
constexpr for <cmath> and <cstdlib>

Document: P0533R9
Date: November 12, 2021
Project: Programming Language C++, Library Working Group
Audience: LWG & CWG
Reply to: Edward J. Rosten (erosten@snap.com) / Oliver J. Rosten (oliver.rosten@gmail.com)

Abstract

We propose simple criteria for selecting functions in <cmath> which should be declared constexpr.
There is a small degree of overlap with <cstdlib>. The aim is to transparently select a sufficiently
large portion of <cmath> in order to be useful but without placing too much burden on compiler
vendors.

CONTENTS

I. Revision History 1

II. Introduction 1

III. Motivation & Scope 1

IV. State of the Art 3

V. Impact On the Standard 3

VI. Design Decisions 3

VII. Future Directions 4

Acknowledgments 4

References 5

VIII. Proposed Wording 5

I. REVISION HISTORY

R1 Includes discussion of rounding mode and future
directions.

R2 More stable tags utilized.

R3 Lifted the unnecessary restriction not to include
functions which modify an argument with external
visibility. Proposed a modification to [library.c].

R4 Leverage std ::is constant evaluated() as a
mechanism to allow implementation of this pro-
posal as a pure library extension—see the final
paragraph of III A and the first of V. Clarifications
to the ‘state of the art’.

R5 Highlighting of proposed changes improved plus mi-
nor tweaks to ensure consistency with the latest
draft of the standard.

R6 Transfer proposed wording from [expr.const] to [li-
brary.c]; propose the addition of a feature-test
macro; further improvements to highlighting; Up-
date the location of the feature-test macro to [ver-
sion.syn].

R7 Rebase to N4878 and add a note that lerp, which
is declared constexpr, has been added to <cmath>;
minor tweaks to wording following review by LWG.

R8 Improve and correct some examples; correct the
first criterion for selecting functions. Provide a bet-
ter critique of the State of the Art. Amend the
wording in line with the spirit of the 2021-05-17
LEWG Telecon.

R9 Refine the wording in line with the spirit of the
2021-10-15 LWG Telecon—with input from the
2021-11-12 CWG Telecon—facilitated by adding a
new definition [defns.nonconst.libcall] and norma-
tive wording to [expr.const]. The first of the origi-
nal changes to [library.c] has been removed follow-
ing the 2021-10-22 LWG Telecon.

II. INTRODUCTION

This paper seeks to rectify the almost complete absence
of constexpr in <cmath> (and also in <cstdlib>), so as
to broaden the range of numeric computations that can
be performed using standard library facilities. While in
principle almost every function in <cmath> could be de-
clared constexpr, we strike a balance between coverage
and onus on compiler/library vendors.

III. MOTIVATION & SCOPE

The introduction of constexpr has facilitated intuitive
compile-time programming. However, in <cmath>, only
the recently added lerp is currently declared constexpr,
thereby artificially restricting what can be done at
compile-time within the standard library. Furthermore,
it is incongruous that, while std::chrono::abs can



2

be used in a constexpr context, the same is not true
for std::abs. Nevertheless, from casual inspection of
<cmath>, it may not be immediately obvious precisely
which set of functions should be declared constexpr. In
this paper, we seek an organizing principle which selects
functions which are in a sense no more complicated than
the elementary arithmetic operations (+,−,×, /). This
is justified since the latter already support constexpr.

Indeed, two subtleties can be resolved by appealing to
the fact that they must be dealt with in implementing
constexpr for the arithmetic operators. In particular,
various functions in <cmath> may set global flags and/or
depend on the rounding mode. These issues are discussed
in the next two subsections. Following this, a justification
is given for declaring functions in <cmath> which modify
an argument with external visibility to be constexpr.
These considerations lead to a concrete statement of the
conditions under which a function should be declared
constexpr.

A. Global Flags

Under certain conditions, various functions in <cmath>
may set global flags. Specifically, errno may be
set and/or the various floating-point exception flags,
FE DIVBYZERO, FE INVALID, FE OVERFLOW, FE UNDERFLOW
and FE INEXACT may be raised. The strategy adopted
is that if this occurs during evaluation of a mathemat-
ical function in a constexpr context then compilation
fails, except in the situation where only FE INEXACT is
raised. The question as to when these flags should be
raised is answered by deferring, wherever possible, to the
C Standard’s Annex F [n2176]. The latter applies, in
its entirety, to floating-point models with signed zeros,
extended with NaNs and signed infinities. Thus, when-
ever the floating-point model under consideration renders
part of Annex F applicable, this is used to unambiguously
specify the conditions under which floating-point excep-
tions are raised.

For example, consider std::lround(double x),
which rounds its argument to the nearest integer value.
What should this do if its argument is NaN or ±∞?
Without concrete guidance, implementors could reason-
ably adopt a variety of strategies. However, according
to [n2176] FE INVALID is raised in these cases and so
that is the solution advocated by this paper.

It is important to note that the issue of raising ex-
ception flags in a constexpr context is nothing new: it
is already faced by the standard arithmetic operators.
Nevertheless, the latter are available for use in constant
expressions. A concrete example is given by

std::numeric_limits<double>::max() * 2;

which raises both FE INVALID and FE OVERFLOW; indeed,
GCC rejects this as a constant expression.

When not used in a constexpr context, the vari-
ous global flags should be set as normal. This dis-

tinction between these two contexts previously im-
plied that any implementation cannot be done as a
pure library extension. However, the emergence of
std::is constant evaluated() [P0595] may allow for
this be circumvented. Either way, below we will in-
troduce a criterion which restricts the proposed set of
constexpr functions to those which are, in a sense, sim-
ple. Consequently, while there will be some burden on
compiler vendors it is hoped to be acceptable.

B. Rounding Mode

Some of the functions in <cmath> depend on the round-
ing mode, which is something that may be changed at
runtime. To facilitate the discussion, we wish to dis-
tinguish two situations, which we will call weak/strong
rounding mode dependence.

Weak dependence is that already experienced by the
arithmetic operators. For example, consider 1.0/3.0: the
result depends on the rounding mode. We refer to this
rounding mode dependence as weak since it is an arte-
fact of the limited precision of floating-point numbers.
However, it is perfectly legitimate to declare

constexpr double x{1.0/3.0}. (3.1)

Therefore, when deciding which functions in <cmath>
should be constexpr, we will not rule out functions with
weak rounding mode dependence. As for (3.1), what re-
sult should we expect? According to [cfenv.syn] footnote
1, the result is implementation defined. However, this
issue is currently under active discussion.

The key point for this paper is that, whatever deci-
sion is made, the approach can be consistently applied to
those functions in <cmath> which we propose should be
declared constexpr. It is worth noting that the number
of functions in this proposal which are dependent on the
rounding mode is rather small (see VI).

Having dealt with weak rounding mode dependence,
now consider float nearbyint(float x). This func-
tion rounds its argument to the nearest integer taking
account of the current rounding mode. Thus, a change to
the rounding mode can change the answer by unity. This
dependence on the rounding mode is not an artefact of
limited precision and hence we call it strong.

In this proposal, we chose to exclude functions with
strong rounding mode dependence from being declared
constexpr. This respects the fact that these functions
are explicitly designed to depend on the runtime environ-
ment.

C. Arguments with External Visibility

At first sight, it may appear pointless to declare func-
tions like

float frexp(float value, int* exp)



3

to be constexpr since such functions modify arguments
with external visibility. However, declaring functions of
this type constexpr means that they can be used in
constexpr contexts. In other words this would allow
functions such as

constexpr int foo(float x) {
int a{};
std::frexpr(x, &a);
return a;

}

to be used to do things like

constexpr int i{foo(0.5f)}.

D. Conditions for constexpr

Taking into account the above consideration, we pro-
pose the following in order to put the application of
constexpr on a rigorous footing:

Proposal. A function in <cmath> shall be declared
constexpr if and only if:

1. When taken to act on the set of rational numbers,
or every subset thereof which is nowhere dense in
the reals1, the function is closed (excluding division
by, or logarithms2 of, zero);

2. The function is not strongly dependent on the
rounding mode.

By means of a brief illustration, abs satisfies all three
criteria; however, functions such as exp, sqrt, cos,
sin fall foul of the first criterion and so are excluded
as constexpr candidates. Finally, as discussed above,
nearbyint fails the second criterion.

IV. STATE OF THE ART

Both GCC and clang already support constexpr
within <cmath> to varying extents. Indeed, at least
as early as GCC 5.3.0 almost all functions, besides
the special functions, those taking a pointer argument
(cf. III C) and those with an explicit dependence on the
runtime rounding mode (III B) are declared constexpr.
However, there are a handful of edge cases which GCC
treats inconsistently, all involving either infinity or NaN.
For brevity, the following shorthand will be employed:

constexpr auto inf{
std::numeric_limits<double>::infinity()};

Now, consider, for example, std::ldexp(inf, 1).

1 This clause ensures that std::nexttoward and std::nextafter

are admitted.
2 ilogb and logb both involve the integral part of a logarithm.

Despite the fact that GCC neither sets errno nor raises
any floating-point exception flags, it prohibits the use
of this expression in a constexpr context. By contrast,
GCC is perfectly happy for std::logb(inf) to be used
in a constexpr context. A breakdown of GCC’s current
behaviour can be found here [GCC Behaviour].

Note that, aside from these edge cases, the only func-
tion for which the behaviour does not conform to that
specified in this paper is std::fmod which does not seem
useable in constant expressions. Indeed, it should be em-
phasised that, in almost all cases, GCC behaves exactly
as one would want. Therefore, an implementation of the
changes to the standard proposed in this paper is mostly
available (indeed, in some regards the GCC implemen-
tation goes beyond what we propose since it declares
additional functions constexpr). While clang does not
go nearly as far as GCC, it does offer some functions
as builtins and is able to use them to perform compile
time computations, constant propagation and so on. It
is therefore hoped that any burden on compiler vendors
implicit in this proposal is acceptable.

V. IMPACT ON THE STANDARD

To facilitate the primary wording changes, a new def-
inition [defns.nonconst.subexpr] is added to [intro.defs],
together with normative wording in [expr.const]. It is
anticipated that these will be broadly useful, beyond
the scope of this paper. Following this, an extra state-
ment is added to [library.c], indicating that if a (mathe-
matical) function raises a floating-point flag other than
FE INEXACT, then it is a non-constant subexpression. An-
nex F of the C Standard is invoked to define precisely
when floating-point exceptions should be raised, and the
behaviour when NaNs and/or infinities are passed as
arguments. Beyond this, a new feature-test macro is
added to [support.limits.general]. The remaining changes
amount to scattering constexpr throughout the existing
headers <cmath> and <cstdlib>, according to the rules
specified earlier.

With std ::is constant evaluated() it may be possi-
ble to implement the desired behaviour as a pure library
extension; previously, this was not the case.

In this proposal, we have chosen for the standard to
remain silent on the issue of the interaction of rounding
mode dependence with constant expressions. On the one
hand, this is no worse than the current situation regard-
ing the arithmetic operators. On the other, the active
discussion about how to optimally resolve this matter
suggests to us that the issue is better served by a sepa-
rate proposal.

VI. DESIGN DECISIONS

There are several obvious candidates in <cmath> to
which constexpr should be applied, such as abs, floor,



4

ceil. But, beyond these, it is desirable to apply
constexpr throughout <cmath> in a consistent manner.
Ideally, one would like to achieve this via the application
of one or more criteria rooted in mathematics. On the
one hand, any such approach must select the basic arith-
metic operations, (+,−,×, /), since these may already
be used in a constexpr context. On the other, it should
ideally encompass prior work on complex, since it has al-
ready been proposed that, in addition to the arithmetic
operations, complex::norm and a few other functions be
declared constexpr [P0415R0].

Mathematically, a field is closed under the elementary
operations of addition and multiplication. Numeric types
do not form a field; however, since the basic arithmetic
operations are already declared constexpr, this suggests
that it may be possible to utilize a field which captures
enough of the properties of numeric types in order to
be useful in formulating criteria for the application of
constexpr. The set of rational numbers is the natural
candidate since all valid values of numeric types are ele-
ments of this set and, moreover, the rationals close over
(+,−,×, /) (with zero excluded for division).

The subtlety of global flags being set upon encounter-
ing floating-point exceptions presents a challenge. If all
functions which can set such flags are excluded from the
list to tag constexpr, then the remaining list is rather
sparse. To achieve something more useful suggests ex-
panding the set to include those functions which are ‘sim-
ple enough’. These considerations lead to the first con-
dition of the proposal. Tables II–V contain the functions
in <cmath> satisfying this criterion and indicate whether
or not they pass the second criterion as well.

To reduce space, the following convention is observed.
The functions listed in [c.math] are divided into blocks of
closely related functions such as those shown in table I.
Note that while the first three functions form an over-

int ilogb(float arg)

int ilogb(double arg)

int ilogb(long double arg)

int ilogbf(float arg)

int ilogbl(long double arg)

TABLE I. Example of a family of functions which appear as
a block in the standard.

load set, while the fourth and fifth have differing names.
When classifying those functions which satisfy the first
criterion, we will present just the first function in each
such block, with the understanding that the others are
similar in this regard. Furthermore, we supply various
comments in the third column of the tables, observing
the following shorthands:

1. G: May set global variable;

2. S: Depends strongly on rounding mode;

3. W: Depends weakly on the rounding mode;

4. w: Depends weakly on the rounding mode only if
FLT RADIX is not 2;

5. U: Depends weakly on the rounding mode only in
the case of underflow.

If more than one of these applies, then this is indicated
using |; for example, if a function may set a global vari-
able and also depends strongly on the rounding mode,
this would be indicated by G|S. Finally, implementation
dependence is denoted by a ? so that, for example, G?
means that whether or not a global variable may be set
depends on the implementation.

Function Pass Comment

float frexp(float value, int* exp) Yes w

int ilogb(float arg) Yes G

float ldexp(float x, int exp) Yes G|w
float logb(float arg) Yes G

float modf(float value, float* iptr) Yes

float scalbn(float x, int n) Yes G|U
float scalbln(float x, long int n) Yes G|U

TABLE II. Various functions declared in [cmath.syn] which
close on the rationals.

Function Pass

int abs(int j) Yes

float fabs(float x) Yes

TABLE III. Absolute values declared in [cmath.syn] which
close on the rationals.

VII. FUTURE DIRECTIONS

Ultimately, it is desirable to follows GCC’s lead and
to declare almost all functions in <cmath> as constexpr.
This will amount to removing the first criterion of our
proposal which, particularly once the issue of the inter-
action of rounding mode with constexpr has been fully
resolved, should hopefully be relatively uncontroversial.

ACKNOWLEDGMENTS

We would like to thank Daniel Krügler, Antony
Polukhin and especially Walter E. Brown for encour-
agement and advice. Sincere thanks also to Richard
Smith, Jens Maurer, Tim Song and Davis Herring for
help with standardese and Geoffrey Romer, Hubert Tong
and Jonathan Wakely for additional feedback and help.



5

REFERENCES

[n2176] ISO/IEC 9899:2018 Standard for Programming Lan-
guages — C

[P0595] Richard Smith, Andrew Sutton and Daveed Vande-
voorde, std::is constant evaluated().

[GCC Behaviour] https://godbolt.org/z/dMGxh61xj

[P0415R0] Antony Polukhin, Constexpr for std::complex.
[N4885] Thomas Köppe, ed., Working Draft, Standard for

Programming Language C++.

Function Pass Comment

float ceil(float x) Yes G?

float floor(float x) Yes G?

float nearbyint(float x) No S

float rint(float x) No G|S
long int lrint(float x) No G|S
long long int llrint(float x) No G|S
float round(float x) Yes G

float lround(float x) Yes G

float llround(float x) Yes G

float trunc(float x) Yes G

float fmod(float x, float y) Yes G|W
float remainder(float x, float y) Yes G|W?

float remquo(float x, float y, int* quo) Yes G|W?

float copysign(float x, float y) Yes

float nextafter(float x, float y) Yes G

float nexttoward(float x, long double y) Yes G

float fdim(float x, float y) Yes G|U
float fmax(float x, float y) Yes

float fmin(float x, float y) Yes

float fma(float x, float y, float z) Yes G|W

TABLE IV. Additional functions declared in [cmath.syn]
which close on the rationals.

Function Pass Comment

int fpclassify(float x); Yes

int isfinite(float x) Yes

int isinf(float x) Yes

int isnan(float x) Yes

int isnormal(float x) Yes

int signbit(float x) Yes

int isgreater(float x, float y) Yes

int isgreaterequal(float x, float y) Yes

int isless(float x, float y) Yes

int islessequal(float x, float y) Yes

int islessgreater(float x, float y) Yes

int isunordered(float x, float y) Yes

TABLE V. Comparison operators belonging to [cmath.syn]
which close on the rationals.

VIII. PROPOSED WORDING

The following proposed changes refer to the Working Paper [N4885].

A. Modification to “Terms and definitions” [intro.defs]

3.35
multibyte character [defns.multibyte]
sequence of one or more bytes representing a member of the extended character set of either the source or the execution
environment
[Note 1 to entry: The extended character set is a superset of the basic character set (5.3). —end note]

3.36
non-constant library call [defns.nonconst.libcall]
invocation of a library function that, as part of evaluating any expression E, prevents E from being a core constant
expression

3.36 3.37
NTCTS [defns.ntcts]

https://godbolt.org/z/dMGxh61xj


6

B. Modification to “Constant expressions” [expr.const]

5 An expression E is a core constant expression unless the evaluation of E, following the rules of the abstract machine
([intro.execution]), would evaluate one of the following:

. . .

(5.27) — an invocation of the va arg macro ([cstdarg.syn]).

(5.28) — a non-constant library call ([defns.nonconst.libcall]).

C. Modification to “The C standard library” [library.c]

3 A call to a C standard library function is a non-constant library call ([defns.nonconst.libcall]) if it raises a floating-
point exception other than FE INEXACT. The semantics of a call to a C standard library function evaluated as a core
constant expression are those specified in Annex F of the C standard [Footnote: see also ISO/IEC 9899:2018 section
7.6.] to the extent applicable to the floating-point types ([basic.fundamental]) that are parameter types of the called
function. [Note: Annex F specifies the conditions under which floating-point exceptions are raised and the behavior
when NaNs and/or infinities are passed as arguments.] [Note: Equivalently, a call to a C standard library function is
a non-constant library call if errno is set when math errhandling & MATH ERRNO is true.]

D. Modifications to “Header <version> synposis” [version.syn]

A new row is to be added:

#define cpp lib constexpr cmath 20????L // also in <cmath>, <cstdlib>

E. Modifications to “Header <cstdlib> synopsis” [cstdlib.syn]

namespace std{

...

//[c.math.abs], absolute values
constexpr int abs(int j);

constexpr long int abs(long int j);

constexpr long long int abs(long long int j);

constexpr float abs(float j);

constexpr double abs(double j);

constexpr long double abs(long double j);

constexpr long int labs(long int j);

constexpr long long int llabs(long long int j);

constexpr div t div(int numer, int denom);

constexpr ldiv t div(long int numer, long int denom); // see [library.c]

constexpr lldiv t div(long long int numer, long long int denom); // see [library.c]

constexpr ldiv t ldiv(long int numer, long int denom);

constexpr lldiv t lldiv(long long int numer, long long int denom);

}



7

F. Modifications to “Header <cmath> synopsis” [cmath.syn]

...

namespace std{

...

float acos(float x); // see [library.c]

double acos(double x);

long double acos(long double x); // see [library.c]

float acosf(float x);

long double acosl(long double x);

...

constexpr float frexp(float value, int* exp); // see [library.c]

constexpr double frexp(double value, int* exp);

constexpr long double frexp(long double value, int* exp); // see [library.c]

constexpr float frexpf(float value, int* exp);

constexpr long double frexpl(long double value, int* exp);

constexpr int ilogb(float x); // see [library.c]

constexpr int ilogb(double x);

constexpr int ilogb(long double x); // see [library.c]

constexpr int ilogbf(float x);

constexpr int ilogbl(long double x);

constexpr float ldexp(float x, int exp); // see [library.c]

constexpr double ldexp(double x, int exp);

constexpr long double ldexp(long double x, int exp); // see [library.c]

constexpr float ldexpf(float x, int exp);

constexpr long double ldexpl(long double x, int exp);

float log(float x); // see [library.c]

double log(double x);

long double log(long double x); // see [library.c]

float logf(float x);

long double logl(long double x);

float log10(float x); // see [library.c]

double log10(double x);

long double log10(long double x); // see [library.c]

float log10f(float x);

long double log10l(long double x);

float log1p(float x); // see [library.c]

double log1p(double x);

long double log1p(long double x); // see [library.c]

float log1pf(float x);

long double log1pl(long double x);

float log2(float x); // see [library.c]

double log2(double x);

long double log2(long double x); // see [library.c]

float log2f(float x);



8

long double log2l(long double x);

constexpr float logb(float x); // see [library.c]

constexpr double logb(double x);

constexpr long double logb(long double x); // see [library.c]

constexpr float logbf(float x);

constexpr long double logbl(long double x);

constexpr float modf(float value, float* iptr); // see [library.c]

constexpr double modf(double value, double* iptr);

constexpr long double modf(long double value, long double* iptr); // see [library.c]

constexpr float modff(float value, float* iptr);

constexpr long double modfl(long double value, long double* iptr);

constexpr float scalbn(float x, int n); // see [library.c]

constexpr double scalbn(double x, int n);

constexpr long double scalbn(long double x, int n); // see [library.c]

constexpr float scalbnf(float x, int n);

constexpr long double scalbnl(long double x, int n);

constexpr float scalbln(float x, long int n); // see [library.c]

constexpr double scalbln(double x, long int n);

constexpr long double scalbln(long double x, long int n); // see [library.c]

constexpr float scalblnf(float x, long int n);

constexpr long double scalblnl(long double x, long int n);

float cbrt(float x); // see [library.c]

double cbrt(double x);

long double cbrt(long double x); // see [library.c]

float cbrtf(float x);

long double cbrtl(long double x);

// [c.math.abs], absolute values
constexpr int abs(int j);

constexpr long int abs(long int j);

constexpr long long int abs(long long int j);

constexpr float abs(float j);

constexpr double abs(double j);

constexpr long double abs(long double j);

constexpr float fabs(float x); // see [library.c]

constexpr double fabs(double x);

constexpr long double fabs(long double x); // see [library.c]

constexpr float fabsf(float x);

constexpr long double fabsl(long double x);

float hypot(float x, float y); // see [library.c]

double hypot(double x, double y);

long double hypot(double x, double y); // see [library.c]

float hypotf(float x, float y);

long double hypotl(long double x, long double y);



9

// [c.math.hypot3], three-dimensional hypotenuse
float hypot(float x, float y, float z);

double hypot(double x, double y, double z);

long double hypot(long double x, long double y, long double z);

...

constexpr float ceil(float x); // see [library.c]

constexpr double ceil(double x);

constexpr long double ceil(long double x); // see [library.c]

constexpr float ceilf(float x);

constexpr long double ceill(long double x);

constexpr float floor(float x); // see [library.c]

constexpr double floor(double x);

constexpr long double floor(long double x); // see [library.c]

constexpr float floorf(float x);

constexpr long double floorl(long double x);

float nearbyint(float x); // see [library.c]

double nearbyint(double x);

long double nearbyint(long double x); // see [library.c]

float nearbyintf(float x);

long double nearbyintl(long double x);

float rint(float x); // see [library.c]

double rint(double x);

long double rint(long double x); // see [library.c]

float rintf(float x);

long double rintl(long double x);

long int lrint(float x); // see [library.c]

long int lrint(double x);

long int lrint(long double x); // see [library.c]

long int lrintf(float x);

long int lrintl(long double x);

long long int llrint(float x); // see [library.c]

long long int llrint(double x);

long long int llrint(long double x); // see [library.c]

long long int llrintf(float x);

long long int llrintl(long double x);

constexpr float round(float x); // see [library.c]

constexpr double round(double x);

constexpr long double round(long double x); // see [library.c]

constexpr float roundf(float x);

constexpr long double roundl(long double x);

constexpr long int lround(float x); // see [library.c]

constexpr long int lround(double x);

constexpr long int lround(long double x); // see [library.c]

constexpr long int lroundf(float x);

constexpr long int lroundl(long double x);



10

constexpr long long int llround(float x); // see [library.c]

constexpr long long int llround(double x);

constexpr long long int llround(long double x); // see [library.c]

constexpr long long int llroundf(float x);

constexpr long long int llroundl(long double x);

constexpr float trunc(float x); // see [library.c]

constexpr double trunc(double x);

constexpr long double trunc(long double x); // see [library.c]

constexpr float truncf(float x);

constexpr long double truncl(long double x);

constexpr float fmod(float x, float y); // see [library.c]

constexpr double fmod(double x, double y);

constexpr long double fmod(long double x, long double y); // see [library.c]

constexpr float fmodf(float x, float y);

constexpr long double fmodl(long double x, long double y);

constexpr float remainder(float x, float y); // see [library.c]

constexpr double remainder(double x, double y);

constexpr long double remainder(long double x, long double y); // see [library.c]

constexpr float remainderf(float x, float y);

constexpr long double remainderl(long double x, long double y);

constexpr float remquo(float x, float y, int* quo); // see [library.c]

constexpr double remquo(double x, double y, int* quo);

constexpr long double remquo(long double x, long double y, int* quo); // see [library.c]

constexpr float remquof(float x, float y, int* quo);

constexpr long double remquol(long double x, long double y, int* quo);

constexpr float copysign(float x, float y); // see [library.c]

constexpr double copysign(double x, double y);

constexpr long double copysign(long double x, long double y); // see [library.c]

constexpr float copysignf(float x, float y);

constexpr long double copysignl(long double x, long double y);

double nan(const char* tagp);

float nanf(const char* tagp);

long double nanl(const char* tagp);

constexpr float nextafter(float x, float y); // see [library.c]

constexpr double nextafter(double x, double y);

constexpr long double nextafter(long double x, long double y); // see [library.c]

constexpr float nextafterf(float x, float y);

constexpr long double nextafterl(long double x, long double y);

constexpr float nexttoward(float x, long double y); // see [library.c]

constexpr double nexttoward(double x, long double y);

constexpr long double nexttoward(long double x, long double y); // see [library.c]



11

constexpr float nexttowardf(float x, long double y);

constexpr long double nexttowardl(long double x, long double y);

constexpr float fdim(float x, float y); // see [library.c]

constexpr double fdim(double x, double y);

constexpr long double fdim(long double x, long double y); // see [library.c]

constexpr float fdimf(float x, float y);

constexpr long double fdiml(long double x, long double y);

constexpr float fmax(float x, float y); // see [library.c]

constexpr double fmax(double x, double y);

constexpr long double fmax(long double x, long double y); // see [library.c]

constexpr float fmaxf(float x, float y);

constexpr long double fmaxl(long double x, long double y);

constexpr float fmin(float x, float y); // see [library.c]

constexpr double fmin(double x, double y);

constexpr long double fmin(long double x, long double y); // see [library.c]

constexpr float fminf(float x, float y);

constexpr long double fminl(long double x, long double y);

constexpr float fma(float x, float y, float z); // see [library.c]

constexpr double fma(double x, double y, double z);

constexpr long double fma(long double x, long double y, long double z); // see [library.c]

constexpr float fmaf(float x, float y, float z);

constexpr long double fmal(long double x, long double y, long double z);

// [c.math.lerp], linear interpolation

constexpr float lerp(float a, float b, float t) noexcept;

constexpr double lerp(double a, double b, double t) noexcept;

constexpr long double lerp(long double a, long double b, long double t) noexcept;

// [c.math.fpclass], classification / comparison functions
constexpr int fpclassify(float x);

constexpr int fpclassify(double x);

constexpr int fpclassify(long double x);

constexpr int isfinite(float x);

constexpr int isfinite(double x);

constexpr int isfinite(long double x);

constexpr int isinf(float x);

constexpr int isinf(double x);

constexpr int isinf(long double x);

constexpr int isnan(float x);

constexpr int isnan(double x);

constexpr int isnan(long double x);

constexpr int isnormal(float x);



12

constexpr int isnormal(double x);

constexpr int isnormal(long double x);

constexpr int signbit(float x);

constexpr int signbit(double x);

constexpr int signbit(long double x);

constexpr int isgreater(float x, float y);

constexpr int isgreater(double x, double y);

constexpr int isgreater(long double x, long double y);

constexpr int isgreaterequal(float x, float y);

constexpr int isgreaterequal(double x, double y);

constexpr int isgreaterequal(long double x, long double y);

constexpr int isless(float x, float y);

constexpr int isless(double x, double y);

constexpr int isless(long double x, long double y);

constexpr int islessequal(float x, float y);

constexpr int islessequal(double x, double y);

constexpr int islessequal(long double x, long double y);

constexpr int islessgreater(float x, float y);

constexpr int islessgreater(double x, double y);

constexpr int islessgreater(long double x, long double y);

constexpr int isunordered(float x, float y);

constexpr int isunordered(double x, double y);

constexpr int isunordered(long double x, long double y);

G. Modifications to “Absolute Values” [c.math.abs]

. . .

constexpr int abs(int j);

constexpr long int abs(long int j);

constexpr long long int abs(long long int j);

constexpr float abs(float j);

constexpr double abs(double j);

constexpr long double abs(long double j);


	constexpr for <cmath> and <cstdlib>
	Contents
	Revision History
	Introduction
	Motivation & Scope
	Global Flags
	Rounding Mode
	Arguments with External Visibility
	Conditions for constexpr

	State of the Art
	Impact On the Standard
	Design Decisions
	Future Directions
	Acknowledgments
	References
	Proposed Wording
	Modification to ``Terms and definitions'' [intro.defs]
	Modification to ``Constant expressions'' [expr.const]
	Modification to ``The C standard library'' [library.c]
	Modifications to ``Header <version> synposis'' [version.syn]
	Modifications to ``Header <cstdlib> synopsis'' [cstdlib.syn]
	Modifications to ``Header <cmath> synopsis'' [cmath.syn]
	Modifications to ``Absolute Values'' [c.math.abs]



