std: :generator: Synchronous Coroutine Generator for

Ranges
Document #: P2168R0
Date: 2020-05-16
Project: Programming Language C++
Audience: LEWG
Reply-to: Lewis Baker <lbaker@fb.com >

Corentin Jabot <corentin.jabot@gmail.com>

Abstract

We propose a standard library type std: : generator which implements a coroutine generator
compatible with ranges.

Example

std: :generator<int> fib (int max) {

co_yield O;
auto a = 0, b = 1;

for(auto n : std::views::iota(0, max)) {
auto next = a + b;
a = b, b = next;
co_yield next;

int answer_to_the_universe() {

}

auto coro = fib(7) ;
return std::accumulate(coro | std::views::drop(5), 0);

Motivation

C++ 20 had very minimalist library support for coroutines. Synchronous generators are an
important use case for coroutines, one that cannot be supported without the machinery
presented in this paper. Writing an efficient and correctly behaving recursive generator is
non-trivial, the standard should provide one.

mailto:lbaker@fb.com
mailto:corentin.jabot@gmail.com

Design

While the proposed std: : generator interface is fairly straight-forward, a few decisions are
worth pointing out.

input_view

std: :generator iS a non-copyable view which models input_range and spawn move-only
iterators. This is because the coroutine frame is a unique resource (even if the coroutine
handle is copyable). Unfortunately, some generators can satisfy the view constraints but fail
to model the view O(1) destruction requirement:

template <typename T>
std: :generator<T> all (vector<T> vec) {
for(auto & e : vec) {
co_yield e;

3

Header

Multiple options are available as to where put the generator class.

* <coroutine>, but <coroutine> is a low level header, and generator depends on bits of
<type_traits> and <iterator>.

* <ranges>

* A new <generator>

Separately specifyable Value Type

This proposal supports specifying both the yielded” type, which is the iterator ””reference””
type (not required to be a reference) and its corresponding value type. This allow ranges to
handle proxy types and wrapped reference, like this implementation of zip:

template<std::ranges::input_range Rngl,
std::ranges::input_range Rng2>
generator<
std::tuple<std::ranges: :range_reference_t<Rngl>,
std: :ranges: :range_reference_t<Rng2>,
std::tuple<std::ranges: :range_value_type_t<Rngl>,
std::ranges: :range_value_type_t<Rng2>>>
zip(Rngl rl, Rng2 r2) {
auto itl = std::ranges::begin(rl);
auto it2 = std::ranges::begin(r2);
auto endl = std::ranges::end(rl);
auto end2 = std::ranges::end(r2);
while (itl != endl && it2 != end2) {

co_yield {*itl, *it2};
++itl; ++it2;

Recursive generator

A ’recursive generator” is a coroutine that supports the ability to directly co_yield a genera-
tor of the same type as a way of emitting the elements of that generator as elements of the
current generator.

Example: A generator can co_yield other generators of the same type

generator<const std::string&> delete_rows(std::string table, std::vector<int> ids) {
for (int id : ids) {
co_yield std::format("DELETE FROM {0} WHERE id = {1}", table, id);
}
}

generator<const std::string&> all_queries() {
co_yield delete_rows("user", {4, 7, 9 10});
co_yield delete_rows("order", {11, 19});

}

Example: A generator can also be used recursively

struct Tree {
Treex left;
Treex right;
int value;

};

generator<int> visit(Tree& tree) {
if (tree.left) co_yield visit(*tree.left);
co_yield tree.value;
if (tree.right) co_yield visit(*tree.right);
}

In addition to being more concise, the ability to directly yield a nested generator has some
performance benefits compared to iterating over the contents of the nested generator and
manually yielding each of its elements.

Yielding a nested generator allows the consumer of the top-level coroutine to directly resume
the current leaf generator when incrementing the iterator, whereas a solution that has
each generator manually iterating over elements of the child generator requires O(depth)
coroutine resumptions/suspensions per element of the sequence.

Example: Non-recursive form incurs O(depth) resumptions/suspensions per element and is
more cumbersome to write

generator<int> slow_visit(Tree& tree) {

if (tree.left) {
for (int x : visit(xtree.left))
co_yield x;
}
co_yield tree.value;
if (tree.right) {
for (int x : visit(*tree.right))
co_yield x;
}
}

Exceptions that propagate out of the body of nested generator coroutines are rethrown into
the parent coroutine from the co_yield expression rather than propagating out of the top-
level ‘iterator::operator++()‘. This follows the mental model that ‘co_yield someGenerator* is
semantically equivalent to manually iterating over the elements and yielding each element.

For example: nested_ints() is semantically equivalent to manual_ints()

generator<int> might_throw() {
co_yield O;
throw some_error{};

}

generator<int> nested_ints() {
try {
co_yield might_throw();
} catch (const some_error&) {}
co_yield 1;
}

// nested_ints() is semantically equivalent to the following:
generator<int> manual_ints() {
try {
for (int x : might_throw()) {
co_yield x;
}
} catch (const some_error&) {}
co_yield 1;
}

void consumer() {
for (int x : nested_ints()) {
std::cout << x << " "; // outputs 0 1

3

for (int x : manual_ints()) {
std::cout << x << " "; // also outputs 0 1
}
}

The recursive form can be implemented efficiently with symmetric transfer. Earlier works
in [CppCoro] implemented this feature in a distinct recursive_generator type.

4

However, it appears that a single type is reasonably efficient thanks to HALO optimizations
and symmetric transfer. The memory cost of that feature is 3 extra pointers per generator.
It is difficult to evaluate the runtime cost of our design given the current coroutine support
in compilers. However our tests show no noticeable difference between a generator and a
recursive_generator which is called non recursively. It is worth noting that the proposed
design makes sure that HALO [3] optimizations are possible.

While we think a single generator type is sufficient and offers a better API, there are three
options:

» Asingle generator type supporting recursive calls (this proposal).

* A separate type recursive_generator that can yield values from either recursive_-
generator Or a generator. That may offer very negligible performance benefits, same
memory usage.

A separate recursive_generator type which can only yield values from other recursive_-
generator.

That third option would make the following ill-formed:

generator<int> f();
recursive_generator<int> g() {

co_yield £(); // incompatible types
}

Instead you would need to write:

recursive_generator<int> g() {
for (int x : £()) co_yield x;
}

Such a limitation can make it difficult to decide at the time of writing a generator
coroutine whether or not you should return a generator Or recursive_generator as
you may not know at the time whether or not this particular generator will be used
within recursive_generator Or not.

If you choose the generator return-type and then later someone wants to yield its
elements from a recursive_generator then you either need to manually yield its ele-
ments one-by-one or use a helper function that adapts the generator into a recursive_-
generator. Both of these options can add runtime cost compared to the case where the
generator was originally written to return a recursive_generator, as it requires two
coroutine resumptions per element instead of a single coroutine resumption.

Because of these limitations, we are not recommending this approach.

How to store the yielded value in the promise type?

The yielded expression is guaranteed to be alive until the coroutine resumes, it is, therefore,
sufficient to store its address. This makes generator with a large yielded type efficient.
However, it might pessimize yielding values smaller than a pointer because of the added

indirection. (It is unclear what the cost of this indirection is, as none of these accesses should
result in cache misses).

More annoyingly, this prevents conversions in yielding expressions:

generator<string_view> f() {
co_yield std::string(); // error: cannot convert std::string to std::string view &

}

Storing a copy would allow less indirection and the ability to yield any values convertible to
the yielded type, at the cost of more storage. To avoid that storage cost, a generator<const
T&> can be used.

Given at the value has to be stored in the coroutine frame anyway, it might interesting to
add a yield_transform customization point to the core language, to either prevent the value
to be stored in the coroutine frame or to transform its type, both would allow supporting
yielding convertible type at no extra memory cost.

Future Work

A non-throwing default allocator with a noexcept generator function should permit not to
force the cost of exceptions on users of this type.

Extend the ability to co_yield another generator of the same type to instead allow a generator
to co_yield an arbitrary range with compatible element types. More investigation is required
to resolve potential ambiguities when yielding types that are both a range and that are
convertible to the generator: :reference type.

Implementation and experience
generator hasbeen provided as part of cppcoro and folly. However, cppcoro offers a separate
recursive_generator type, which is different than the proposed design.

Folly uses a single generator type which can be recursive but doesn’t implement symmetric
transfer. Despite that, Folly users found the use of Folly:::Generator to be a lot more
efficient than the eager algorithm they replaced with it.

ranges-v3 also implements a generator type, which is never recursive and predates the
work on move-only views and iterators [1], [2] which forces this implementation to ref-count
the coroutine handler.

Our implementation [Implementation] consists of a single type which takes advantage of
symmetric transfer to implement recursion efficiently.

Wording

The following wording is meant to illustrate the proposed API.

o Header <coroutine> synopsis [coroutine.syn]
[...]

namespace std {

template<typename Y, typename V = std::remove_cvref t<¥>>
class generator;

template <typename Y, typename V>
inline constexpr bool ranges::enable_view<generator<Y, V>> = true;

¥
o Generator View [coroutine.generator]
o Overview [coroutine.generator.overview]

generator produces an input_view over a synchronous coroutine function yielding values.

[Example:

generator<int> iota(int start = 0) {
while (true)
co_yield start++;

}
void £ A
for(auto i : iota() | views::take(3))
cout << i << " " ; // prints 0 1 2
}
—end example]
o Class template generator [coroutine.generator.class]

namespace std {

template <typename Y, typename V = std::remove_cvref _t<Y¥>>
class generator {
public:

class promise_type;

class iterator;

class sentinel {};

private:
std::coroutine_handle<promise_type> coroutine_ = nullptr; // ezposition only

explicit generator(std::coroutine_handle<promise_type> coroutine) noexcept // ezposition
only
: coroutine_(coroutine) {}

public:
generator () noexcept;
generator (const generator &other) = delete;
generator (generator && other) noexcept
: coroutine_(exchange (other.coroutine_, nullptr)){}

~generator() {
if (coroutine_) {
coroutine_.destroy();
}
}

generator &operator=(generator && other) noexcept {
swap (other) ;
return *this;

3

iterator begin();
sentinel end() noexcept
{ return {}; 1}

void swap(generator & other) noexcept {
std: :swap(coroutine_, other.coroutine_);

}

};

iterator begin();

Preconditions: !coroutine_ iS true Or coroutine_ refers to a coroutine suspended at its
initial suspend-point.
Effects: Equivalent to:

if (coroutine)
coroutine_.resume();
return iterator{coroutine_};

[Note: It is undefined behavior to call begin multiple times on the same coroutine.
—end note]

o Class template generator: :promise_type [coroutine.generator.promise]

template <typename Y, typename V>
class generator<Y, V>::promise_type {

friend generator;

public:

};

V;
Y;

using value_type
using reference

generator<Y, V> get_return_object() noexcept;

std: :suspend_always initial_suspend() const {
return {};

}

auto final_suspend() const;

std: :suspend_always
yield_value(reference && value) noexcept;

\unspec yield_value(generator<Y, V>&& g) noexcept; // see below
reference value() const; // ezposition only

void await_transform() = delete;

void return_void() noexcept {}

void unhandled_exception();

generator<Y, V> get_return_object() noexcept;

Effects: Equivalent to:

return generator<Y, V>{
std::coroutine_handle<promise_type>::from_promise (*this)l};

std: :suspend_always
yield_value(reference && value) noexcept;

Effects: Store a reference to value in the promise.

auto yield_value(generator&& g) noexcept;

Effects: This function returns an implementation defined awaitable type which takes
ownership of the generator g.

[Note: This ensures that local variables in-scope in g’s coroutine are destructed before
local variables in-scope in this coroutine being destructed. — end note]

Execution is transferred to the coroutine represented by g.coroutine_ until its comple-
tion. After g.coroutine_ completes, the current coroutine is resumed.

[Note: Generators can transfer control recursively. —end note]

9

\

Effects: Returns the value previously set by a call to yield_value.

If the execution control has been transferred from this promise to another generator,
value returns the value set on the promise associated with that generator instead.

[Note: Generators can transfer control recursively, value returns the value set on
promise associated to the child-most generator coroutine. —end note]

Class template generator::iterator [coroutine.generator.iterator]

template <typename Y, typename V>
class generator::iterator {
private:

std::coroutine_handle<promise_type> coroutine_ = nullptr;

public:

};

using iterator_category = std::input_iterator_tag;
using difference_type = std::ptrdiff_t;

using value_type = promise_type::value_type;

using reference = promise_type::reference;

iterator() noexcept = default;
iterator(const iterator &) = delete;

iterator(iterator && other) noexcept
coroutine_(exchange (other.coroutine_, nullptr)) {}

iterator &operator=(iterator &&other) noexcept {
coroutine_ = exchange(other.coroutine_, nullptr);

}

explicit iterator(std::coroutine_handle<promise_type> coroutine) noexcept
coroutine_(coroutine) {}

bool operator==(sentinel) const noexcept {
return !coroutine_ || coroutine_.done();

}

iterator &operator++();
void operator++(int);

reference operator*() const noexcept;
reference operator->() const noexcept requires std::is_reference_v<reference>;

iterator &operator++();

10

Preconditions: coroutine_ && !coroutine_.done() iS true.

Effects: Equivalent to:

coroutine_.resume() ;
return *this;

void operator++(int);
Preconditions: coroutine_ && !coroutine_.done() iS true.

Effects: Equivalent to:

(void)operator++();

reference operator*() const noexcept;
reference operator->() const noexcept requires std::is_reference_v<reference>;

Preconditions: coroutine && !coroutine_ .done() IS true.

Effects: Equivalent to:

return coroutine_.promise().value();

References

[1] Casey Carter. P1456R1: Move-only views. https://wg21.1link/p1456r1, 11 2019.

[2] Corentin Jabot. P1207R0: Movability of single-pass iterators. https://wg21.1ink/p1207r0,
8 2018.

[3] Richard Smith and Gor Nishanov. P0981R0: Halo: coroutine heap allocation elision
optimization: the joint response. https://wg21.1ink/p0981r0, 3 2018.

[CppCoro] Lewis Baker CppCoro: A library of C++ coroutine abstractions for the coroutines
TS
https://github.com/lewissbaker/cppcoro

[Folly] Facebook Folly: An open-source C++ library developed and used at Facebook
https://github.com/facebook/folly

[range] Eric Niebler range-v3 Range library for C++14/17/20
https://github.com/ericniebler/range-v3

[Implementation] Lewis Baker, Corentin Jabot std: : generator implementation
https://godbolt.org/z/icfqlr

[N4861] Richard Smith Working Draft, Standard for Programming Language C++
https://wg21l.1ink/N4861

11

https://wg21.link/p1456r1
https://wg21.link/p1207r0
https://wg21.link/p0981r0
https://github.com/lewissbaker/cppcoro
https://github.com/facebook/folly
https://github.com/ericniebler/range-v3
https://godbolt.org/z/icfqLr
https://wg21.link/N4861

	1 Abstract
	2 Example
	3 Motivation
	4 Design
	4.1 input_view
	4.2 Header
	4.3 Separately specifyable Value Type
	4.4 Recursive generator
	4.5 How to store the yielded value in the promise type?

	5 Future Work
	6 Implementation and experience
	7 Wording
	7.1 Header <coroutine> synopsis
	7.2 Generator View
	7.2.1 Overview
	7.2.2 Class template generator
	7.2.3 Class template generator::promise_type
	7.2.4 Class template generator::iterator

	8 References

