leading dimension of the matrix A."

--end note]

template<class StorageOrder>
class layout blas general {
public:
template<class Extents>
struct mapping {
private:
Extents extents_; // exposition only
const typename Extents::index_type stride_{}; // exposition only

public:
constexpr mapping(const
const typename ;

template<class OtherExtents>
constexpr mapping(const noexcept;

typename Extents::index_type
operator typename

typename const;

52 /141

blas_interface.md 4/14/2021

constexpr typename Extents::index_type
required_span_size() const noexcept;

typename Extents::index_type
stride(typename Extents::index type r) const noexcept;

template<class OtherExtents>
bool operator==(const mapping<OtherExtents>& m) const noexcept;

template<class OtherExtents>
bool operator!=(const mapping<OtherExtents>& m) const noexcept;

Extents extents() const noexcept;

static constexpr bool is always_unique();
static constexpr bool is_always_contiguous();
static constexpr bool is_always_strided();

constexpr bool is_unique() const noexcept;
constexpr bool is contiguous() const noexcept;
constexpr bool is strided() const noexcept;
¥
}s

e Constraints:

° is either or
° is a specialization of
o equals 2.

constexpr mapping(const Extents& e,
const typename Extents::index_type s);

® Requires:
o If is , then s is greater than or equal to
Otherwise, if is , then s is greater than or equal to
® Fffects: Initializes with e, and initializes with
[Note:

The BLAS Standard requires that the stride be one if the corresponding matrix dimension is zero. We do not
impose this requirement here, because it is specific to the BLAS. if an implementation dispatches to a BLAS
function, then the implementation must impose the requirement at run time.

--end note]

53 /141

blas_interface.md 4/14/2021

template<class OtherExtents>
constexpr mapping(const mapping<OtherExtents>& e) noexcept;

® Constraints:

° is a specialization of
° equals 2.
® Fffects: Initializes with , and initializes with

typename Extents::index_type
operator() (typename Extents::index type i,
typename Extents::index_type j) const;

® Requires:
°© 0<ix< , and
o 0<i«<
® Returns:
o If is , then ;
o else, if is , then

template<class OtherExtents>
bool operator==(const mapping<OtherExtents>& m) const;

® Constraints: equals

® Returns: if and only if for0 < r < , equals and
equals

template<class OtherExtents>
bool operator!=(const mapping<OtherExtents>& m) const;

® Constraints: equals
® Returns: * Returns: if and only if there exists r with 0 < r < such that does
not equal or does not equal

typename Extents::index_type
stride(typename Extents::index_type r) const noexcept;

54 /141

blas_interface.md 4/14/2021

® Returns:
o If is , if ~ equals 1, else 1;
o else, if is , if » equals 0, else 1.

constexpr typename Extents::index_type
required_span_size() const noexcept;

® Returns:

Extents extents() const noexcept;

® Fffects: Equivalent to

static constexpr bool is always _unique();

® Returns:

static constexpr bool is always_contiguous();

® Returns:

static constexpr bool is_always_strided();

® Returns:

constexpr bool is unique() const noexcept;

® Returns:

constexpr bool is contiguous() const noexcept;

® Returns:

o If is , then if equals , else ;

557141

blas_interface.md 4/14/2021

o else, if is , then if equals , else

constexpr bool is strided const noexcept;

® Returns:
[linalg.layouts.packed]
isa layout mapping policy that represents a square matrix that stores
only the entries in one triangle, in a packed contiguous format. Its template parameter determines
whether an with this layout stores the upper or lower triangle of the matrix. Its

template parameter determines whether the layout packs the matrix's elements in column-major or row-
major order.

A of indicates column-major ordering. This packs matrix elements starting
with the leftmost (least column index) column, and proceeding column by column, from the top entry (least
row index).

A of indicates row-major ordering. This packs matrix elements starting with the

topmost (least row index) row, and proceeding row by row, from the leftmost (least column index) entry.
[Note:

describes the data layout used by the BLAS' Symmetric Packed (SP), Hermitian Packed
(HP), and Triangular Packed (TP) matrix types.

If 's input has layout , the return type also has layout
, but with opposite and . For example, the transpose of a
packed column-major upper triangle, is a packed row-major lower triangle.

--end note]

template<class Triangle,
class StorageOrder>

class layout blas packed {
public:

template<class Extents>

struct mapping {

private:

Extents extents_; // exposition only

public:
constexpr mapping(const g

template<class OtherExtents>
constexpr mapping(const noexcept;

typename Extents::index_type
operator typename

56 /141

blas_interface.md 4/14/2021
typename Extents::index_type j) const;

template<class OtherExtents>
bool operator==(const mapping<OtherExtents>& m) const noexcept;

template<class OtherExtents>
bool operator!=(const mapping<OtherExtents>& m) const noexcept;

constexpr typename Extents::index_type
stride(typename Extents::index_type r) const noexcept;

constexpr typename Extents::index_type
required_span_size() const noexcept;

constexpr Extents extents() const noexcept;

static constexpr bool is_always_unique();
static constexpr bool is_always_contiguous();
static constexpr bool is always_strided();
constexpr bool is unique() const noexcept;

constexpr bool is_contiguous() const noexcept;
constexpr bool is_strided() const noexcept;

}s

* Constraints:
© Triangle is either upper_triangle_t or lower_triangle_t.
© StorageOrder is either column_major_t or row_major t.

© Extents is a specialization of extents,

O Extents::rank() equals 2.

constexpr mapping(const Extents& e);

® Requires: c.extent(0) equals e.extent(1).

® fffects: Initializes extents with e,

template<class OtherExtents>
constexpr mapping(const mapping<OtherExtents>& e);

* Constraints:
© Otherbxtents is a specialization of extents.

© Otherbxtents::rank() equals 2.

57 /141

blas_interface.md

® Fffects: Initializes with

typename Extents::index_type
operator() (typename Extents
typename Extents

::index_type 1i,
::index_type j) const;

® Requires:
© 0<ix< ,and
© 0«
® Returns: Let I\ equal . Then:
o If is and
= f is , then if
= else, if is , then
o else, if is and
= if is , then
= else, if is , then
template<class OtherExtents>
bool operator==(const mapping<OtherExtents>& m) const;
* Constraints: equals
® Returns: if and only if for0 < r < , equals
template<class OtherExtents>
bool operator!=(const mapping<OtherExtents>& m) const;
* Constraints: equals
® Returns: if and only if there exists r with 0 < r < such that

constexpr typename Extents::index_type
stride(typename Extents::index_type r) const noexcept;

58 /141

if

>=

4/14/2021

, else

, else

, else

does not equal

blas_interface.md 4/14/2021

® Returns: 1 if is less than 2, else 0.

constexpr typename Extents::index_type
required_span_size() const noexcept;

® Returns:

constexpr Extents extents() const noexcept;

® Effects: Equivalent to

static constexpr bool is_always_unique();

® Returns:

static constexpr bool is_always_contiguous();

® Returns:

static constexpr bool is always_strided();

® Returns:

constexpr bool is _unique() const noexcept;

® Returns: if is less than 2, else

constexpr bool is_contiguous() const noexcept;

® Returns:

constexpr bool is strided() const noexcept;

® Returns: if is less than 2, else

59/141

blas_interface.md 4/14/2021

Scaled in-place transformation [linalg.scaled]

The function takes a value and a , and returns a new read-only
with the same domain as x, that represents the elementwise product of with each element of
[Example:

// z = alpha * x + vy
void z equals alpha times x plus_y
double
const double
double
double

{
add(scaled(alpha, x), vy, Vy);

}

// w = alpha * x + beta * y
void w_equals alpha times x plus beta_times_y
double
const double
double
const double
double

{
add(scaled(alpha, x), scaled(beta, y), w);

}

--end example]
[Note:

An implementation could dispatch to a function in the BLAS library, by noticing that the first argument has an
type. It could use this information to extract the appropriate run-time value(s) of
the relevant BLAS function arguments (e.g., and/or). by calling

--end note]
Class template [linalg.scaled.accessor_scaled]

The class template isa accessor policy whose reference type represents the
product of a fixed value (the "scaling factor") and its nested accessor's reference. It is part of
the implementation of

The exposition-only class template represents a read-only value, which is the product of a
fixed value (the "scaling factor") and the value of a reference to an element of a . [Note: The
value is read only to avoid confusion with the definition of "assigning to a scaled scalar." --end note]

is part of the implementation of

60/ 141

blas_interface.md 4/14/2021

template<class ScalingFactor,
class Reference>

class scaled_scalar { // exposition only
private:

const ScalingFactor scaling_factor;

Reference value;

using result_type =

decltype (scaling factor * value);

public:
scaled_scalar(const ScalingFactor& s, Reference v);

operator result_type() const;

}s

* Requires:
° and shall be Cpp17CopyConstructible.
* Constraints:

© The expression is well formed.

scaled_scalar(const ScalingFactor& s, Reference v);

® fffects: Initializes with s, and initializes with

operator result type() const;

® [Effects: Equivalent to

The class template isa accessor policy whose reference type represents the
product of a scaling factor and its nested accessor's reference.

template<class ScalingFactor,
class Accessor>
class accessor_scaled {
public:
using element_type = Accessor::element_type;
using pointer Accessor: :pointer;
using reference =
scaled_scalar<ScalingFactor, Accessor::reference>;
using offset policy =
accessor_scaled<ScalingFactor, Accessor::offset_policy>;

accessor_scaled(const ScalingFactor& s, Accessor a);

61/141

blas_interface.md 4/14/2021
reference access(pointer p, ptrdiff t i) const noexcept;

offset policy::pointer
offset(pointer p, ptrdiff_t i) const noexcept;

element_type* decay(pointer p) const noexcept;
ScalingFactor scaling factor() const;
private:

const ScalingFactor scaling_factor_; // exposition only
Accessor accessor; // exposition only

}s
® Requires:
o and shall be Cpp17CopyConstructible.
° shall meet the accessor policy requirements (see

[mdspan.accessor.reqs] in PO009).

accessor_scaled(const ScalingFactor& s, Accessor a);

® Fffects: Initializes with s, and initializes with

reference access(pointer p, ptrdiff_t i) const noexcept;

* [Effects: Equivalent to

offset_policy::pointer
offset(pointer p, ptrdiff_t i) const noexcept;

* [Effects: Equivalent to

element_type* decay(pointer p) const noexcept;

® [Effects: Equivalent to

ScalingFactor scaling_factor() const;

® Effects: Equivalent to

62 /141

blas_interface.md 4/14/2021
[linalg.scaled.scaled]

The function takes a value and a , and returns a new read-only
with the same domain as x, that represents the elementwise product of with each element of

template<class ScalingFactor,
class ElementType,
class Extents,
class Layout,
class Accessor>
/* see below */
scaled(
const ScalingFactor& s,
const basic_mdspan<ElementType, Extents, Layout, Accessor>& a);

Let R name the type , where

U is either or ;and
. is:

o if is for some

and , then either
or
, Where is

o else,
® Fffects:

o |f is and

is , then

equivalent to

, Where equals
© else, equivalent to
® Remarks: The elements of the returned are read only.
[Note:
The point of is to give implementations freedom to optimize applying

twice in a row. However, implementations are not required to optimize arbitrary combinations of nested
interspersed with other nested accessors.

The point of is that, based on POO09R10, it may not be possible to deduce the const
version of for use in . In general, it may not be correct or efficient to use an

63 /141

blas_interface.md 4/14/2021

meant for a nonconst , with . This is because
may be a type other than . Thus, we cannot require that the return
type have as its element type, since that might not be compatible with the given
. However, in some cases, like , it is possible to deduce the const version of

. Regardless, users are not allowed to modify the elements of the returned

--end note]
[Example:
void test_scaled double
{
auto a_scaled = scaled(, a);
for(int 1 = 9; i < a.extent(9); ++i) {
assert(a_scaled(i) == * a(i));
}

}

--end example]

Conjugated in-place transformation [linalg.conj]

The function takes a , and returns a new read-only with the
same domain as x, whose elements are the complex conjugates of the corresponding elements of x. If the
element type of x is not for some 7, then v is a read-only view of the elements of

[Note:

An implementation could dispatch to a function in the BLAS library, by noticing that the type of a

input has type , and that its nested type is compatible with
the BLAS library. If so, it could set the corresponding BLAS function argument accordingly and call the
BLAS function.

--end note]

Class template [linalg.conj.accessor_conjugate]

The class template isa accessor policy whose reference type represents
the complex conjugate of its nested accessor's reference.

The exposition-only class template represents a read-only value, which is the complex
conjugate of the value of a reference to an element of a . [Note: The value is read only to avoid
confusion with the definition of "assigning to the conjugate of a scalar." --end note] is

part of the implementation of

template<class Reference,

class ElementType>
class conjugated scalar {
public:

64 /141

blas_interface.md 4/14/2021

conjugated_scalar(Reference v);
operator ElementType() const;

private:
Reference val;

}s

® Requires: shall be Cpp17CopyConstructible.
* Constraints:

© The expression is well formed and is convertible to . [Note: This implies
that is for some type F. --end note]

conjugated scalar(Reference v);

® Fffects: Initializes with

operator T() const;

® Fffects: Equivalent to

template<class Accessor>
class accessor_conjugate {
private:

Accessor acc; // exposition only

public:
using element_type

typename Accessor::element_type;
using pointer typename Accessor::pointer;
using reference /* see below */;

using offset_policy = /* see below */;

accessor_conjugate(Accessor a);

reference access(pointer p, ptrdiff t i) const
noexcept(noexcept(reference(acc.access(p, i))));

typename offset_policy::pointer
offset(pointer p, ptrdiff_t i) const

noexcept(noexcept(acc.offset(p, i)));

element_type* decay(pointer p) const
noexcept(noexcept(acc.decay(p)));

65/141

blas_interface.md 4/14/2021

Accessor nested_accessor() const;

}s
® Requires:
° shall be Cpp17CopyConstructible.
° shall meet the accessor policy requirements (see

[mdspan.accessor.reqs] in POO0O9R10).

using reference = /* see below */;

If is for some R, then this names
. Otherwise, it names

using offset_policy = /* see below */;

If is for some R, then this names
. Otherwise, it names

accessor_conjugate(Accessor a);

® Fffects: Initializes with

reference access(pointer p, ptrdiff_t i) const
noexcept(noexcept(reference(acc.access(p, i))));

® Effects: Equivalent to

typename offset_policy::pointer
offset(pointer p, ptrdiff_t i) const
noexcept(noexcept(acc.offset(p, i)));

® [Effects: Equivalent to

element_type* decay(pointer p) const
noexcept(noexcept(acc.decay(p)));

66 / 141

blas_interface.md 4/14/2021

® Fffects: Equivalent to

Accessor nested_accessor const;

* [Effects: Equivalent to

[linalg.conj.conjugated]

template<class ElementType,
class Extents,
class Layout,
class Accessor>
/* see-below */
conjugated(
basic_mdspan<ElementType, Extents, Layout, Accessor> a);

Let R name the type , where
. is either or ; and
. is:
o if is for some , then either
or '
o else if is or for some U, then
o else either or
® Fffects:
o If is and is

, then equivalent to

1

o else, if is , then equivalent to

o else, equivalent to

® Remarks: The elements of the returned are read only.
[Note:
The point of is to give implementations freedom to optimize applying

twice in a row. However, implementations are not required to optimize arbitrary
combinations of nested interspersed with other nested accessors.

67 /141

blas_interface.md 4/14/2021

--end note]

[Example:

void test_conjugated_complex

double
{
auto a_conj = conjugated(a);
for(int i = 9; i < a.extent(9); ++i) {
assert(a_conj(i) == conj(a(i));
¥
auto a_conj _conj = conjugated(a_conj);
for(int i = 0; i < a.extent(9); ++i) {
assert(a_conj_conj(i) == a(i));
}
}

void test_conjugated_real(
basic_mdspan<double, extents<10>> a)

{
auto a_conj = conjugated(a);
for(int i = 0; i < a.extent(©); ++i) {
assert(a_conj(i) == a(i));
}
auto a_conj_conj = conjugated(a_conj);
for(int i = 9; i < a.extent(9); ++i) {
assert(a_conj_conj(i) == a(i));
}
}

--end example]

Transpose in-place transformation [linalg.transp]

isa layout mapping policy that swaps the rightmost two indices, extents,
and strides (if applicable) of any unique layout mapping policy.
The function takes a rank-2 representing a matrix, and returns a new read-only

representing the transpose of the input matrix.

[Note:

An implementation could dispatch to a function in the BLAS library, by noticing that the first argument has a
type, and/or an (see below) type. It could use
this information to extract the appropriate run-time value(s) of the relevant BLAS function arguments.

--end note]

[linalg.transp.layout_transpose]

68 /141

blas_interface.md 4/14/2021

isa layout mapping policy that swaps the rightmost two indices, extents,
and strides (if applicable) of any unique layout mapping policy.

template<class InputExtents>
using transpose_extents t = /* see below */; // exposition only

For a specialization of , names the
type such that

i equals

i equals

,and

. equals forO<r <

® Requires: is a specialization of

® Constraints: is at least 2.

template<class InputExtents>
transpose_extents_t<InputExtents>
transpose_extents(const InputExtents in); // exposition only

® Constraints: is at least 2.

® Returns: An object such that
o equals .
o equals ,and
° equals forO<r <

template<class Layout>
class layout transpose {
public:
template<class Extents>
struct mapping {
private:
using nested_mapping_type =
typename Layout::template mapping<
transpose_extents_t<Extents>>; // exposition only
nested_mapping type nested_mapping ; // exposition only

public:

69 /141

blas_interface.md

}s

}s

mapping(const nested_mapping_type& map);

ptrdiff t operator() (ptrdiff t i, ptrdiff t j) const
noexcept(noexcept(nested_mapping (j, i)));

nested_mapping_type nested_mapping() const;

template<class OtherExtents>
bool operator==(const mapping<OtherExtents>& m) const;

template<class OtherExtents>
bool operator!=(const mapping<OtherExtents>& m) const;

Extents extents() const noexcept;

typename Extents::index_type required span_size() const
noexcept(noexcept(nested_mapping_.required_span_size()));

bool is unique() const
noexcept(noexcept(nested_mapping_.is_unique()));

bool is_contiguous() const
noexcept(noexcept(nested _mapping_.is_contiguous()));

bool is_strided() const
noexcept(noexcept(nested_mapping .is_strided()));

static constexpr bool is_always_unique();
static constexpr bool is_always_contiguous();
static constexpr bool is always_strided();
typename Extents::index_type

stride(typename Extents::index type r) const
noexcept(noexcept(nested_mapping_.stride(r)));

* Requires:

© Layout shall meet the basic mdspan layout mapping policy requirements. [Note: See

[mdspan.layout.reqs] in POO09R10. --end note]

e Constraints:

4/14/2021

o For all specializations £ of extents with £::rank() equal to 2, typename Layout::template

mapping<E>::is_always_unique() is true.

mapping(const nested_mapping type& map);

70 /141

blas_interface.md 4/14/2021

® Fffects: Initializes with

ptrdiff_t operator() (ptrdiff_t i, ptrdiff_t j) const
noexcept(noexcept(nested mapping (j, i)));

® Fffects: Equivalent to

nested _mapping type nested mapping() const;

* [Effects: Equivalent to

template<class OtherExtents>
bool operator==(const mapping<OtherExtents>& m) const;

* Constraints: equals

® [Effects: Equivalent to

template<class OtherExtents>
bool operator!=(const mapping<OtherExtents>& m) const;

* Constraints: equals

* [Effects: Equivalent to

Extents extents() const noexcept;

* [Effects: Equivalent to

typename Extents::index_type
required_span_size() const
noexcept(noexcept(nested_mapping_.required_span_size()));

® Fffects: Equivalent to ‘return nested_mapping_.required_span_size();".

bool is_unique() const
noexcept(noexcept(nested_mapping_.is_unique()));

® [ffects: Equivalent to ‘return nested_mapping_.is_unique();".
717141

blas_interface.md 4/14/2021

bool is_contiguous const
noexcept(noexcept g

® Fffects: Equivalent to ‘return nested_mapping_.is_contiguous();".

bool is strided const
noexcept(noexcept g

® [ffects: Equivalent to ‘return nested_mapping_.is_strided();".

static constexpr bool is always _unique();

* [Fffects: Equivalent to ‘return nested_mapping_type:is_always_unique();'.

static constexpr bool is always contiguous();

® [Effects: Equivalent to ‘return nested_mapping_type:is_always_contiguous();'.

static constexpr bool is_always_strided();

® Fffects: Equivalent to ‘return nested_mapping_type:is_always_strided();".

typename Extents::index_type
stride(typename const
noexcept(noexcept g

® Constraints: is

® [Effects: Equivalent to S r s
ris 0.

[linalg.transp.transposed]

The function takes a rank-2 representing a matrix, and returns a new read-only
representing the transpose of the input matrix. The input matrix's data are not modified, and
the returned accesses the input matrix's data in place. If the input 's layout is
already for some layout |, then the returned has layout L. Otherwise,
the returned has layout , where L is the input 's layout

721141

blas_interface.md 4/14/2021

template<class ElementType,
class Extents,
class Layout,
class Accessor>
/* see-below */
transposed(
basic_mdspan<ElementType, Extents, Layout, Accessor> a);

Let name the type . Let R name the type
, where
o is either or ; and
. is:
o if is , then
, where
. names the type
, and
. names the type
o else, if is for some , then either
or '
o else
* Fffects:
o If is , then equivalent to

1

o else, if is and is
then equivalent to

]

© else, equivalent to

where names the type
® Remarks: The elements of the returned are read only.
[Note:
Implementations may optimize applying twice in a row. However, implementations need
not optimize arbitrary combinations of nested interspersed with other nested layouts.
--end note]
[Example:

7317141

blas_interface.md 4/14/2021

void test transposed(basic mdspan<double, extents<3, 4>> a)

{

const ptrdiff_t num_rows
const ptrdiff_t num_cols

a.extent(9);
a.extent(1);

auto a_t = transposed(a);
assert(num_rows == a_t.extent(1l));
assert(num_cols == a_t.extent(9));
assert(a.stride(9) == a_t.stride(1));
assert(a.stride(1l) == a_t.stride(9));

for(ptrdiff_t row = 9; row < num_rows; ++row) {
for(ptrdiff_t col = 0; col < num_rows; ++col) {
assert(a(row, col) == a_t(col, row));
}
¥

auto a_t_t = transposed(a_t);
assert(num_rows == a_t t.extent(0));
assert(num_cols == a_t_t.extent(1l));
assert(a.stride(9) == a_t_t.stride(9));
assert(a.stride(1l) == a_t t.stride(1));

for(ptrdiff_t row = 0; row < num_rows; ++row) {
for(ptrdiff_t col = 9; col < num_rows; ++col) {
assert(a(row, col) == a_t_t(row, col));
¥
¥
}

--end example]

Conjugate transpose transform [linalg.conj_transp]

The function returns a conjugate transpose view of an object. This combines the
effects of and

template<class ElementType,
class Extents,
class Layout,
class Accessor>
/* see-below */
conjugate_transposed(
basic_mdspan<ElementType, Extents, Layout, Accessor> a);

® Effects: Equivalent to

® Remarks: The elements of the returned are read only.

747141

blas_interface.md 4/14/2021

[Example:

void test_conjugate_ transposed(
basic_mdspan<complex<double>, extents<3, 4>> a)

const ptrdiff_t num_rows
const ptrdiff_t num _cols

a.extent(9);
a.extent(1);

auto a_ct = conjugate transposed(a);
assert(num_rows == a_ct.extent(1l));
assert(num_cols == a_ct.extent(9));
assert(a.stride(9) == a_ct.stride(1));
assert(a.stride(1l) == a_ct.stride(9));

for(ptrdiff t row = 0; row < num_rows; ++row) {
for(ptrdiff_t col = 0; col < num_rows; ++col) {
assert(a(row, col) == conj(a_ct(col, row)));
}
}

auto a_ct_ct = conjugate_transposed(a_ct);
assert(num_rows == a_ct_ct.extent(9));
assert(num_cols == a_ct ct.extent(1));
assert(a.stride(9) == a_ct_ct.stride(0));
assert(a.stride(1l) == a_ct ct.stride(1));

for(ptrdiff_t row = 0; row < num_rows; ++row) {
for(ptrdiff t col = ©; col < num_rows; ++col) {
assert(a(row, col) == a_ct_ct(row, col));
assert(conj(a_ct(col, row)) == a_ct_ct(row, col));
}
}
}

--end example]
Algorithms [linalg.algs]
Requirements [linalg.algs.reqs]

Throughout this Clause, where the template parameters are not constrained, the names of template
parameters are used to express type requirements. In the requirements below, we use * in a typename to
denote a "wildcard," that matches zero characters, 1, 2, 3, or other things as appropriate.

® Algorithms that have a template parameter named are parallel algorithms
[algorithms.parallel.defns].

o meets the requirements of . (Some algorithms below impose further
requirements.)

. is any of the following types: , , or

7517141

blas_interface.md 4/14/2021

. is a rank-1 with a potentially element type and a unique layout. If
the algorithm accesses the object, it will do so in read-only fashion.

. is a rank-1 with a non- element type and a unique layout.

. is a rank-1 with a non- element type and a unique layout. If the
algorithm accesses the object, it will do so in write-only fashion.

. is a rank-2 with a element type. If the algorithm accesses the
object, it will do so in read-only fashion.

o is a rank-2 with a non- element type.

. is a rank-2 with a non- element type. If the algorithm accesses
the object, it will do so in write-only fashion.

. is a rank-1 or rank-2 with a potentially element type and a unique
layout. If the algorithm accesses the object, it will do so in read-only fashion.

. is a rank-1 or rank-2 with a non- element type and a unique
layout.

. is a rank-1 or rank-2 with a non- element type and a unique
layout.

o is either or

. is either or

. template parameters may deduce a Ivalue reference or a (non-) rvalue reference to
a

. and template parameters may deduce a Ivalue reference to a

, ora (non-) rvalue reference to a

BLAS 1 functions [linalg.algs.blas1]

[Note:

The BLAS developed in three "levels": 1, 2, and 3. BLAS 1 includes vector-vector operations, BLAS 2 matrix-
vector operations, and BLAS 3 matrix-matrix operations. The level coincides with the number of nested loops
in a naive sequential implementation of the operation. Increasing level also comes with increasing potential
for data reuse. The BLAS traditionally lists computing a Givens rotation among the BLAS 1 operations, even
though it only operates on scalars.

--end note]
Givens rotations [linalg.algs.blas1.givens]

Compute Givens rotation [linalg.algs.blas1.givens.lartg]

76 /141

blas_interface.md 4/14/2021

template<class Real>
void givens_rotation_setup(const
const

template<class Real>
void givens_rotation_setup(const
const

This function computes the plane (Givens) rotation represented by the two values c and s such that the

mathematical expression

[c s] [al [r]
[1*01=1011
[-conj(s) c] [b] [e]

holds, where indicates the mathematical conjugate of s, c is always a real scalar, and
equals one. That is, c and s represent a 2 x 2 matrix, that when multiplied by the right by the
input vector whose components are 2 and b, produces a result vector whose first component r is the
Euclidean norm of the input vector, and whose second component as zero. [Note: The C++ Standard Library
function always returns for some T, even though overloads exist for non-complex input.
The above expression uses as mathematical notation, not as code. --end note]

[Note: This function corresponds to the LAPACK function . The BLAS variant takes four
arguments -- 3, b, ¢, and s-- and overwrites the input a with . We have chosen 's interface because it
separates input and output, and to encourage following 's more careful implementation. --end note]

[Note: has an overload for complex numbers, because the output argument
(cosine) is a signed magnitude. --end note]

e Constraints: is , , or

® FEffects: Assigns to c and s the plane (Givens) rotation corresponding to the input = and b. Assigns to
the Euclidean norm of the two-component vector formed by 2 and

* Throws: Nothing.

Apply a computed Givens rotation to vectors [linalg.algs.blas1.givens.rot]

template<class inout_vector_ 1 t,
class inout_vector_2_ t,
class Real>

771141

blas_interface.md

void givens_rotation_apply(

inout_vector_1 t x,
inout_vector 2 t vy,
const Real c,

const Real s);

template<class ExecutionPolicy,

class inout_vector_ 1 t,
class inout_vector 2 t,
class Real>

void givens rotation_apply(

ExecutionPolicy&& exec,
inout_vector_1_t x,
inout_vector 2 t vy,
const Real c,

const Real s);

template<class inout_vector_1_t,

class inout_vector 2 t,
class Real>

void givens_rotation_apply(

inout_vector 1 t x,
inout_vector_ 2 t vy,
const Real c,

const complex<Real> s);

template<class ExecutionPolicy,

class inout_vector_1_t,
class inout_vector_2_t,
class Real>

void givens_rotation_apply(

ExecutionPolicy&& exec,
inout_vector 1 t x,
inout_vector_ 2 t vy,
const Real c,

const complex<Real> s);

[Note:

These functions correspond to the BLAS function

would compute ¢ and

--end note]
* Requires:
e Constraints:

o is

using

equals

' , or

4/14/2021

and s form a plane (Givens) rotation. Users normally

, but they are not required to do this.

© For the overloads that take the last argument

domain of v, the expressions

well formed.

781141

as

, for
and

in the domain of x and

in the
are

blas_interface.md

o For the overloads that take the last argument < as
and 7 in the domain of vy, the expressions
are well formed.

® Mandates: If neither nor
equals

4/14/2021

, for i in the domain of
and

equals , then

* Fffects: Applies the plane (Givens) rotation specified by ¢ and < to the input vectors x and v, as if the

rotation were a 2 x 2 matrix and the input vectors were successive rows of a matrix with two rows.

Swap matrix or vector elements [linalg.algs.blas1.swap]

template<class inout_object_1_t,
class inout_object 2 t>
void swap_elements(inout_object 1 t x,
inout_object_2_t y);

template<class ExecutionPolicy,
class inout_object_1 t,
class inout_object_2_t>
void swap_elements(ExecutionPolicy&& exec,
inout_object 1 t x,
inout_object 2 t y);

[Note: These functions correspond to the BLAS function . --end note]
® Requires: Forall rin0Q, 1, .., -1, equals

e Constraints:

o equals
° is no more than 2.
° For in the domain of x and v, the expression
® Mandates: Forall rin0, 1, ..., - 1, if neither
equals , then equals

® [Effects: Swap all corresponding elements of the objects x and

Multiply the elements of an object in place by a scalar [linalg.algs.blas1.scal]

template<class Scalar,
class inout_object t>
void scale(const Scalar alpha,
inout_object_t obj);

template<class ExecutionPolicy,

7917141

is well formed.

nor

blas_interface.md

class Scalar,
class inout_object_t>
void scale(ExecutionPolicy&& exec,
const Scalar alpha,
inout_object_t obj);

[Note: These functions correspond to the BLAS function
¢ Constraints:
° is no more than 3.
° For in the domain of ob, the expression

* [Effects: Multiply each element of in place by

. --end note]

Copy elements of one matrix or vector into another [linalg.algs.blas1.copy]

template<class in_object_t,
class out_object_t>

void copy(in_object t x,
out_object_t y);

template<class ExecutionPolicy,
class in_object_t,
class out_object_t>
void copy(ExecutionPolicy&& exec,
in_object_t x,
out_object t y);

[Note: These functions correspond to the BLAS function . --end note]
® Requires: Forall rin0Q, 1, .., -1, equals
* Constraints:
o equals
o For all in the domain of x and vy, the expression
® Mandates: Forall rin0Q, 1, ..., - 1, if neither
equals , then equals

* [Effects: Overwrite each element of v with the corresponding element of

Add vectors or matrices elementwise [linalg.algs.blas1.add]

template<class in_object_1 t,
class in_object_2_t,

80/141

is well formed.

4/14/2021

is well formed.

nor

blas_interface.md 4/14/2021

class out_object_t>
void add(in_object_1 t x,

in_object 2 t vy,

out_object_t z);

template<class ExecutionPolicy,
class in_object_1_t,
class in_object 2 _t,
class out_object_t>

void add(ExecutionPolicy&& exec,
in_object 1 t x,
in_object 2 t vy,
out_object t z);

[Note: These functions correspond to the BLAS function . --end note]
® Requires: Forall inQ, 1, .., -1,
° equals
o equals

* Constraints:

o , , and are all equal.
° For in the domain of x, v, and 7, the expression is well
formed.
® Mandates: Forall in0, 1, ..., -1,

o if neither nor equals , then
equals ; and

° if neither nor equals , then
equals

o if neither nor equals , then
equals ;

* [Effects: Compute the elementwise sum z = x +y.
Dot product of two vectors [linalg.algs.blas1.dot]

Nonconjugated dot product of two vectors [linalg.algs.blas1.dot.dotu]

[Note: The functions in this section correspond to the BLAS functions (for real element types) and

(for complex element types). --end note]

Nonconjugated dot product with specified result type

81/141

blas_interface.md 4/14/2021

template<class in_vector 1 t,
class in_vector_2_t,
class T>

T dot(in_vector 1 t vi,

in_vector 2 t v2,
T init);

template<class ExecutionPolicy,
class in_vector_1_t,
class in_vector 2 t,
class T>

T dot(ExecutionPolicy&& exec,

in _vector 1 t vi,
in_vector 2 t v2,
T init);

* Requires:

© T shall be Cpp17MoveConstructible.

° shall be convertible to
° equals
® Constraints: For all 1 in the domain of v1 and v2 and for of type 7%, the expression

is well formed.

* Mandates: If neither nor equals , then
equals
® Fffects: Let I\ be . If \is zero, returns , else returns /GENERALIZED_SUM/(,
p -).
® Remarks: If and T are both floating-point types or complex versions
thereof, and if T has higher precision than , then intermediate terms

in the sum use T's precision or greater.

[Note: Like , applies binary in an unspecified order. This may yield a nondeterministic
result for non-associative or non-commutative such as floating-point addition. However,
implementations may perform extra work to make the result deterministic. They may do so for all

overloads, or just for specific types. --end note]

[Note: Users can get behavior by giving the second argument as the result of . Alternately,
they can use the shortcut below. --end note]

Nonconjugated dot product with default result type

template<class in_vector_1 t,
class in_vector_2_t>
auto dot(in_vector 1 t vi,
in_vector_2 t v2) -> /* see-below */;

82 /141

blas_interface.md 4/14/2021

template<class ExecutionPolicy,
class in_vector_1_t,
class in_vector_ 2 t>
auto dot(ExecutionPolicy&& exec,
in_vector 1 t vi,
in_vector 2 t v2) -> /* see-below */;

* Fffects: Let T be . Then, the two-parameter overload is equivalent to
, and the three-parameter overload is equivalent to

Conjugated dot product of two vectors [linalg.algs.blas1.dot.dotc]

[Note:

The functions in this section correspond to the BLAS functions (for real element types) and (for
complex element types).

exists to give users reasonable default inner product behavior for both real and complex element types.
--end note]

Conjugated dot product with specified result type

template<class in_vector 1 t,
class in_vector_2_t,
class T
T dotc(in_vector_1_t vi,
in_vector 2 t v2,
T init);
template<class ExecutionPolicy,
class in_vector_1_t,
class in_vector 2 t,
class T>
T dotc(ExecutionPolicy&& exec,
in_vector 1 t vi,
in_vector 2 t v2,
T init);

® [Effects: The three-argument overload is equivalent to . The four-
argument overload is equivalent to

Conjugated dot product with default result type

template<class in_vector_ 1 t,
class in_vector 2 t>
auto dotc(in_vector 1 t vi,
in_vector 2 t v2) -> /* see-below */;
template<class ExecutionPolicy,
class in_vector_1_t,

83 /141

blas_interface.md 4/14/2021

class in_vector_ 2 t>
auto dotc(ExecutionPolicy&& exec,
in_vector_1_t vi,
in_vector 2 t v2) -> /* see-below */;

® fffects: If is for some R, let T be
; else, let T be . Then, the two-parameter
overload is equivalent to , and the three-parameter overload is equivalent to

Scaled sum of squares of a vector's elements [linalg.algs.blas1.ssq]

template<class T>
struct sum_of_squares_result {
T scaling factor;
T scaled_sum_of_squares;
¥
template<class in_vector_t,
class T>
sum_of_squares_result<T> vector_sum_of squares(
in_vector_t v,
sum_of_squares_result init);
template<class ExecutionPolicy,
class in_vector_t,
class T>
sum_of squares_result<T> vector sum of squares(
ExecutionPolicy&& exec,
in_vector_t v,
sum_of squares result init);

[Note: These functions correspond to the LAPACK function . --end note]
* Requires:

© T shall be Cpp17MoveConstructible and Cpp17LessThanComparable.
° shall be convertible to

® Constraints: For all 1 in the domain of v, and for , f,and of type T, the expression

is well formed.
® Fffects: Returns two values:

o : the maximum of and for all i in the
domain of v; and

o : a value such that
equals the sum of squares of plus

84 /141

blas_interface.md 4/14/2021

* Remarks: If is a floating-point type or a complex version thereof, and if
is a floating-point type, then

o if T has higher precision than , then intermediate terms in the
sum use T's precision or greater; and

© any guarantees regarding overflow and underflow of are
implementation-defined.

Euclidean norm of a vector [linalg.algs.blas1.nrm2]

Euclidean norm with specified result type

template<class in_vector_t,
class T>
T vector_norm2(in_vector_t v,
T init);
template<class ExecutionPolicy,
class in_vector_t,
class T>
T vector_norm2(ExecutionPolicy&& exec,
in_vector_t v,
T init);

[Note: These functions correspond to the BLAS function . --end note]
* Requires:

© T shall be Cpp17MoveConstructible.

° shall be convertible to
¢ Constraints: For all 1 in the domain of v and for of type 7%, the expressions
and are well formed. [Note: This does not imply a recommended

implementation for floating-point types. See Remarks below. --end note]
® Fffects: Returns the Euclidean norm (also called 2-norm) of the vector

® Remarks: If is a floating-point type or a complex version thereof, and if
is a floating-point type, then

o if T has higher precision than , then intermediate terms in the
sum use T's precision or greater; and

© any guarantees regarding overflow and underflow of are implementation-
defined.

[Note: A suggested implementation of this function for floating-point types T, is to return the
result from . --end note]

Euclidean norm with default result type

857141

blas_interface.md 4/14/2021

template<class in_vector_t>
auto vector_norm2(in_vector_t -> /* see-below */;
template<class ExecutionPolicy,
class in_vector t>
auto vector norm2(ExecutionPolicy&& exec,
in_vector_ t v) -> /* see-below */;

* Fffects: Let T be . Then, the one-parameter overload is equivalent

to , and the two-parameter overload is equivalent to

Sum of absolute values of vector elements [linalg.algs.blas1.asum]

Sum of absolute values with specified result type

template<class in_vector_t,
class T>
T vector_abs_sum(in_vector_t v,
T init);
template<class ExecutionPolicy,
class in_vector_t,
class T>
T vector_abs_sum(ExecutionPolicy&& exec,
in_vector_t v,
T init);

[Note: This function corresponds to the BLAS functions ,) , and . The different
behavior for complex element types is based on the observation that this lower-cost approximation of the

one-norm serves just as well as the actual one-norm for many linear algebra algorithms in practice. --end
note]

* Requires:

© 1 shall be Cpp17MoveConstructible.

° shall be convertible to
® Constraints: For all 1 in the domain of v and for of type T&, the expression is
well formed.

® Fffects: Let I\ be

o If N is zero, returns

o Else, if is for some R, then returns
/GENERALIZED_SUM/(

© Else, returns /GENERALIZED_SUM/(. , e).

86 /141

blas_interface.md 4/14/2021

* Remarks: If is a floating-point type or a complex version thereof, if T is a
floating-point type, and if T has higher precision than , then
intermediate terms in the sum use T's precision or greater.

Sum of absolute values with default result type

template<class in_vector_t>
auto vector_abs sum(in_vector_t -> /* see-below */;
template<class ExecutionPolicy,
class in_vector_t>
auto vector abs sum(ExecutionPolicy&& exec,
in_vector_t v) -> /* see-below */;

* [Effects: Let T be . Then, the one-parameter overload is equivalent to

, and the two-parameter overload is equivalent to

Index of maximum absolute value of vector elements [linalg.algs.blas1.iamax]

template<class in_vector_t>
ptrdiff_t idx_abs_max(in_vector_t 8
template<class ExecutionPolicy,
class in_vector_t>
ptrdiff_t idx_abs_max(ExecutionPolicy&& exec,
in_vector_t v);

[Note: These functions correspond to the BLAS function . --end note]
® Constraints: For 1 and 7 in the domain of v, the expression is well formed.

® [Effects: Returns the index (in the domain of v) of the first element of v having largest absolute value. If
has zero elements, then returns

Frobenius norm of a matrix [linalg.algs.blas1.matfrobnorm]

Frobenius norm with specified result type

template<class in_matrix_t,
class T>
T matrix_frob_norm(
in_matrix_t A,
T init);
template<class ExecutionPolicy,
class in _matrix_t,
class T>

87 /141

blas_interface.md 4/14/2021

T matrix_frob_norm(
ExecutionPolicy&& exec,
in_matrix_t A,

T init);

* Requires:

© T shall be Cpp17MoveConstructible.

° shall be convertible to
® Constraints: For all in the domain of A and for of type T&, the expressions
and are well formed. [Note: This does not imply a

recommended implementation for floating-point types. See Remarks below. --end note]

® [Effects: Returns the Frobenius norm of the matrix 2, that is, the square root of the sum of squares of the
absolute values of the elements of

® Remarks: If is a floating-point type or a complex version thereof, and if
is a floating-point type, then

© if T has higher precision than , then intermediate terms in the
sum use T's precision or greater; and

© any guarantees regarding overflow and underflow of are implementation-
defined.

Frobenius norm with default result type

template<class in_matrix_t>

auto matrix_frob_norm
in_matrix_t -> /* see-below */;

template<class ExecutionPolicy,

class in_matrix_t>

auto matrix_frob_norm(
ExecutionPolicy&& exec,
in_matrix_t A) -> /* see-below */;

* [Effects: Let T be . Then, the one-parameter overload is
equivalent to , and the two-parameter overload is equivalent to

One norm of a matrix [linalg.algs.blas1.matonenorm]

One norm with specified result type

template<class in _matrix_t,
class T>
T matrix_one_norm(

88 /141

blas_interface.md 4/14/2021

in_matrix_t A,
T init);
template<class ExecutionPolicy,
class in _matrix_t,
class T>
T matrix_one_norm(
ExecutionPolicy&& exec,
in_matrix_t A,
T init);

* Requires:

© T shall be Cpp17MoveConstructible and Cpp17LessThanComparable.
° shall be convertible to

® Constraints: For all in the domain of A and for of type T&, the expression
is well formed.

* Fffects:

o |f is zero, returns ;
o Else, returns the one norm of the matrix 4, that is, the maximum over all columns of 2, of the sum

of the absolute values of the elements of the column.

* Remarks: If is a floating-point type or a complex version thereof, if T is a
floating-point type, and if T has higher precision than , then

intermediate terms in each sum use T's precision or greater.

One norm with default result type

template<class in _matrix_t>

auto matrix_one_norm
in _matrix_t -> /* see-below */;

template<class ExecutionPolicy,

class in_matrix_t>

auto matrix_one norm(
ExecutionPolicy&& exec,
in_matrix_t A) -> /* see-below */;

® Fffects: Let T be . Then, the one-parameter overload is
equivalent to , and the two-parameter overload is equivalent to

Infinity norm of a matrix [linalg.algs.blas1.matinfnorm]

Infinity norm with specified result type

89/141

blas_interface.md 4/14/2021

template<class in_matrix_t,
class T>
T matrix_inf_norm(
in_matrix_t A,
T init);
template<class ExecutionPolicy,
class in_matrix_t,
class T>
T matrix_inf norm(
ExecutionPolicy®&& exec,
in_matrix_t A,
T init);

* Requires:

© T shall be Cpp17MoveConstructible and Cpp17LessThanComparable.
° shall be convertible to

® Constraints: For all in the domain of A and for of type T&, the expression
is well formed.

* Fffects:

o If is zero, returns ;
© Else, returns the infinity norm of the matrix 4, that is, the maximum over all rows of 2, of the sum
of the absolute values of the elements of the row.

® Remarks: If is a floating-point type or a complex version thereof, if T is a
floating-point type, and if T has higher precision than , then

intermediate terms in each sum use T's precision or greater.

Infinity norm with default result type

template<class in_matrix_t>

auto matrix_inf_norm
in_matrix_t -> /* see-below */;

template<class ExecutionPolicy,

class in_matrix_t>

auto matrix_inf_norm(
ExecutionPolicy&& exec,
in_matrix_t A) -> /* see-below */;

* Fffects: Let T be . Then, the one-parameter overload is
equivalent to , and the two-parameter overload is equivalent to

BLAS 2 functions [linalg.algs.blas2]

90 /141

blas_interface.md
General matrix-vector product [linalg.algs.blas2.gemv]

[Note: These functions correspond to the BLAS function . --end note]

The following requirements apply to all functions in this section.

* Requires:
° equals
° equals
° equals (if applicable).

e Constraints: For all functions in this section:

° has unique layout; and
o equals 2, equals 1, equals 1, and
applicable).
* Mandates:

© If neither nor equals
equals

o If neither nor equals
equals

o If neither nor equals
equals (if applicable).

Overwriting matrix-vector product

template<class in_vector_t,
class in_matrix_t,
class out_vector_ t>
void matrix_vector_product(in_matrix_t A,
in_vector_t x,
out vector t y);

template<class ExecutionPolicy,
class in_vector_t,
class in_matrix_t,
class out_vector_t>
void matrix_vector_product(ExecutionPolicy&& exec,
in_matrix_t A,
in_vector_t x,
out_vector_t y);

* Constraints: For in the domain of 4, the expression

91/141

4/14/2021

equals 1 (if

, then

, then

, then

is well formed.

blas_interface.md 4/14/2021

® FEffects: Assigns to the elements of v the product of the matrix A with the vector x.

[Example:

constexpr ptrdiff_t num_rows
constexpr ptrdiff_t num_cols 6;

Il
Ui
e

//'y =3.06*A*x

void scaled_matvec_1(
mdspan<double, extents<num_rows, num _cols>> A,
mdspan<double, extents<num_cols>> x,
mdspan<double, extents<num_rows>> y)

matrix_vector_product(scaled(3.0, A), X, y);

//'y =3.06*A* x+2.0*y

void scaled matvec 2(
mdspan<double, extents<num_rows, num_cols>> A,
mdspan<double, extents<num_cols>> x,
mdspan<double, extents<num_rows>> y)

matrix_vector product(scaled(3.0, A), X,
scaled(2.9, y), y);

// z = 7.0 times the transpose of A, times y

void scaled matvec_2(mdspan<double, extents<num_rows, num_cols>> A,
mdspan<double, extents<num_rows>> vy,
mdspan<double, extents<num_cols>> z)

{

matrix_vector_product(scaled(7.0, transposed(A)), vy, z);

}

--end example]

Updating matrix-vector product

template<class in_vector_ 1 t,
class in_matrix_t,
class in_vector_2_t,
class out_vector t>
void matrix_vector_product(in_matrix_t A,
in_vector_1_t x,
in_vector_2 t vy,
out_vector_t z);

template<class ExecutionPolicy,
class in_vector_1_t,
class in _matrix_t,

92 /141

blas_interface.md 4/14/2021

class in_vector 2 t,
class out_vector_t>
void matrix_vector product(ExecutionPolicy&& exec,
in_matrix_t A,
in_vector_ 1 t x,
in_vector 2 t vy,
out_vector_t z);

® Constraints: For in the domain of 4, the expression is well formed.

® [Effects: Assigns to the elements of z the elementwise sum of vy, and the product of the matrix A with the
vector

Symmetric matrix-vector product [linalg.algs.blas2.symv]

[Note: These functions correspond to the BLAS functions and . --end note]

The following requirements apply to all functions in this section.

* Requires:
° equals
° equals
° equals
° equals (if applicable).

* Constraints:

o either has unique layout, or layout.
o If has layout, then the layout's template
argument has the same type as the function's template argument.
° equals 2, equals 1, equals 1, and equals 1 (if
applicable).
* Mandates:
© If neither nor equals , then
equals
© If neither nor equals , then
equals
© If neither nor equals , then
equals
o If neither nor equals , then
equals (if applicable).

93 /141

blas_interface.md 4/14/2021

® Remarks: The functions will only access the triangle of A specified by the argument t, and will
assume for indices outside that triangle, that equals

Overwriting symmetric matrix-vector product

template<class in_matrix_t,
class Triangle,
class in_vector_t,
class out_vector t>
void symmetric_matrix_vector_product(in_matrix_t A,
Triangle t,
in_vector_t x,
out_vector_t y);

template<class ExecutionPolicy,
class in_matrix_t,
class Triangle,
class in_vector_t,
class out_vector_t>
void symmetric_matrix_vector_product(ExecutionPolicy&& exec,
in_matrix_t A,
Triangle t,
in_vector_t x,
out_vector_t y);

® Constraints: For in the domain of 4, the expression is well formed.

* f[ffects: Assigns to the elements of v the product of the matrix 2 with the vector

Updating symmetric matrix-vector product

template<class in _matrix_ t,
class Triangle,
class in_vector_ 1 t,
class in_vector_2_t,
class out_vector_t>
void symmetric_matrix_vector_ product(
in_matrix_t A,
Triangle t,
in_vector 1 t x,
in_vector_2 t vy,
out_vector t z);

template<class ExecutionPolicy,
class in _matrix_t,
class Triangle,
class in_vector_ 1 t,
class in_vector 2 t,
class out_vector_t>

94 /141

blas_interface.md 4/14/2021

void symmetric_matrix_vector product(
ExecutionPolicy&& exec,
in_matrix_t A,
Triangle t,
in_vector_1 t x,
in_vector_2 t vy,
out_vector_t z);

® Constraints: For in the domain of 4, the expression is well formed.

® [Effects: Assigns to the elements of z the elementwise sum of v, with the product of the matrix A with the

vector
Hermitian matrix-vector product [linalg.algs.blas2.hemv]

[Note: These functions correspond to the BLAS functions and . --end note]

The following requirements apply to all functions in this section.

* Requires:"
° equals
o equals
° equals
° equals (if applicable).

® Constraints:

o either has unique layout, or layout.
o If has layout, then the layout's template
argument has the same type as the function's template argument.
° equals 2, equals 1, equals 1, and equals 1.
* Mandates:
© If neither nor equals , then
equals
o If neither nor equals , then
equals
o If neither nor equals , then
equals
© If neither nor equals , then
equals (if applicable).
® Remarks:

95/ 141

blas_interface.md

© The functions will only access the triangle of A specified by the

(e}

If for some

assume for indices

is

outside that triangle, that equals

functions will assume that equals

Overwriting Hermitian matrix-vector product

template<class in _matrix_ t,
class Triangle,
class in_vector_t,
class out_vector_t>
void hermitian_matrix_vector_product(in_matrix_t A,
Triangle t,
in_vector_t x,
out_vector_ t y);

template<class ExecutionPolicy,
class in _matrix_t,
class Triangle,
class in_vector_t,
class out_vector t>
void hermitian_matrix_vector_product(ExecutionPolicy&& exec,
in_matrix_t A,
Triangle t,
in_vector_t x,
out_vector_ t y);

e (Constraints: For in the domain of

© the expression is well formed; and

o if for some

is well formed.

4/14/2021

argument

, then the functions will
. Otherwise, the

, then the expression

® f[ffects: Assigns to the elements of v the product of the matrix 2 with the vector

Updating Hermitian matrix-vector product

template<class
class
class
class
class
void hermitian

in_matrix_t,

Triangle,

in_vector_1_t,

in_vector_2_t,

out_vector_t>

_matrix_vector product(in_matrix_t A,

Triangle t,
in_vector_1_t x,
in_vector_2 t vy,
out_vector_t z);

96/ 141

blas_interface.md 4/14/2021

template<class ExecutionPolicy,
class in_matrix_t,
class Triangle,
class in_vector_1 t,
class in_vector 2 t,
class out_vector_t>
void hermitian_matrix_vector_product(ExecutionPolicy&& exec,
in_matrix_t A,
Triangle t,
in_vector_1_t x,
in_vector_2 t vy,
out_vector_t z);

® Constraints: For in the domain of
o the expression is well formed; and
o if is for some RA, then the expression

is well formed.

® [Effects: Assigns to the elements of z the elementwise sum of vy, and the product of the matrix A with the

vector
Triangular matrix-vector product [linalg.algs.blas2.trmv]

[Note: These functions correspond to the BLAS functions and . --end note]

The following requirements apply to all functions in this section.

* Requires:
° equals
° equals
° equals (if applicable).
° equals (if applicable).

® Constraints:

o either has unique layout, or layout.

o If has layout, then the layout's template
argument has the same type as the function's template argument.

° equals 2.

o equals 1.

° equals 1 (if applicable).

97 /1141

blas_interface.md

o
* Mandates:
o [f neither
o [f neither
o |[f neither
o |[f neither
®* Remarks:

equals 1 (if applicable).

nor
equals

nor
equals

nor
equals

nor
equals

© The functions will only access the triangle of

o |[f the

equals

equals

equals

(if applicable).

equals

(if applicable).

specified by the

template argument has type

argument

4/14/2021

, then

, then

, then

, then

, then the

functions will not access the diagonal of 4, and will assume that that the diagonal elements of

all equal one. [Note: This does not imply that the function needs to be able to form an

value equal to one. --end note]

Overwriting triangular matrix-vector product [linalg.algs.blas2.trmv]

template<class
class
class
class
class

in_matrix_t,
Triangle,
DiagonalStorage,
in_vector_t,
out_vector_t>

void triangular_matrix_vector_product(
in_matrix_t A,

Triangle t,

DiagonalStorage d,
in_vector_t x,

out_vector_t
template<class
class

class

class

class

class

y);
ExecutionPolicy,

in_matrix_t,
Triangle,
DiagonalStorage,
in_vector_t,
out_vector_t>

void triangular_matrix_vector_product(
ExecutionPolicy&& exec,
in_matrix_t A,

Triangle t,

DiagonalStorage d,
in_vector_t x,

out_vector_t

y);

98 /141

blas_interface.md

e Constraints: For

in the domain of /, the expression is well formed.

® Effects: Assigns to the elements of v the product of the matrix A with the vector

In-place triangular matrix-vector product [linalg.algs.blas2.trmv.in-place]

template<class
class
class
class

in_matrix_t,
Triangle,
DiagonalStorage,
inout_vector_ t>

void triangular_matrix_vector_product(
in_matrix_t A,

Triangle t,

DiagonalStorage d,

inout_vector_t y);
® Requires: equals
® Constraints: For in the domain of 7, the expression is well formed.
® Mandates: If neither nor equals
equals

® [Effects: Overwrites v (on output) with the product of the matrix A with the vector

Updating triangular matrix-vector product [linalg.algs.blas2.trmv.up]

template<class
class
class
class
class
class

in_matrix_t,
Triangle,
DiagonalStorage,
in_vector_1_t,
in_vector_2_t,
out_vector_t>

void triangular_matrix_vector_product(in_matrix_t A,

template<class
class
class
class
class
class
class

Triangle t,
DiagonalStorage d,
in_vector_1_t x,
in_vector 2 t vy,
out_vector_t z);

ExecutionPolicy,
in_matrix_t,
Triangle,
DiagonalStorage,
in_vector_1_t,
in_vector 2 t,
out_vector_t>

void triangular matrix_vector_ product(ExecutionPolicy&& exec,

99/141

(on input).

4/14/2021

, then

blas_interface.md 4/14/2021

in_matrix_t A,
Triangle t,
DiagonalStorage d,
in_vector 1 t x,
in_vector_ 2 t vy,
out_vector_ t z);

® Constraints: For in the domain of 4, the expression is well formed.

* [Effects: Assigns to the elements of z the elementwise sum of v, with the product of the matrix 2 with the

vector
Solve a triangular linear system [linalg.algs.blas2.trsv]

[Note: These functions correspond to the BLAS functions and . --end note]

The following requirements apply to all functions in this section.

* Requires:
o equals
° equals

* Constraints:

° equals 2.
o equals 1.
° either has unique layout, or layout.
o If has layout, then the layout's template
argument has the same type as the function's template argument.
* Mandates:
o [f neither nor equals , then
equals
o If neither nor equals , then
equals
® Remarks:
© The functions will only access the triangle of A specified by the argument
o If the template argument has type , then the

functions will not access the diagonal of 2, and will assume that that the diagonal elements of
all equal one. [Note: This does not imply that the function needs to be able to form an
value equal to one. --*end note]

100/ 141

blas_interface.md

Not-in-place triangular solve [linalg.algs.blas2.trsv.not-in-place]

template<class
class
class
class
class

in_matrix_t,
Triangle,
DiagonalStorage,
in_vector_t,
out_vector_t>

void triangular_matrix_vector_solve(

in_matrix_t A,

Triangle t,

DiagonalStorage d,

in_vector_t b,

out_vector_t x);

template<class ExecutionPolicy,

class in matrix_t,
class Triangle,
class DiagonalStorage,
class in_vector_t,
class out_vector_t>

void triangular_matrix_vector_solve(

ExecutionPolicy&& exec,
in_matrix_t A,

Triangle t,
DiagonalStorage d,
in_vector_t b,
out_vector_t x);

* Requires:
° equals
* Constraints:
° equals 1.
o If

is in the domain of x and

o |f
is well formed.

is in the domain of x and

, then the expression

is in the domain of x, then the expression

o [f risin the domain of x and
is well formed.
* Mandates:
o [f neither

equals

nor equals

4/14/2021

is well formed.

, then the expression

, then

® Fffects: Assigns to the elements of x the result of solving the triangular linear system Ax=b.

In-place triangular solve [linalg.algs.blas2.trsv.in-place]

101 /141

blas_interface.md 4/14/2021

template<class in _matrix_ t,
class Triangle,
class DiagonalStorage,
class inout_vector_ t>
void triangular_matrix_vector_solve(
in_matrix_t A,
Triangle t,
DiagonalStorage d,
inout_vector t b);
template<class ExecutionPolicy,
class in _matrix_t,
class Triangle,
class DiagonalStorage,
class inout_vector_ t>
void triangular_matrix_vector_solve(
ExecutionPolicy&& exec,
in_matrix_t A,
Triangle t,
DiagonalStorage d,
inout_vector t b);

[Note:
Performing triangular solve in place hinders parallelization. However, other -specific
optimizations, such as vectorization, are still possible. This is why the overload exists.
--end note]

® Requires:

o equals
* Constraints:
o If rand ¢ are in the domain of b, then the expression is well formed.

© If risin the domain of b and is , then the expression
is well formed.

* Mandates:

o If neither nor equals , then
equals

* Effects: Overwrites b with the result of solving the triangular linear system Ax=b for x.

Rank-1 (outer product) update of a matrix [linalg.algs.blas2.rank1]

Nonsymmetric nonconjugated rank-1 update [linalg.algs.blas2.rank1.geru]

102 /141

blas_interface.md 4/14/2021
template<class in_vector 1 t,
class in_vector_2_t,
class inout_matrix_t>
void matrix_rank_1_ update(
in_vector_1 t x,
in_vector_2 t vy,
inout_matrix_t A);
template<class ExecutionPolicy,
class in_vector_1_t,
class in_vector_ 2 t,
class inout_matrix_t>
void matrix_rank_1 update(
ExecutionPolicy&& exec,
in_vector_1 t x,
in_vector_2 t vy,
inout_matrix_t A);
[Note: This function corresponds to the BLAS functions (for real element types) and (for complex
element types). --end note]
® Requires:
° equals
o equals
* Constraints:
o equals 2, equals 1, and equals 1.
o For in the domain of A, the expression is well formed.
* Mandates:
o [f neither nor equals , then
equals
o If neither nor equals , then
equals
® Fffects: Assigns to / on output the sum of A on input, and the outer product of x and
[Note: Users can get behavior by giving the second argument as the result of . Alternately,

they can use the shortcut below. --end note]

Nonsymmetric conjugated rank-1 update [linalg.algs.blas2.rank1.gerc]

template<class in_vector_1_t,
class in_vector 2 t,

103 /141

blas_interface.md

class inout_matrix_t>
void matrix_rank_1 update_c(

in _vector 1 t
in_vector_2_t

X,
Y,

inout_matrix_t A);

template<class

class

class

class
void matrix_ran
ExecutionPoli
in_vector_1_t
in_vector 2 t

ExecutionPolicy,
in_vector_1 t,
in_vector 2 t,
inout_matrix_t>

k 1 update c(
cy&& exec,

X)

yJ

inout_matrix_t A);

[Note: This function corresponds to the BLAS functions
element types). --end note]

* [Effects: Equivalent to

Rank-1 update of a Symmetric matrix [linalg.algs.blas2.rank1.syr]

template<class
class
class
void symmetric_
in_vector_t x
inout_matrix_
Triangle t);
template<class
class
class
class
void symmetric
ExecutionPoli
in_vector_t x
inout _matrix_
Triangle t);
template<class
class
class
class
void symmetric
T alpha,
in_vector_t x
inout_matrix_
Triangle t);
template<class
class
class

in_vector_t,
inout_matrix_t,
Triangle>
matrix_rank_1 update(

J

t A,

ExecutionPolicy,
in_vector_t,
inout_matrix_t,
Triangle>

_matrix_rank_1 update(

cy&& exec,

b

t A,

T,

in_vector_t,
inout_matrix_t,
Triangle>

_matrix_rank_1_update(

J

t A,

ExecutionPolicy,
T,
in_vector_t,

104 /141

(for real element types) and

4/14/2021

(for complex

blas_interface.md

class inout_matrix_t,
class Triangle>

void symmetric_matrix_rank_1 update(
ExecutionPolicy&& exec,
T alpha,
in_vector_t x,
inout_matrix_t A,
Triangle t);

[Note:

These functions correspond to the BLAS functions and

They take an optional scaling factor

, because it would be impossible to express the update C = C - x

xAT otherwise.

--end note]
* Requires:
o equals
° equals
* Constraints:
° equals 2 and equals 1.
© A either has unique layout, or layout.
° If A has layout, then the layout's template argument has the
same type as the function's template argument.
© For overloads without
= For in the domain of 2, the expression is well formed.
© For overloads with
= For in the domain of ¢, and and in the domain of 2, the expression
is well formed.
* Mandates:
© If neither nor equals , then
equals
o If neither nor equals , then
equals
® Fffects:
© Qverloads without assign to A on output, the elementwise sum of A on input, with (the

outer product of x and x).
105/ 141

4/14/2021

blas_interface.md

o Qverloads with

4/14/2021

assign to 2 on output, the elementwise sum of 2 on input, with alpha

times (the outer product of x and x).

* Remarks: The functions will only access the triangle of

assume for indices

outside that triangle, that

Rank-1 update of a Hermitian matrix [linalg.algs.blas2.rank1.her]

template<class
class
class

void hermitian_

in_vector_t,
inout_matrix_t,
Triangle>
matrix_rank_1_update(

in_vector_t x,

inout_matrix_

Triangle t);
template<class
class

class

class

void hermitian

t A,

ExecutionPolicy,
in_vector_t,
inout_matrix_t,
Triangle>

_matrix_rank_1_update(

ExecutionPolicy&& exec,
in_vector_t x,

inout_matrix_

Triangle t);
template<class
class

t A,

T,
in_vector_t,

class inout_matrix_t,
class Triangle>
void hermitian_matrix_rank_1 update(
T alpha,
in_vector_t x,
inout_matrix_t A,
Triangle t);
template<class ExecutionPolicy,
class T,
class in_vector_t,

class
class
void hermitian

inout_matrix_t,
Triangle>

_matrix_rank_1_update(

ExecutionPolicy&& exec,

T alpha,

in_vector_t x,

inout_matrix_

Triangle t);

t A,

[Note:

These functions correspond to the BLAS functions and

106 /141

specified by the
equals

argument t, and will

blas_interface.md 4/14/2021

They take an optional scaling factor , because it would be impossible to express the update A = A - x
x~H otherwise.

--end note]
* Requires:
o equals
° equals

e Constraints:

° equals 2 and equals 1.

o A either has unique layout, or layout.

° If A has layout, then the layout's template argument has the
same type as the function's template argument.

© For overloads without
= For in the domain of

= jf is RX
A(ij) += x(i)*conj(x(j))" is well formed;

= else, the expression is well formed.
o For overloads with
= For in the domain of

mjf is RX
A(ij) += alpha*x(i)*conj(x(j))" is well formed;

= else, the expression is well formed.
* Mandates:
o If neither nor equals , then
equals
o If neither nor equals , then
equals
® Fffects:
© OQverloads without assign to A on output, the elementwise sum of A on input, with (the

outer product of x and the conjugate of x).

© Overloads with assign to 2 on output, the elementwise sum of 2 on input, with alpha
times (the outer product of x and the conjugate of x).

®* Remarks:
107 /141

blas_interface.md

© The functions will only access the triangle of A specified by the

o If is for some
assume for indices outside that triangle, that equals
functions will assume that equals

Rank-2 update of a symmetric matrix [linalg.algs.blas2.rank2.syr2]

template<class in_vector_1 t,
class in_vector_ 2 t,
class inout _matrix_t,
class Triangle>
void symmetric_matrix_rank_ 2 update(
in_vector_1 t x,
in_vector_2 t vy,
inout_matrix_t A,
Triangle t);

template<class ExecutionPolicy,
class in_vector_1 t,
class in_vector 2 t,
class inout_matrix_t,
class Triangle>
void symmetric_matrix_rank_ 2 update(
ExecutionPolicy®&& exec,
in_vector_1_t x,
in_vector_2 t vy,
inout_matrix_t A,
Triangle t);

4/14/2021

argument

, then the functions will
. Otherwise, the

[Note: These functions correspond to the BLAS functions and . --end note]
* Requires:
o equals
° equals
o equals

* Constraints:
o equals 2, equals 1, and equals 1.
© A either has unique layout, or layout.

© If A has layout, then the layout's
same type as the function's template argument.

° For in the domain of 2, the expression

* Mandates:
108 /141

template argument has the

is well formed.

blas_interface.md

o [f neither
o [f neither
o |[f neither

nor
equals

nor
equals

nor
equals

equals

equals

equals

® [Effects: Assigns to /A on output the sum of A on input, the outer product of x and

product of v and

® Remarks: The functions will only access the triangle of
assume for indices outside that triangle, that equals

Rank-2 update of a Hermitian matrix [linalg.algs.blas2.rank2.her2]

template<class
class
class
class
void hermitian

in _vector 1 t,
in_vector_2 t,
inout_matrix_t,
Triangle>

_matrix_rank_2_update(

in_vector 1 t x,
in_vector_2 t vy,

inout_matrix_

Triangle t);

template<class
class
class
class
class
void hermitian

t A,

ExecutionPolicy,
in_vector_1_t,
in_vector_2_t,
inout_matrix_t,
Triangle>

_matrix_rank_ 2 update(

ExecutionPolicy&& exec,
in_vector_1 t x,
in_vector_2 t vy,

inout_matrix_t A,
Triangle t);
[Note: These functions correspond to the BLAS functions and
* Requires:
° equals
o equals
° equals

e Constraints:

109 /141

specified by the

. --end note]

4/14/2021

, then

, then

, then

, and the outer

argument t, and will

blas_interface.md 4/14/2021

° equals 2, equals 1, and equals 1.
© A either has unique layout, or layout.
© If A has layout, then the layout's template argument has the
same type as the function's template argument.
o For in the domain of
= |f is for some RY,
= f is for some =, then the
expression is well formed;
= else, the expression is well formed;
= else,
= if is for some R, then the
expression is well formed;
= else, the expression is well formed.
* Mandates:
© If neither nor equals , then
equals
© If neither nor equals , then
equals
o If neither nor equals , then
equals

* [Effects: Assigns to A on output the sum of A on input, the outer product of x and the conjugate of v,
and the outer product of v and the conjugate of

® Remarks:
© The functions will only access the triangle of 2 specified by the argument
o If is for some R/, then the functions will
assume for indices outside that triangle, that equals . Otherwise, the
functions will assume that equals

BLAS 3 functions [linalg.algs.blas3]
General matrix-matrix product [linalg.algs.blas3.gemm]
[Note: These functions correspond to the BLAS function . --end note]

The following requirements apply to all functions in this section.

® Requires:
110/ 141

blas_interface.md

° equals
° equals
° equals
° equals
o equals

® Constraints:

unique layout.

o equals 2,
2

* Mandates:

© ForallrinO,1,..,

equals , then

applicable).

o [f neither

equals

o If neither
equals

° If neither
equals

Overwriting general matrix-matrix product

template<class in_matrix_1 t,
class in_matrix_2_t,
class out matrix_t>

(if applicable).

(if applicable).

. (if applicable), and

equals 2, equals 2, and
- 1, if neither nor
equals
nor equals
nor equals
nor equals

void matrix_product(in_matrix_ 1 t A,
in_matrix_2_t B,
out_matrix_t C);

template<class ExecutionPolicy,
class in_matrix_1_t,
class in_matrix_2_t,
class out matrix_t>

void matrix_product(ExecutionPolicy&& exec,
in_matrix_1_t A,
in_matrix 2 t B,
out_matrix_t C);

1117141

4/14/2021

have

(if applicable) equals

, then

, then

, then

blas_interface.md 4/14/2021

® Constraints: For in the domain of ¢, in the domain of 2, and in the domain of &, the
expression is well formed.

* f[ffects: Assigns to the elements of the matrix C the product of the matrices 2 and

Updating general matrix-matrix product

template<class in_matrix_1 t,
class in_matrix_2_t,
class in_matrix 3 t,
class out_matrix_t>
void matrix_product(in_matrix 1 t A,
in_matrix 2 t B,
in_matrix 3 t E,
out_matrix t C);

template<class ExecutionPolicy,
class in_matrix 1 t,
class in_matrix_2_t,
class in_matrix 3 t,
class out _matrix_t>
void matrix_product(ExecutionPolicy&& exec,
in_matrix_1_t A,
in_matrix_2_t B,
in_matrix_3_t E,
out _matrix t C);

e Constraints: For in the domain of ¢, in the domain of 2, and in the domain of &, the
expression is well formed.

® Fffects: Assigns to the elements of the matrix ¢ on output, the elementwise sum of = and the product of
the matrices 2 and

® Remarks: C and £ may refer to the same matrix. If so, then they must have the same layout.

Symmetric matrix-matrix product [linalg.algs.blas3.symm)]

[Note:
These functions correspond to the BLAS function

Unlike the symmetric rank-1 update functions, these functions assume that the input matrix -- not the output
matrix -- is symmetric.

--end note]
The following requirements apply to all functions in this section.
* Requires:

° equals
112/ 141

blas_interface.md

° equals
° equals

e (Constraints:

° either has unique layout, or

o |f has

° equals 2, equals 2,

* Mandates:

o |[f neither nor

equals

°© Forallrin0,1,.., - 1, if neither
equals , then
applicable).

® Remarks:

© The functions will only access the triangle of

(if applicable).

(if applicable).

) (if applicable), and

layout, then the layout's

argument has the same type as the function's template argument.

equals 2, and

equals

equals

specified by the
assume for indices outside that triangle, that

equals

4/14/2021

have unique layout.

template

(if applicable) equals

, then

argument t, and will

© Remarks: C and E (if applicable) may refer to the same matrix. If so, then they must have the same

layout.
The following requirements apply to all overloads of
* Requires:
° equals
o equals ,and
° equals
* Mandates:

o [f neither nor

equals

o if neither nor

equals

o if neither nor

equals

113 /141

equals

equals
; and

equals

, then

, then

, then

blas_interface.md

The following requirements apply to all overloads of

* Requires:
o
(o]
o

* Mandates:
o [f neither
o if neither
o if neither

equals ,
equals , and

equals

nor equals
equals ;

nor equals
equals ; and

nor equals
equals

Overwriting symmetric matrix-matrix left product [linalg.algs.blas3.symm.ov.left]

template<class
class
class
class
void symmetric

in_matrix_1_t,
Triangle,

in_matrix 2 t,
out_matrix_t>

_matrix_left product(

in_matrix 1 t A,

Triangle t,

in_matrix_2_t B,

out_matrix_t
template<class
class

class

class

class

void symmetric

Q)
ExecutionPolicy,
in_matrix 1 t,
Triangle,
in_matrix_2_t,
out_matrix_t>

_matrix_left product(

ExecutionPolicy&& exec,
in_matrix_1 t A,

Triangle t,

in_matrix 2 t B,

out_matrix_t

e (Constraints: For

expression

® FEffects: Assigns to the elements of the matrix

C);

in the domain of ¢, in the domain of 2, and

is well formed.

Overwriting symmetric matrix-matrix right product [linalg.algs.blas3.symm.ov.right]

114 /141

the product of the matrices

4/14/2021

, then

, then

, then

in the domain of B, the

blas_interface.md

template<class
class
class
class

void symmetric_

in_matrix 1 t,
Triangle,
in_matrix_2_t,
out_matrix_t>
matrix_right_product(

in_matrix 1 t A,

Triangle t,

in_matrix_2_t B,

out _matrix_ t
template<class
class

class

class

class

void symmetric_

Qs

ExecutionPolicy,
in_matrix_1_t,
Triangle,
in_matrix_2_t,
out_matrix_t>
matrix_right_product(

ExecutionPolicy&& exec,
in_matrix 1 t A,

Triangle t,

in_matrix_2_t B,

out_matrix_t

e Constraints: For
expression

® Fffects: Assigns to the elements of the matrix

Qs

in the domain of ¢,

is well formed.

in the domain of B, and

the product of the matrices

Updating symmetric matrix-matrix left product [linalg.algs.blas3.symm.up.left]

template<class
class
class
class
class
void symmetric

in_matrix_1_t,
Triangle,
in_matrix_2_t,
in_matrix_3_t,
out_matrix_t>

_matrix_left_product(

in_matrix_1_t A,

Triangle t,

in_matrix_2_t B,
in_matrix 3 t E,

out_matrix_t
template<class
class

class

class

class

class

void symmetric_

C);

ExecutionPolicy,
in_matrix 1 t,
Triangle,
in_matrix_2_t,
in_matrix_3_t,
out_matrix_t>
matrix_left product(

ExecutionPolicy&& exec,
in_matrix_1_t A,

Triangle t,

115/141

in the domain of 2, the

4/14/2021

blas_interface.md

in_matrix 2 t B,
in_matrix_3 t E,
out_matrix t C);

Constraints: For in the domain of ¢,
expression

in the domain of 2, and
is well formed.

in the domain of B, the

4/14/2021

Effects: assigns to the elements of the matrix C on output, the elementwise sum of = and the product of

the matrices A and

Updating symmetric matrix-matrix right product [linalg.algs.blas3.symm.up.right]

template<class in_matrix 1 t,

class Triangle,

class in_matrix_2_t,
class in _matrix 3 t,
class out_matrix_t>

void symmetric_matrix_right product(

in_matrix 1 t A,
Triangle t,

in_matrix_2_t B,
in_matrix_3 t E,
out_matrix_t C);

template<class ExecutionPolicy,

class in_matrix_1_t,
class Triangle,

class in matrix 2 t,
class in_matrix_3_t,
class out _matrix_t>

void symmetric_matrix_right_product(

ExecutionPolicy&& exec,
in_matrix 1 t A,
Triangle t,
in_matrix_2_t B,
in_matrix 3 t E,
out_matrix_t C);

Constraints: For in the domain of ¢,

expression

in the domain of B, and
is well formed.

in the domain of 2, the

Effects: assigns to the elements of the matrix C on output, the elementwise sum of £ and the product of

the matrices & and

Hermitian matrix-matrix product [linalg.algs.blas3.hemm]

[Note:

These

functions correspond to the BLAS function

116 /141

blas_interface.md 4/14/2021

Unlike the Hermitian rank-1 update functions, these functions assume that the input matrix -- not the output
matrix -- is Hermitian.

--end note]

The following requirements apply to all functions in this section.

* Requires:
° equals
° equals (if applicable).
° equals (if applicable).

e Constraints:

° either has unique layout, or layout.
° , (if applicable), and have unique layout.
o If has layout, then the layout's template
argument has the same type as the function's template argument.
o equals 2, equals 2, equals 2, and (if applicable) equals
2.
* Mandates:
© If neither nor equals , then
equals
© ForallrinO,1,.., - 1, if neither nor
equals , then equals (if
applicable).
® Remarks:
© The functions will only access the triangle of A specified by the argument
o If is for some =/, then the functions will assume
for indices outside that triangle, that equals . Otherwise, the functions
will assume that equals

© Cand E (if applicable) may refer to the same matrix. If so, then they must have the same layout.

The following requirements apply to all overloads of

® Requires:
° equals ,
o equals ,and
° equals

117 /141

blas_interface.md

* Mandates:
o |[f neither
o if neither
o if neither

nor equals
equals ;

nor equals
equals ; and

nor equals
equals

The following requirements apply to all overloads of

* Requires:
(o]
(o]
(o]

* Mandates:
o [f neither
o if neither
o if neither

equals ,
equals , and

equals

nor equals
equals ;

nor equals
equals ; and

nor equals
equals

Overwriting Hermitian matrix-matrix left product [linalg.algs.blas3.hemm.ov.left]

template<class
class
class
class
void hermitian

in_matrix_1 t,
Triangle,

in_matrix_2_t,
out_matrix_t>

_matrix_left product(

in_matrix_1 t A,

Triangle t,

in_matrix 2 t B,

out_matrix_t
template<class
class

class

class

class

void hermitian_

Q)

ExecutionPolicy,
in_matrix_1_t,
Triangle,
in_matrix 2 t,
out_matrix_t>
matrix_left product(

ExecutionPolicy&& exec,
in_matrix_ 1 t A,

Triangle t,

118 /141

4/14/2021

, then

, then

, then

, then

, then

, then

blas_interface.md

in_matrix 2 t B,
out_matrix_t C);

e Constraints: For in the domain of ¢, in the domain of 2, and in the domain of B, the

expression is well formed.

® [Effects: Assigns to the elements of the matrix C the product of the matrices 2 and

Overwriting Hermitian matrix-matrix right product [linalg.algs.blas3.hemm.ov.right]

template<class in_matrix 1 t,
class Triangle,
class in_matrix_2_t,
class out _matrix_t>
void hermitian_matrix_right_product(
in_matrix_1_t A,
Triangle t,
in_matrix_2 t B,
out_matrix t C);
template<class ExecutionPolicy,
class in_matrix_1_t,
class Triangle,
class in_matrix_2_t,
class out_matrix_t>
void hermitian_matrix_right_product(
ExecutionPolicy®&& exec,
in_matrix_1_t A,
Triangle t,
in_matrix_2_t B,
out_matrix t C);

e Constraints: For in the domain of ¢, in the domain of &, and in the domain of 2, the
expression is well formed.

* fEffects: Assigns to the elements of the matrix C the product of the matrices & and

Updating Hermitian matrix-matrix left product [linalg.algs.blas3.hemm.up.left]

template<class in_matrix_1_t,
class Triangle,
class in _matrix 2 t,
class in_matrix_3_t,
class out_matrix_t>
void hermitian_matrix_left product(
in_matrix_1 t A,
Triangle t,
in_matrix_2_t B,
in_matrix_3_t E,

119/141

4/14/2021

blas_interface.md

out _matrix_t
template<class
class

class

class

class

class

void hermitian

C);
ExecutionPolicy,
in_matrix_1_t,
Triangle,
in_matrix_2_t,
in_matrix 3 t,
out_matrix_t>

_matrix_left product(

ExecutionPolicy&& exec,
in_matrix_1 t A,

Triangle t,

in_matrix_2_t B,
in_matrix_3_t E,

out_matrix_ t

® Constraints: For

expression

C);

in the domain of ¢, in the domain of 2, and
is well formed.

in the domain of B, the

4/14/2021

® Fffects: Assigns to the elements of the matrix C on output, the elementwise sum of = and the product of

the matrices A and

Updating Hermitian matrix-matrix right product [linalg.algs.blas3.hemm.up.right]

template<class
class
class
class
class
void hermitian

in_matrix 1 t,
Triangle,

in_matrix_2_t,
in_matrix_3_t,
out_matrix_t>

_matrix_right_product(

in_matrix_1 t A,

Triangle t,

in_matrix 2 t B,
in_matrix 3 t E,

out_matrix_t
template<class
class

class

class

class

class

void hermitian_

C);

ExecutionPolicy,
in_matrix_1_t,
Triangle,
in_matrix_2_t,
in_matrix_3_t,
out_matrix_t>
matrix_right_product(

ExecutionPolicy&& exec,
in_matrix_1_t A,

Triangle t,

in_matrix 2 t B,
in_matrix_3 t E,

out_matrix_t

C);

120 /141

blas_interface.md 4/14/2021

e Constraints: For in the domain of ¢, in the domain of &, and in the domain of 4, the
expression is well formed.

® Fffects: Assigns to the elements of the matrix ¢ on output, the elementwise sum of = and the product of
the matrices & and

Triangular matrix-matrix product [linalg.algs.blas3.trmm]

[Note: These functions correspond to the BLAS function . --end note]

The following requirements apply to all functions in this section.

* Requires:
° equals
° equals (if applicable).
° equals (if applicable).

* Constraints:
° either has unique layout, or layout.

o , (if applicable), ,and (if
applicable) have unique layout.

o If has layout, then the layout's template
argument has the same type as the function's template argument.
° equals 2, equals 2, equals 2, and (if applicable) equals
2.
* Mandates:
© If neither nor equals , then
equals
© Forallrino,1,.., - 1, if neither nor
equals , then equals (if
applicable).
® Remarks:
© The functions will only access the triangle of 2 specified by the argument
o If the template argument has type , then the

functions will not access the diagonal of 2, and will assume that that the diagonal elements of
all equal one. [Note: This does not imply that the function needs to be able to form an
value equal to one. --*end note]

© Cand E (if applicable) may refer to the same matrix. If so, then they must have the same layout.

121/141

blas_interface.md 4/14/2021

The following requirements apply to all overloads of

* Requires:
° equals (if applicable),
° equals , and
° equals (if applicable).
* Mandates:
o If neither nor equals , then
equals (if applicable);
o if neither nor equals , then
equals ; and
° if neither nor equals , then
equals (if applicable).

The following requirements apply to all overloads of

* Requires:
° equals (if applicable),
o equals (if applicable), and
° equals
* Mandates:
© If neither nor equals , then
equals (if applicable);
© if neither nor equals , then
equals (if applicable); and
o if neither nor equals , then
equals

Overwriting triangular matrix-matrix left product [linalg.algs.blas3.trmm.ov.left]

Not-in-place overwriting triangular matrix-matrix left product

template<class in_matrix 1 t,
class Triangle,
class DiagonalStorage,
class in_matrix_2_t,
class out_matrix_t>
void triangular_matrix_left_product(
in_matrix_1_t A,

122 /141

blas_interface.md

Triangle t,

DiagonalStorage d,
in_matrix_2_t B,

out_matrix_t
template<class
class

class

class

class

class

C);
ExecutionPolicy,
in _matrix 1 t,
Triangle,
DiagonalStorage,
in_matrix 2 t,
out_matrix_t>

void triangular_matrix_left product(
ExecutionPolicy&& exec,
in_matrix_1_t A,

Triangle t,

DiagonalStorage d,
in_matrix_2_t B,

out _matrix_t

e (Constraints: For
expression

® Fffects: Assigns to the elements of the matrix

C);

in the domain of ¢,

is well formed.

In-place overwriting triangular matrix-matrix left product

template<class
class
class
class

in_matrix_1_t,
Triangle,
DiagonalStorage,
inout_matrix_t>

void triangular_matrix_left_product(
in_matrix_1 t A,

Triangle t,

DiagonalStorage d,

inout_matrix_

template<class
class
class
class
class

t C);
ExecutionPolicy,
in_matrix_1_t,
Triangle,
DiagonalStorage,
inout_matrix_t>

void triangular_matrix_left product(
ExecutionPolicy&& exec,
in_matrix_1 t A,

Triangle t,

DiagonalStorage d,

inout_matrix_

* Requires:

® Constraints: For

t C);

equals

and in the domain of ¢, and
is well formed.

123 /141

in the domain of 2, and

the product of the matrices / and

in the domain of 4, the expression

in the domain of B, the

4/14/2021

blas_interface.md

* Mandates: If neither nor

® fffects: Overwrites

equals

on output with the product of the matrices

Overwriting triangular matrix-matrix right product [linalg.algs.blas3.trmm.ov.right]

Not-in-place overwriting triangular matrix-matrix right product

template<class
class
class
class
class

in_matrix_1_t,
Triangle,
DiagonalStorage,
in_matrix 2 t,
out_matrix_t>

void triangular_matrix_right product(
in_matrix 1 t A,

Triangle t,

DiagonalStorage d,
in_matrix_2_t B,

out_matrix_t
template<class
class

class

class

class

class

C);
ExecutionPolicy,
in_matrix_1_t,
Triangle,
DiagonalStorage,
in_matrix_2_t,
out_matrix_t>

void triangular_matrix_right_product(
ExecutionPolicy&& exec,
in_matrix 1 t A,

Triangle t,

DiagonalStorage d,
in_matrix 2 t B,

out_matrix_t

e (Constraints: For

expression

® FEffects: Assigns to the elements of the matrix

C);

in the domain of ¢,
is well formed.

In-place overwriting triangular matrix-matrix right product

template<class
class
class

class

in_matrix_1_t,
Triangle,
DiagonalStorage,
inout_matrix_t>

void triangular_matrix_right_product(
in_matrix_1_t A,

Triangle t,

DiagonalStorage d,
inout_matrix_t C);

124 /141

and

in the domain of &, and

equals

(on input).

4/14/2021

, then

in the domain of 4, the

the product of the matrices & and

blas_interface.md

template<class ExecutionPolicy,
class in_matrix_1_t,
class Triangle,
class DiagonalStorage,
class inout_matrix_t>
void triangular_matrix_right_product(
ExecutionPolicy&& exec,
in_matrix_1_t A,
Triangle t,
DiagonalStorage d,
inout_matrix_t C);

® Requires: equals

* Constraints: For and in the domain of ¢, and in the domain of 7, the expression

is well formed.

* Mandates: If neither nor
equals "A.static_extent(0).

Effects: Overwrites C on output with the product of the matrices

Updating triangular matrix-matrix left product [linalg.algs.blas3.trmm.up.left]

template<class in_matrix 1 t,
class Triangle,
class DiagonalStorage,
class in _matrix 2 t,
class in_matrix_3_t,
class out_matrix_t>
void triangular_matrix_left_product(
in_matrix_1_t A,
Triangle t,
DiagonalStorage d,
in_matrix_2_t B,
in_matrix 3 t E,
out_matrix_t C);
template<class ExecutionPolicy,
class in_matrix_1_t,
class Triangle,
class DiagonalStorage,
class in_matrix_2_t,
class in_matrix 3 t,
class out matrix_t>
void triangular_matrix_left_product(
ExecutionPolicy&& exec,
in_matrix_1_t A,
Triangle t,
DiagonalStorage d,
in_matrix_2_t B,

125 /141

(on input) and

4/14/2021

, then

template<class

template<class

blas_interface.md

in_matrix 3 t E,
out_matrix_t C);

Constraints: For in the domain of ¢,

expression

Effects: Assigns to the elements of the matrix C on output, the elementwise sum of

the matrices 2 and

in_matrix_1_t,
class Triangle,

class DiagonalStorage,
class in_matrix_2_t,
class in _matrix 3 t,
class out_matrix_t>

void triangular_matrix_right product(

in_matrix 1 t A,

Triangle t,

DiagonalStorage d,
in_matrix_2_t B,
in_matrix_3_t E,

out _matrix t C);
ExecutionPolicy,
class in_matrix_1_t,
class Triangle,

class DiagonalStorage,
class in_matrix_2_t,
class in_matrix_3_t,
class out_matrix_t>

void triangular_matrix_right_product(

ExecutionPolicy®&& exec,
in_matrix_1_t A,
Triangle t,
DiagonalStorage d,
in_matrix_2_t B,
in_matrix_3 t E,
out_matrix_t C);

Constraints: For in the domain of ¢,

expression

Effects: Assigns to the elements of the matrix C on output, the elementwise sum of

the matrices & and

in the domain of 2, and
is well formed.

Updating triangular matrix-matrix right product [linalg.algs.blas3.trmm.up.right]

in the domain of B, and
is well formed.

Rank-k update of a symmetric or Hermitian matrix [linalg.alg.blas3.rank-k]

126 /141

4/14/2021

in the domain of B, the

and the product of

in the domain of 2, the

and the product of

blas_interface.md 4/14/2021

[Note: Users can achieve the effect of the argument of these BLAS functions, by applying
or to the input matrix. --end note]

Rank-k symmetric matrix update [linalg.alg.blas3.rank-k.syrk]

template<class
class
class
void symmetric_
in_matrix_ 1 t
inout_matrix_
Triangle t);
template<class
class
class
class
void symmetric
ExecutionPoli
in_matrix 1 t
inout _matrix_
Triangle t);
template<class
class
class
class
void symmetric
T alpha,
in matrix 1 t
inout_matrix_
Triangle t);
template<class
class
class
class
class
void symmetric
ExecutionPoli
T alpha,
in_matrix_1_t
inout_matrix_
Triangle t);

in_matrix_1_t,
inout_matrix_t,
Triangle>
matrix_rank_k_update(
A,

t G,

ExecutionPolicy,
in_matrix_1_t,
inout_matrix_t,
Triangle>

_matrix_rank_k_update(

cy&& exec,
A,
e G

TJ
in_matrix_1_t,
inout_matrix_t,
Triangle>

_matrix_rank_k_update(

A,
t C,

ExecutionPolicy,
T,

in _matrix 1 t,
inout_matrix_t,
Triangle>

_matrix_rank_k_update(

cy&& exec,

A,
tC,

[Note:
These functions correspond to the BLAS function

They take an optional scaling factor , because it would be impossible to express the update C = C - A
AAT otherwise.

--end note]

127 /141

blas_interface.md 4/14/2021

* Requires:
° equals
° equals

® Constraints:

° equals 2 and equals 2.

© C either has unique layout, or layout.

© If C has layout, then the layout's template argument has the
same type as the function's template argument.

° For in the domain of ¢, and and in the domain of /, the expression

is well formed.

° For in the domain of ¢, and and in the domain of 2, the expression
is well formed (if applicable).

* Mandates:
o If neither nor equals , then
equals
© If neither nor equals , then
equals
® Fffects:
© Overloads without assign to C on output, the elementwise sum of C on input with (the

matrix product of A and the nonconjugated transpose of).

© Overloads with assign to C on output, the elementwise sum of C on input with alpha times
(the matrix product of /A and the nonconjugated transpose of 2).

® Remarks: The functions will only access the triangle of C specified by the argument t, and will
assume for indices outside that triangle, that equals

Rank-k symmetric matrix update [linalg.alg.blas3.rank-k.herk]

template<class in_matrix 1 t,
class inout_matrix_t,
class Triangle>
void hermitian_matrix_rank_k_update(
in_matrix 1 t A,
inout_matrix_t C,
Triangle t);
template<class ExecutionPolicy,
class in_matrix_1_t,
class inout_matrix_t,

128 /141

blas_interface.md 4/14/2021

class Triangle>
void hermitian_matrix_rank_k_update(
ExecutionPolicy&& exec,
in_matrix_1_t A,
inout_matrix_t C,
Triangle t);
template<class T,
class in_matrix_1_t,
class inout_matrix_t,
class Triangle>
void hermitian_matrix_rank_k_update(
T alpha,
in_matrix_1_t A,
inout_matrix t C,
Triangle t);
template<class ExecutionPolicy,
class T,
class in_matrix_1_t,
class inout_matrix_t,
class Triangle>
void hermitian_matrix_rank_k_update(
ExecutionPolicy&& exec,
T alpha,
in_matrix_1_t A,
inout_matrix t C,
Triangle t);

[Note:

These functions correspond to the BLAS function

They take an optional scaling factor , because it would be impossible to express the updates C = C - A
A~T or C = C - A AMH otherwise.

--end note]
® Requires:
° equals
o equals

e Constraints:

° equals 2 and equals 2.

© C either has unique layout, or layout.

© If C has layout, then the layout's template argument has the
same type as the function's template argument.

© For overloads without : For in the domain of ¢, and and in the domain of 2,

129 /141

blas_interface.md 4/14/2021

= if is for some R, then the expression
is well formed;

= else, the expression is well formed.
o For overloads with : For in the domain of ¢, and and in the domain of 4,
= f is for some R, then the expression

is well formed;

= else, the expression is well formed.
* Mandates:
© If neither nor equals , then
equals
© If neither nor equals , then
equals
® Fffects:
© Overloads without assign to C on output, the elementwise sum of C on input with (the

matrix product of 2 and the conjugated transpose of 2).

© Overloads with assign to C on output, the elementwise sum of C on input with alpha times
(the matrix product of A and the conjugated transpose of).

® Remarks: The functions will only access the triangle of C specified by the argument t, and will
assume for indices outside that triangle, that equals

Rank-2k update of a symmetric or Hermitian matrix [linalg.alg.blas3.rank2k]

[Note: Users can achieve the effect of the argument of these BLAS functions, by applying
or to the input matrices. --end note]

Rank-2k symmetric matrix update [linalg.alg.blas3.rank2k.syr2k]

template<class in_matrix 1 t,
class in matrix 2 t,
class inout_matrix_t,
class Triangle>

void symmetric_matrix_rank_2k_update(

in_matrix_1_t A,
in_matrix 2 t B,
inout_matrix_t C,
Triangle t);

template<class ExecutionPolicy,
class in_matrix_1_t,
class in_matrix_2_t,
class inout_matrix_t,

130/141

blas_interface.md 4/14/2021

class Triangle>

void symmetric_matrix_rank_2k_update(

ExecutionPolicy&& exec,
in _matrix 1 t A,
in_matrix_2 t B,
inout_matrix_t C,
Triangle t);

[Note: These functions correspond to the BLAS function . The BLAS "quick reference" has a typo; the
"ALPHA" argument of and should not be conjugated. --end note]
® Requires:
o equals
° equals
o equals

Constraints:

o equals 2, equals 2, and equals 2.
© C either has unique layout, or layout.
o If C has layout, then the layout's template argument has the
same type as the function's template argument.
° For in the domain of ¢, and in the domain of /2, and and in the domain of &,
the expression is well formed.
Mandates:
o If neither nor equals , then
equals
o If neither nor equals , then
equals
© If neither nor equals , then
equals

Effects: Assigns to C on output, the elementwise sum of C on input with (the matrix product of A and the
nonconjugated transpose of B) and (the matrix product of 8 and the nonconjugated transpose of A.)

Remarks: The functions will only access the triangle of C specified by the argument t, and will
assume for indices outside that triangle, that equals

Rank-2k Hermitian matrix update [linalg.alg.blas3.rank2k.her2k]

131/141

blas_interface.md 4/14/2021

template<class in _matrix 1 t,
class in_matrix_2_t,
class inout_matrix_t,
class Triangle>
void hermitian_matrix_rank_ 2k _update(
in_matrix_1_t A,
in_matrix_2_t B,
inout_matrix_t C,
Triangle t);

template<class ExecutionPolicy,
class in matrix 1 t,
class in_matrix_2_t,
class inout_matrix_t,
class Triangle>
void hermitian_matrix_rank_ 2k _update(
ExecutionPolicy&& exec,
in_matrix_1 t A,
in_matrix_2_t B,
inout _matrix_ t C,
Triangle t);

[Note: These functions correspond to the BLAS function . --end note]
* Requires:
° equals
° equals
° equals

e Constraints:

° equals 2, equals 2, and equals 2.
o C either has unique layout, or layout.
° If C has layout, then the layout's template argument has the
same type as the function's template argument.
o For in the domain of C, and in the domain of 4, and and in the domain of B,
= f is for some 7/, then
m jf is for some REB, then the
expression is well
formed;
= else, the expression is well
formed;

132/141

blas_interface.md 4/14/2021

= else,
= if is for some RB, then the
expression is well formed;
= else, the expression is well formed.
* Mandates:
© If neither nor equals , then
equals
© If neither nor equals , then
equals
o If neither nor equals , then
equals

® [Effects: Assigns to C on output, the elementwise sum of C on input with (the matrix product of A and the
conjugate transpose of 2) and (the matrix product of & and the conjugate transpose of /.)

* Remarks:
© The functions will only access the triangle of ¢ specified by the argument
o If is for some RC, then the functions will
assume for indices outside that triangle, that equals . Otherwise, the
functions will assume that equals

Solve multiple triangular linear systems [linalg.alg.blas3.trsm]

[Note: These functions correspond to the BLAS function . The Reference BLAS does not have a
function. --end note]

The following requirements apply to all functions in this section.
* Requires:
© Forallrino,1,.., -1, equals (if applicable).
o equals

e Constraints:

° equals 2 and equals 2.

° equals 2 (if applicable).

° either has unique layout, or layout.
° has unique layout (if applicable).

o has unique layout.

133 /141

blas_interface.md

4/14/2021

o has unique layout (if applicable).
o If is in the domain of X and B, then the expression is well formed (if
applicable).
o If is , and is in the domain of %, then the
expression is well formed (if applicable).
* Mandates:
© Forallrin0,1,.., - 1, if neither
equals , then equals (if
applicable).
© If neither nor , then
equals
® Remarks:
© The functions will only access the triangle of 2 specified by the argument
o If the template argument has type , then the

functions will not access the diagonal of 2, and will assume that that the diagonal elements of

all equal one. [Note: This does not imply that the function needs to be able to form an

value equal to one. --*end note]

Solve multiple triangular linear systems with triangular matrix on the left [linalg.alg.blas3.trsm.left]

Not-in-place left solve of multiple triangular systems

template<class in_matrix 1 t,
class Triangle,
class DiagonalStorage,
class in_matrix_2_t,
class out_matrix_t>
void triangular_matrix_matrix_left_solve(
in_matrix_1_t A,
Triangle t,
DiagonalStorage d,
in_matrix_2_t B,
out_matrix_t X);
template<class ExecutionPolicy,
class in_matrix 1 t,
class Triangle,
class DiagonalStorage,
class in matrix 2 t,
class out_matrix_t>
void triangular_matrix_matrix_left solve(
ExecutionPolicy&& exec,
in_matrix_1_t A,
Triangle t,

134 /141

blas_interface.md 4/14/2021

DiagonalStorage d,
in_matrix_2 t B,
out_matrix_t X);

® Requires: equals

* Constraints: If and are in the domain of ¥, then the expression
is well formed.

® Mandates: If neither nor equals , then
equals

® FEffects: Assigns to the elements of X the result of solving the triangular linear system(s) AX=B for X.

In-place left solve of multiple triangular systems

template<class in_matrix 1 t,
class Triangle,
class DiagonalStorage,
class inout_matrix_t>
void triangular_matrix_matrix_left_solve(
in_matrix_1_t A,
Triangle t,
DiagonalStorage d,
inout_matrix_t B);
template<class ExecutionPolicy,
class in_matrix_1_t,
class Triangle,
class DiagonalStorage,
class inout_matrix_t>
void triangular_matrix_matrix_left_solve(
ExecutionPolicy&& exec,
in_matrix_1_t A,
Triangle t,
DiagonalStorage d,
inout_matrix_t B);

[Note:

This algorithm makes it possible to compute factorizations like Cholesky and LU in place.

Performing triangular solve in place hinders parallelization. However, other -specific
optimizations, such as vectorization, are still possible. This is why the overload exists.
--end note]

® Requires: equals

e Constraints:

135/141

blas_interface.md 4/14/2021

o If is ,and is in the domain of &, then the
expression is well formed (if applicable).
o If and are in the domain of ¥, then the expression is well
formed.
® Mandates: If neither nor equals , then
equals

® [Effects: Overwrites B with the result of solving the triangular linear system(s) AX=B for X.

Solve multiple triangular linear systems with triangular matrix on the right [linalg.alg.blas3.trsm.right]

Not-in-place right solve of multiple triangular systems

template<class in_matrix_1 t,
class Triangle,
class DiagonalStorage,
class in_matrix_2_t,
class out_matrix_t>
void triangular_matrix_matrix_right_solve(
in_matrix_ 1 t A,
Triangle t,
DiagonalStorage d,
in_matrix_2_t B,
out _matrix t X);
template<class ExecutionPolicy,
class in_matrix_1_t,
class Triangle,
class DiagonalStorage,
class in_matrix_2_t,
class out_matrix_t>
void triangular_matrix_matrix_right_solve(
ExecutionPolicy&& exec,
in_matrix_1 t A,
Triangle t,
DiagonalStorage d,
in_matrix_2 t B,
out _matrix_ t X);

® Requires: equals

® Constraints: If and are in the domain of ¥, then the expression
is well formed.

® Mandates: If neither nor equals , then
equals

® FEffects: Assigns to the elements of X the result of solving the triangular linear system(s) XA=B for X.

In-place right solve of multiple triangular systems
136/ 141

blas_interface.md 4/14/2021

template<class in_matrix 1 t,
class Triangle,
class DiagonalStorage,
class inout_matrix_t>
void triangular_matrix_matrix_right solve(
in_matrix_1_t A,
Triangle t,
DiagonalStorage d,
inout_matrix_t B);
template<class ExecutionPolicy,
class in_matrix_1_t,
class Triangle,
class DiagonalStorage,
class inout_matrix_t>
void triangular_matrix_matrix_right_solve(
ExecutionPolicy&& exec,
in_matrix 1 t A,
Triangle t,
DiagonalStorage d,
inout_matrix_t B);

[Note:

This algorithm makes it possible to compute factorizations like Cholesky and LU in place.

Performing triangular solve in place hinders parallelization. However, other -specific
optimizations, such as vectorization, are still possible. This is why the overload exists.
--end note]

® Requires: equals

® Constraints:

o If is ,and is in the domain of &, then the
expression is well formed (if applicable).
o If and are in the domain of ¥, then the expression is well
formed.
® Mandates: If neither nor equals , then
equals

® Effects: Overwrites B with the result of solving the triangular linear system(s) XA=B for X.

Examples

Cholesky factorization

This example shows how to compute the Cholesky factorization of a real symmetric positive definite matrix A
stored as a with a unique non-packed layout. The algorithm imitates in LAPACK 3.9.0.

137 /141

blas_interface.md

If

4/14/2021

is , then it computes the Cholesky factorization A = UAT U. Otherwise, it

computes the Cholesky factorization A = L LAT. The function returns O if success, else k+1 if row/column k has

a zero or NaN (not a number) diagonal entry.

#include <linalg>
#include <cmath>

template<class inout_matrix_t,

int cholesky_factor(inout_matrix_t A, Triangle t)

{

class Triangle>

using element_type = typename inout _matrix_ t::element_type;

constexpr element_type ZERO {};
constexpr element_type ONE (1.0);
const ptrdiff t n = A.extent(9);

if (n == 09) {
return 0;

¥
else if (n == 1) {

if (A(9,0) <= ZERO || isnan(A(9,0))) {

return 1;
¥
A(0,0) = sqrt(A(e,0));
¥
else {
// Partition A into [Al11, Al2,
// A21, A22],

// where A21 is the transpose of Al2.

const ptrdiff_t n1 = n / 2;
const ptrdiff t n2 = n - ni;

auto A11 = subspan(A, pair{@, nl}, pair{@, nl});
auto A22 = subspan(A, pair{nl, n}, pair{nl, n});

// Factor Al1l

const int infol = cholesky factor(All, t);

if (infol != 0) {
return infol;

}

using std::linalg::symmetric_matrix_rank_k_update;

using std::linalg::transposed;

if constexpr (std::is same _v<Triangle, upper_triangle_ t>)

// Update and scale Al2

auto A12 = subspan(A, pair{9, nl}, pair{nl, n});

using std::linalg::triangular_matrix_matrix_left_solve;

triangular_matrix_matrix_left_solve(transposed(All),
upper_triangle, explicit_diagonal, A12);

// A22 = A22 - A12°~T * Al12

symmetric_matrix_rank_k_update(-ONE, transposed(Al2),

A22, t);

138 /141

blas_interface.md 4/14/2021

else {

//

// Compute the Cholesky factorization A = L * LAT

//

// Update and scale A21

auto A21 = subspan(A, pair{nl, n}, pair{@, nl});

using std::1linalg::triangular_matrix_matrix_right_solve;

triangular_matrix_matrix_right_solve(transposed(All),
lower_triangle, explicit_diagonal, A21);

// A22 = A22 - A21 * A21°T

symmetric_matrix_rank_k_update(-ONE, A21, A22, t);

// Factor A22
const int info2 = cholesky factor(A22, t);
if (info2 != 0) {

return info2 + ni;

Solve linear system using Cholesky factorization

This example shows how to solve a symmetric positive definite linear system Ax=b, using the Cholesky

factorization computed in the previous example in-place in the matrix 2. The example assumes that

returned 0, indicating no zero or NaN pivots.

template<class in_matrix_t,

class Triangle,
class in_vector_t,
class out_vector_t>

void cholesky solve(
in_matrix_t A,
Triangle t,
in_vector_t b,
out_vector_t x)

using std::1linalg::transposed;
using std::linalg::triangular_matrix_vector_solve;

if constexpr (std::is same v<Triangle, upper_triangle_t>) {

}

// Solve Ax=b where A = U~T U

//

// Solve UAT ¢ = b, using x to store c.
triangular_matrix_vector_solve(transposed(A), t,

explicit _diagonal, b, x);

// Solve U x = c, overwriting x with result.
triangular_matrix_vector_solve(A, t, explicit_diagonal, x);

else {

// Solve Ax=b where A = L L/ T

139/141

blas_interface.md 4/14/2021

//

// Solve L ¢ = b, using x to store c.

triangular_matrix_vector_solve(A, t, explicit_diagonal, b, x);

// Solve L~T x = c, overwriting x with result.

triangular_matrix_vector_solve(transposed(A), t,
explicit_diagonal, x);

Compute QR factorization of a tall skinny matrix

This example shows how to compute the QR factorization of a "tall and skinny" matrix \/, using a cache-

blocked algorithm based on rank-k symmetric matrix update and Cholesky factorization. "Tall and skinny"

means that the matrix has many more rows than columns.

// Compute QR factorization A = Q R, with A storing Q.
template<class inout_matrix_t,

class out_matrix_t>

int cholesky_tsqr_one_step(

{

inout_matrix_t A, // A on input, Q on output
out_matrix_t R)

// One might use cache size, sizeof(element_type), and A.extent(1)
// to pick the number of rows per block. For now, we just pick

// some constant.

constexpr ptrdiff_t max_num_rows_per_block = 5600;

using R_element_type = typename out_matrix_t::element_type;
constexpr R_element type ZERO {};
for(ptrdiff_t i = 0; i < R.extent(0); ++i) {
for(ptrdiff_t j = 0; j < R.extent(1); ++j) {
R(©,0) = ZERO;
}
}

// Cache-blocked version of R = R + AT * A.
const ptrdiff t num_rows = A.extent(9);
ptrdiff_t rest_num_rows = num_rows;
auto A_rest = A;
while(A_rest.extent(9) > 9) {
const ptrdiff num_rows _per_ block =
min(A.extent(0), max_num_rows_per_block);
auto A_cur = subspan(A_rest, pair{@, num_rows_per_block}, all);
A_rest = subspan(A_rest,
pair{num_rows per block, A rest.extent(9)}, all);
// R =R + A curT * A cur
using std::linalg::symmetric_matrix_rank_k_update;
symmetric_matrix_rank_k_update(transposed(A_cur),
R, upper_triangle);

140 /141

blas_interface.md 4/14/2021

const int info = cholesky_ factor(R, upper_triangle);
if(info != 0) {

return info;
¥
using std::1linalg::triangular_matrix_matrix_left_solve;
triangular_matrix_matrix_left_solve(R, upper_triangle, A);
return info;

// Compute QR factorization A = Q R. Use R_tmp as temporary R factor
// storage for iterative refinement.
template<class in_matrix_t,
class out_matrix 1 t,
class out matrix 2 t,
class out_matrix_3_t>
int cholesky tsqgr(
in_matrix_t A,
out_matrix_1_t Q,
out_matrix 2 t R _tmp,
out_matrix_3 t R)
{
assert(R.extent(0) == R.extent(1l));
assert(A.extent(1l) == R.extent(0));
assert(R_tmp.extent(0) == R_tmp.extent(1l));
assert(A.extent(0) == Q.extent(0));
assert(A.extent(1l) == Q.extent(1));

copy (A, Q);
const int infol = cholesky_tsqr_one_step(Q, R);

if(infol != 0) {

return infol;
}
// Use one step of iterative refinement to improve accuracy.
const int info2 = cholesky tsqr_one step(Q, R_tmp);
if(info2 != 0) {

return info2;
}
// R = R_tmp * R
using std::linalg::triangular_matrix_left_product;
triangular_matrix_left_product(R_tmp, upper_triangle,

explicit_diagonal, R);

return 0;

141 /141

