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1 General [intro]

1.1 Scope [intro.scope]

This International Standard specifies requirements for implementations of the C++ programming language.
The first such requirement is that they implement the language, and so this International Standard also
defines C++. Other requirements and relaxations of the first requirement appear at various places within
this International Standard.

C++ is a general purpose programming language based on the C programming language as described in
ISO/IEC 9899:1990 Programming languages — C (1.2). In addition to the facilities provided by C, C++
provides additional data types, classes, templates, exceptions, namespaces, inline functions, operator over-
loading, function name overloading, references, free store management operators, and additional library
facilities.

1.2 Normative references [intro.refs]

The following standards contain provisions which, through reference in this text, constitute provisions of
this International Standard. At the time of publication, the editions indicated were valid. All standards
are subject to revision, and parties to agreements based on this International Standard are encouraged to
investigate the possibility of applying the most recent editions of the standards indicated below. Members
of IEC and ISO maintain registers of currently valid International Standards.

— Ecma International, ECMAScript Language Specification, Standard Ecma-262, third edition, 1999.
— ISO/IEC 2382 (all parts), Information technology — Vocabulary

— ISO/IEC 9899:1990, Programming languages — C

— ISO/IEC 9899/Amd.1:1995, Programming languages — C, AMENDMENT 1: C Integrity

— ISO/IEC 9899:1999, Programming languages — C

— ISO/IEC 9899:1999/Cor.1:2001, Programming languages — C

— ISO/IEC 9899:1999/Cor.2:2004, Programming languages — C

— ISO/IEC 9945:2003, Information Technology — Portable Operating System Interface (POSIX)

— ISO/IEC TR 10176:2003, Information technology — Guidelines for the preparation of programming
language standards

— ISO/IEC 10646-1:1993, Information technology — Universal Multiple-Octet Coded Character Set (UCS)
— Part 1: Architecture and Basic Multilingual Plane

— ISO/IEC TR 19769:2004, Information technology — Programming languages, their environments and
system software interfaces — Extensions for the progrmming language C' to support new character data

types

The library described in Clause 7 of ISO/IEC 9899:1990 and Clause 7 of ISO/IEC 9899/Amd.1:1995 is
hereinafter called the C standard library.

1) With the qualifications noted in Clauses 17 through 27, and in C.2, the C standard library is a subset of the C++ standard
library.

§1.2 1
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The library described in Clause 7 of ISO/IEC 9899:1999 and Clause 7 of ISO/IEC 9899:1999/Cor.1:2001
and Clause 7 of ISO/IEC 9899:1999/Cor.2:2003 is hereinafter called the C'99 standard library.

The library described in ISO/TEC TR 19769:2004 is hereinafter called the C Unicode TR.
The operating system interface described in ISO/TEC 9945:2003 is hereinafter called POSIX.
The ECMAScript Language Specification described in Standard Ecma-262 is hereinafter called ECMA-262.

1.3 Definitions [intro.defs]

For the purposes of this International Standard, the definitions given in ISO/IEC 2382 and the following
definitions apply. 17.3 defines additional terms that are used only in Clauses 17 through 27 and Annex D.

Terms that are used only in a small portion of this International Standard are defined where they are used
and italicized where they are defined.

1.3.1 [defns.argument]
argument

an expression in the comma-separated list bounded by the parentheses in a function call expression; a
sequence of preprocessing tokens in the comma-separated list bounded by the parentheses in a function-like
macro invocation; the operand of throw; or an expression, type-id or template-name in the comma-separated
list bounded by the angle brackets in a template instantiation. Also known as an actual argument or actual
parameter.

1.3.2 [defns.cond.supp]
conditionally-supported

a program construct that an implementation is not required to support. [Note: Each implementation
documents all conditionally-supported constructs that it does not support. — end note]

1.3.3 [defns.diagnostic]
diagnostic message
a message belonging to an implementation-defined subset of the implementation’s output messages.

1.3.4 [defns.dynamic.type]
dynamic type

the type of the most derived object (1.8) to which the lvalue denoted by an lvalue expression refers. [ Ezample:
if a pointer (8.3.1) p whose static type is “pointer to class B” is pointing to an object of class D, derived from
B (Clause 10), the dynamic type of the expression *p is “D.” References (8.3.2) are treated similarly. — end
example] The dynamic type of an rvalue expression is its static type.

1.3.5 [defns.ill.formed]
ill-formed program
input to a C++ implementation that is not a well-formed program.

1.3.6 [defns.impl.defined]
implementation-defined behavior
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behavior, for a well-formed program construct and correct data, that depends on the implementation and
that each implementation documents.

1.3.7 [defns.impl.limits]
implementation limits
restrictions imposed upon programs by the implementation.

1.3.8 [defns.locale.specific]
locale-specific behavior

behavior that depends on local conventions of nationality, culture, and language that each implementation
documents.

1.3.9 [defns.multibyte]
multibyte character

a sequence of one or more bytes representing a member of the extended character set of either the source or
the execution environment. The extended character set is a superset of the basic character set (2.3).

1.3.10 [defns.parameter]
parameter

an object or reference declared as part of a function declaration or definition, or in the catch Clause of an
exception handler, that acquires a value on entry to the function or handler; an identifier from the comma-
separated list bounded by the parentheses immediately following the macro name in a function-like macro
definition; or a template-parameter. Parameters are also known as formal arguments or formal parameters.

1.3.11 [defns.signature]
signature

the name and the parameter type list (8.3.5) of a function, as well as the class or namespace of which it
is a member. If a function or function template is a class member its signature additionally includes the
cv-qualifiers (if any) and the ref-qualifier (if any) on the function or function template itself. The signature
of a function template additionally includes its return type and its template parameter list. The signature
of a function template specialization includes the signature of the template of which it is a specialization
and its template arguments (whether explicitly specified or deduced). [ Note: Signatures are used as a basis
for name mangling and linking. — end note]

1.3.12 [defns.static.type]
static type

the type of an expression (3.9), which type results from analysis of the program without considering execution
semantics. The static type of an expression depends only on the form of the program in which the expression
appears, and does not change while the program is executing.

1.3.13 [defns.undefined]
undefined behavior

behavior, such as might arise upon use of an erroneous program construct or erroneous data, for which
this International Standard imposes no requirements. Undefined behavior may also be expected when this
International Standard omits the description of any explicit definition of behavior. [Note: permissible
undefined behavior ranges from ignoring the situation completely with unpredictable results, to behaving
during translation or program execution in a documented manner characteristic of the environment (with or
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without the issuance of a diagnostic message), to terminating a translation or execution (with the issuance
of a diagnostic message). Many erroneous program constructs do not engender undefined behavior; they are
required to be diagnosed. — end note]

1.3.14 [defns.unspecified]
unspecified behavior

behavior, for a well-formed program construct and correct data, that depends on the implementation. The
implementation is not required to document which behavior occurs. [ Note: usually, the range of possible
behaviors is delineated by this International Standard. — end note ]

1.3.15 [defns.well.formed]
well-formed program

a C++ program constructed according to the syntax rules, diagnosable semantic rules, and the One Definition
Rule (3.2).

1.4 Implementation compliance [intro.compliance]

The set of diagnosable rules consists of all syntactic and semantic rules in this International Standard except
for those rules containing an explicit notation that “no diagnostic is required” or which are described as
resulting in “undefined behavior.”

Although this International Standard states only requirements on C++ implementations, those requirements
are often easier to understand if they are phrased as requirements on programs, parts of programs, or
execution of programs. Such requirements have the following meaning:

— If a program contains no violations of the rules in this International Standard, a conforming imple-
mentation shall, within its resource limits, accept and correctly execute? that program.

— If a program contains a violation of any diagnosable rule or an occurrence of a construct described in
this Standard as “conditionally-supported” when the implementation does not support that construct,
a conforming implementation shall issue at least one diagnostic message.

— If a program contains a violation of a rule for which no diagnostic is required, this International
Standard places no requirement on implementations with respect to that program.

For classes and class templates, the library Clauses specify partial definitions. Private members (Clause 11)
are not specified, but each implementation shall supply them to complete the definitions according to the
description in the library Clauses.

For functions, function templates, objects, and values, the library Clauses specify declarations. Implemen-
tations shall supply definitions consistent with the descriptions in the library Clauses.

The names defined in the library have namespace scope (7.3). A C++ translation unit (2.2) obtains access
to these names by including the appropriate standard library header (16.2).

The templates, classes, functions, and objects in the library have external linkage (3.5). The implementation
provides definitions for standard library entities, as necessary, while combining translation units to form a
complete C++ program (2.2).

Two kinds of implementations are defined: hosted and freestanding. For a hosted implementation, this
International Standard defines the set of available libraries. A freestanding implementation is one in which
execution may take place without the benefit of an operating system, and has an implementation-defined
set of libraries that includes certain language-support libraries (17.6.1.3).

2) “Correct execution” can include undefined behavior, depending on the data being processed; see 1.3 and 1.9.
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A conforming implementation may have extensions (including additional library functions), provided they do
not alter the behavior of any well-formed program. Implementations are required to diagnose programs that
use such extensions that are ill-formed according to this International Standard. Having done so, however,
they can compile and execute such programs.

Each implementation shall include documentation that identifies all conditionally-supported constructs that
it does not support and defines all locale-specific characteristics.?

1.5 Structure of this International Standard [intro.structure]

Clauses 2 through 16 describe the C++ programming language. That description includes detailed syntactic
specifications in a form described in 1.6. For convenience, Annex A repeats all such syntactic specifications.

Clauses 18 through 30 and Annex D (the library clauses) describe the Standard C++ library. That description
includes detailed descriptions of the eoncepts;—eoncept—maps; templates, classes, functions, constants, and
macros that constitute the library, in a form described in Clause 17.

Annex B recommends lower bounds on the capacity of conforming implementations.

Annex C summarizes the evolution of C++ since its first published description, and explains in detail the
differences between C++ and C. Certain features of C++ exist solely for compatibility purposes; Annex D
describes those features.

Throughout this International Standard, each example is introduced by “[ Ezample:” and terminated by
“ —end example]”. Each note is introduced by “[ Note:” and terminated by “ — end note]”. Examples and
notes may be nested.

1.6 Syntax notation [syntax]

In the syntax notation used in this International Standard, syntactic categories are indicated by italic type,
and literal words and characters in constant width type. Alternatives are listed on separate lines except in
a few cases where a long set of alternatives is marked by the phrase “one of.” If the text of an alternative is

too long to fit on a line, the text is continued on subsequent lines indented from the first one. An optional

terminal or nonterminal symbol is indicated by the subscript “,,: 7, so

{ expressiongp ¥
indicates an optional expression enclosed in braces.
Names for syntactic categories have generally been chosen according to the following rules:

— X-name is a use of an identifier in a context that determines its meaning (e.g., class-name, typedef-
name).

— X-id is an identifier with no context-dependent meaning (e.g., qualified-id).

— X-seq is one or more X’s without intervening delimiters (e.g., declaration-seq is a sequence of declara-
tions).

— X-list is one or more X’s separated by intervening commas (e.g., expression-list is a sequence of
expressions separated by commas).

3) This documentation also defines implementation-defined behavior; see 1.9.
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1.7 The C++ memory model [intro.memory]|

The fundamental storage unit in the C++ memory model is the byte. A byte is at least large enough to
contain any member of the basic execution character set and the eight-bit code units of the Unicode UTF-8
encoding form and is composed of a contiguous sequence of bits, the number of which is implementation-
defined. The least significant bit is called the low-order bit; the most significant bit is called the high-order
bit. The memory available to a C++ program consists of one or more sequences of contiguous bytes. Every
byte has a unique address.

[ Note: the representation of types is described in 3.9. — end note]

A memory location is either an object of scalar type or a maximal sequence of adjacent bit-fields all having
non-zero width. [ Note: Various features of the language, such as references and virtual functions, might
involve additional memory locations that are not accessible to programs but are managed by the imple-
mentation. — end note| Two threads of execution (1.10) can update and access separate memory locations
without interfering with each other.

[ Note: Thus a bit-field and an adjacent non-bit-field are in separate memory locations, and therefore can be
concurrently updated by two threads of execution without interference. The same applies to two bit-fields,
if one is declared inside a nested struct declaration and the other is not, or if the two are separated by
a zero-length bit-field declaration, or if they are separated by a non-bit-field declaration. It is not safe to
concurrently update two bit-fields in the same struct if all fields between them are also bit-fields of non-zero
width. — end note]

[ Example: A structure declared as

struct {
char a;
int b:5,
c:11,
:0,
d:8;
struct {int ee:8;} e;

contains four separate memory locations: The field a and bit-fields d and e.ee are each separate memory
locations, and can be modified concurrently without interfering with each other. The bit-fields b and ¢
together constitute the fourth memory location. The bit-fields b and ¢ cannot be concurrently modified, but
b and a, for example, can be. — end ezample ]

1.8 The C++ object model [intro.object]

The constructs in a C++ program create, destroy, refer to, access, and manipulate objects. An object is a
region of storage. [ Note: A function is not an object, regardless of whether or not it occupies storage in the
way that objects do. — end note] An object is created by a definition (3.1), by a new-expression (5.3.4) or
by the implementation (12.2) when needed. The properties of an object are determined when the object is
created. An object can have a name (Clause 3). An object has a storage duration (3.7) which influences
its lifetime (3.8). An object has a type (3.9). The term object type refers to the type with which the object
is created. Some objects are polymorphic (10.3); the implementation generates information associated with
each such object that makes it possible to determine that object’s type during program execution. For other
objects, the interpretation of the values found therein is determined by the type of the expressions (Clause 5)
used to access them.
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Objects can contain other objects, called subobjects. A subobject can be a member subobject (9.2), a base
class subobject (Clause 10), or an array element. An object that is not a subobject of any other object is
called a complete object.

For every object x, there is some object called the complete object of x, determined as follows:
— If x is a complete object, then x is the complete object of x.
— Otherwise, the complete object of x is the complete object of the (unique) object that contains x.

If a complete object, a data member (9.2), or an array element is of class type, its type is considered the
most derived class, to distinguish it from the class type of any base class subobject; an object of a most
derived class type or of a non-class type is called a most derived object.

Unless it is a bit-field (9.6), a most derived object shall have a non-zero size and shall occupy one or more
bytes of storage. Base class subobjects may have zero size. An object of trivially copyable or standard-layout
type (3.9) shall occupy contiguous bytes of storage.

[ Note: Ct++ provides a variety of built-in types and several ways of composing new types from existing
types (3.9). — end note]

1.9 Program execution [intro.execution]

The semantic descriptions in this International Standard define a parameterized nondeterministic abstract
machine. This International Standard places no requirement on the structure of conforming implementations.
In particular, they need not copy or emulate the structure of the abstract machine. Rather, conforming
implementations are required to emulate (only) the observable behavior of the abstract machine as explained
below.*

Certain aspects and operations of the abstract machine are described in this International Standard as
implementation-defined (for example, sizeof (int)). These constitute the parameters of the abstract ma-
chine. Each implementation shall include documentation describing its characteristics and behavior in these
respects.® Such documentation shall define the instance of the abstract machine that corresponds to that
implementation (referred to as the “corresponding instance” below).

Certain other aspects and operations of the abstract machine are described in this International Standard as
unspecified (for example, order of evaluation of arguments to a function). Where possible, this International
Standard defines a set of allowable behaviors. These define the nondeterministic aspects of the abstract
machine. An instance of the abstract machine can thus have more than one possible execution sequence for
a given program and a given input.

Certain other operations are described in this International Standard as undefined (for example, the effect of
dereferencing the null pointer). [ Note: this International Standard imposes no requirements on the behavior
of programs that contain undefined behavior. — end note ]

A conforming implementation executing a well-formed program shall produce the same observable behavior
as one of the possible execution sequences of the corresponding instance of the abstract machine with the
same program and the same input. However, if any such execution sequence contains an undefined operation,
this International Standard places no requirement on the implementation executing that program with that
input (not even with regard to operations preceding the first undefined operation).

4) This provision is sometimes called the “as-if” rule, because an implementation is free to disregard any requirement of this
International Standard as long as the result is as if the requirement had been obeyed, as far as can be determined from the
observable behavior of the program. For instance, an actual implementation need not evaluate part of an expression if it can
deduce that its value is not used and that no side effects affecting the observable behavior of the program are produced.

5) This documentation also includes conditonally-supported constructs and locale-specific behavior. See 1.4.

§ 1.9 7



10

©ISO/IEC N2960=09-0150

The observable behavior of the abstract machine is its sequence of reads and writes to volatile data and
calls to library I/O functions.®

When the processing of the abstract machine is interrupted by receipt of a signal, the values of objects which
are neither

— of type volatile std::sig_atomic_t nor
— lock-free atomic objects (29.4)

are unspecified, and the value of any object not in either of these two categories that is modified by the
handler becomes undefined.

An instance of each object with automatic storage duration (3.7.3) is associated with each entry into its
block. Such an object exists and retains its last-stored value during the execution of the block and while the
block is suspended (by a call of a function or receipt of a signal).

The least requirements on a conforming implementation are:
— Access to volatile objects are evaluated strictly according to the rules of the abstract machine.

— At program termination, all data written into files shall be identical to one of the possible results that
execution of the program according to the abstract semantics would have produced.

— The input and output dynamics of interactive devices shall take place in such a fashion that prompting
messages actually appear prior to a program waiting for input. What constitutes an interactive device
is implementation-defined.

[ Note: more stringent correspondences between abstract and actual semantics may be defined by each
implementation. — end note]

[ Note: operators can be regrouped according to the usual mathematical rules only where the operators really
are associative or commutative.” For example, in the following fragment

int a, b;

a =a + 32760 + b + 5;
the expression statement behaves exactly the same as

a = (((a + 32760) + b) + 5);
due to the associativity and precedence of these operators. Thus, the result of the sum (a + 32760) is next
added to b, and that result is then added to 5 which results in the value assigned to a. On a machine in which

overflows produce an exception and in which the range of values representable by an int is [-32768,+32767],
the implementation cannot rewrite this expression as

a = ((a + b) + 32765);

since if the values for a and b were, respectively, -32754 and -15, the sum a + b would produce an exception
while the original expression would not; nor can the expression be rewritten either as

a = ((a + 32765) + b);

or

6) An implementation can offer additional library I/O functions as an extension. Implementations that do so should treat
calls to those functions as “observable behavior” as well.
7) Overloaded operators are never assumed to be associative or commutative.
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a=(a+ (b + 32765));

since the values for a and b might have been, respectively, 4 and -8 or -17 and 12. However on a machine in
which overflows do not produce an exception and in which the results of overflows are reversible, the above
expression statement can be rewritten by the implementation in any of the above ways because the same
result will occur. — end note ]

A full-expression is an expression that is not a subexpression of another expression. If a language construct
is defined to produce an implicit call of a function, a use of the language construct is considered to be an
expression for the purposes of this definition. A call to a destructor generated at the end of the lifetime of
an object other than a temporary object is an implicit full-expression. Conversions applied to the result of
an expression in order to satisfy the requirements of the language construct in which the expression appears
are also considered to be part of the full-expression.

[ Example:

struct S {
S(int i): I(1) { }
int& v() { return I; }

private:
int I;
};
S s1(1); // full-expression is call of S::8(int)
S s2 = 2; // full-expression is call of S::8(int)
void £() {
if (S(3).v0)) // full-expression includes lvalue-to-rvalue and
// int to bool conversions, performed before
// temporary is deleted at end of full-expression
{7
}

— end example]

[ Note: the evaluation of a full-expression can include the evaluation of subexpressions that are not lexically
part of the full-expression. For example, subexpressions involved in evaluating default argument expres-
sions (8.3.6) are considered to be created in the expression that calls the function, not the expression that
defines the default argument. — end note]

Accessing an object designated by a volatile lvalue (3.10), modifying an object, calling a library 1/0
function, or calling a function that does any of those operations are all side effects, which are changes in the
state of the execution environment. FEwvaluation of an expression (or a sub-expression) in general includes
both value computations (including determining the identity of an object for lvalue evaluation and fetching
a value previously assigned to an object for rvalue evaluation) and initiation of side effects. When a call to
a library I/O function returns or an access to a volatile object is evaluated the side effect is considered
complete, even though some external actions implied by the call (such as the I/0O itself) or by the volatile
access may not have completed yet.

Sequenced before is an asymmetric, transitive, pair-wise relation between evaluations executed by a single
thread (1.10), which induces a partial order among those evaluations. Given any two evaluations A and B, if
A is sequenced before B, then the execution of A shall precede the execution of B. If A is not sequenced before
B and B is not sequenced before A, then A and B are unsequenced. [ Note: The execution of unsequenced
evaluations can overlap. — end note] Evaluations A and B are indeterminately sequenced when either A
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is sequenced before B or B is sequenced before A, but it is unspecified which. [Note: Indeterminately
sequenced evaluations cannot overlap, but either could be executed first. — end note|

Every value computation and side effect associated with a full-expression is sequenced before every value
computation and side effect associated with the next full-expression to be evaluated.®.

Except where noted, evaluations of operands of individual operators and of subexpressions of individual
expressions are unsequenced. [ Note: In an expression that is evaluated more than once during the execution
of a program, unsequenced and indeterminately sequenced evaluations of its subexpressions need not be
performed consistently in different evaluations. — end note] The value computations of the operands of an
operator are sequenced before the value computation of the result of the operator. If a side effect on a scalar
object is unsequenced relative to either another side effect on the same scalar object or a value computation
using the value of the same scalar object, the behavior is undefined.

[ Example:

void f(int, int);
void g(int i, int* v) {

i = v[i++]; // the behavior is undefined

i =7, i++, i++; // i becomes 9
= i++ + 1; // the behavior is undefined
=i+ 1; // the value of i is incremented

£f(1i=-1, i = -1); // the behavior is undefined

— end example]

When calling a function (whether or not the function is inline), every value computation and side effect
associated with any argument expression, or with the postfix expression designating the called function, is
sequenced before execution of every expression or statement in the body of the called function. [ Note: Value
computations and side effects associated with different argument expressions are unsequenced. — end note |
Every evaluation in the calling function (including other function calls) that is not otherwise specifically
sequenced before or after the execution of the body of the called function is indeterminately sequenced with
respect to the execution of the called function.® Several contexts in C++ cause evaluation of a function call,
even though no corresponding function call syntax appears in the translation unit. [ Ezample: Evaluation of
a new expression invokes one or more allocation and constructor functions; see 5.3.4. For another example,
invocation of a conversion function (12.3.2) can arise in contexts in which no function call syntax appears.
— end example] The sequencing constraints on the execution of the called function (as described above)
are features of the function calls as evaluated, whatever the syntax of the expression that calls the function
might be.

1.10 Multi-threaded executions and data races [intro.multithread]

Under a hosted implementation, a C++ program can have more than one thread of execution (a.k.a. thread)
running concurrently. The execution of each thread proceeds as defined by the remainder of this standard.
The execution of the entire program consists of an execution of all of its threads. [Note: Usually the
execution can be viewed as an interleaving of all its threads. However, some kinds of atomic operations, for
example, allow executions inconsistent with a simple interleaving, as described below. — end note] Under

8) As specified in 12.2; after a full-expression is evaluated, a sequence of zero or more invocations of destructor functions for
temporary objects takes place, usually in reverse order of the construction of each temporary object.
9) In other words, function executions do not interleave with each other.
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a freestanding implementation, it is implementation-defined whether a program can have more than one
thread of execution.

The value of an object visible to a thread T at a particular point might be the initial value of the object, a
value assigned to the object by T', or a value assigned to the object by another thread, according to the rules
below. [ Note: In some cases, there may instead be undefined behavior. Much of this section is motivated
by the desire to support atomic operations with explicit and detailed visibility constraints. However, it also
implicitly supports a simpler view for more restricted programs. — end note]

Two expression evaluations conflict if one of them modifies a memory location and the other one accesses or
modifies the same memory location.

The library defines a number of atomic operations (Clause 29) and operations on locks (Clause 30) that
are specially identified as synchronization operations. These operations play a special role in making as-
signments in one thread visible to another. A synchronization operation on one or more memory locations
is either a consume operation, an acquire operation, a release operation, or both an acquire and release
operation. A synchronization operation without an associated memory location is a fence and can be either
an acquire fence, a release fence, or both an acquire and release fence. In addition, there are relaxed atomic
operations, which are not synchronization operations, and atomic read-modify-write operations, which have
special characteristics. [ Note: For example, a call that acquires a lock will perform an acquire operation
on the locations comprising the lock. Correspondingly, a call that releases the same lock will perform a
release operation on those same locations. Informally, performing a release operation on A forces prior side
effects on other memory locations to become visible to other threads that later perform a consume or an
acquire operation on A. “Relaxed” atomic operations are not synchronization operations even though, like
synchronization operations, they cannot contribute to data races. — end note]

All modifications to a particular atomic object M occur in some particular total order, called the modification
order of M. If A and B are modifications of an atomic object M and A happens before (as defined below)
B, then A shall precede B in the modification order of M, which is defined below. [ Note: This states that
the modification orders must respect happens before. — end note| [ Note: There is a separate order for each
scalar object. There is no requirement that these can be combined into a single total order for all objects.
In general this will be impossible since different threads may observe modifications to different variables in
inconsistent orders. — end note]

A release sequence on an atomic object M is a maximal contiguous sub-sequence of side effects in the
modification order of M, where the first operation is a release, and every subsequent operation

— is performed by the same thread that performed the release, or
— is an atomic read-modify-write operation.

Certain library calls synchronize with other library calls performed by another thread. In particular, an
atomic operation A that performs a release operation on an object M synchronizes with an atomic operation
B that performs an acquire operation on M and reads a value written by any side effect in the release
sequence headed by A. [ Note: Except in the specified cases, reading a later value does not necessarily ensure
visibility as described below. Such a requirement would sometimes interfere with efficient implementation.
— end note| [ Note: The specifications of the synchronization operations define when one reads the value
written by another. For atomic variables, the definition is clear. All operations on a given lock occur in a
single total order. Each lock acquisition “reads the value written” by the last lock release. — end note]

An evaluation A carries a dependency to an evaluation B if
— the value of A is used as an operand of B, unless:

— B is an invocation of any specialization of std::kill_dependency (29.3), or
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— A is the left operand of a built-in logical AND (&&, see 5.14) or logical OR (||, see 5.15) operator,
or

— A is the left operand of a conditional (?:, see 5.16) operator, or
— A is the left operand of the built-in comma (,) operator (5.18);
or

— A writes a scalar object or bit-field M, B reads the value written by A from M, and A is sequenced
before B, or

— for some evaluation X, A carries a dependency to X, and X carries a dependency to B.

[ Note: “Carries a dependency to” is a subset of “is sequenced before”, and is similarly strictly intra-thread.
— end note ]

An evaluation A is dependency-ordered before an evaluation B if

— A performs a release operation on an atomic object M, and B performs a consume operation on M
and reads a value written by any side effect in the release sequence headed by A, or

— for some evaluation X, A is dependency-ordered before X and X carries a dependency to B.

[ Note: The relation “is dependency-ordered before” is analogous to “synchronizes with”, but uses release/-
consume in place of release/acquire. — end note]

An evaluation A inter-thread happens before an evaluation B if
— A synchronizes with B, or
— A is dependency-ordered before B, or
— for some evaluation X
— A synchronizes with X and X is sequenced before B, or
— A is sequenced before X and X inter-thread happens before B, or
— A inter-thread happens before X and X inter-thread happens before B.

[ Note: The “inter-thread happens before” relation describes arbitrary concatenations of “sequenced before”,
“synchronizes with” and “dependency-ordered before” relationships, with two exceptions. The first exception
is that a concatenation is not permitted to end with “dependency-ordered before” followed by “sequenced
before”. The reason for this limitation is that a consume operation participating in a “dependency-ordered
before” relationship provides ordering only with respect to operations to which this consume operation
actually carries a dependency. The reason that this limitation applies only to the end of such a concatenation
is that any subsequent release operation will provide the required ordering for a prior consume operation.
The second exception is that a concatenation is not permitted to consist entirely of “sequenced before”.
The reasons for this limitation are (1) to permit “inter-thread happens before” to be transitively closed and
(2) the “happens before” relation, defined below, provides for relationships consisting entirely of “sequenced
before”. — end note]

An evaluation A happens before an evaluation B if:
— A is sequenced before B, or
— A inter-thread happens before B.
A visible side effect A on an object M with respect to a value computation B of M satisfies the conditions:

— A happens before B, and
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— there is no other side effect X to M such that A happens before X and X happens before B.

The value of a non-atomic scalar object M, as determined by evaluation B, shall be the value stored by the
visible side effect A. [ Note: If there is ambiguity about which side effect to a non-atomic object is visible,
then there is a data race, and the behavior is undefined. — end note] [ Note: This states that operations
on ordinary variables are not visibly reordered. This is not actually detectable without data races, but it
is necessary to ensure that data races, as defined here, and with suitable restrictions on the use of atomics,
correspond to data races in a simple interleaved (sequentially consistent) execution. — end note]|

The wisible sequence of side effects on an atomic object M, with respect to a value computation B of M, is
a maximal contiguous sub-sequence of side effects in the modification order of M, where the first side effect
is visible with respect to B, and for every subsequent side effect, it is not the case that B happens before it.
The value of an atomic object M, as determined by evaluation B, shall be the value stored by some operation
in the visible sequence of M with respect to B. Furthermore, if a value computation A of an atomic object
M happens before a value computation B of M, and the value computed by A corresponds to the value
stored by side effect X, then the value computed by B shall either equal the value computed by A, or be
the value stored by side effect Y, where Y follows X in the modification order of M. [ Note: This effectively
disallows compiler reordering of atomic operations to a single object, even if both operations are “relaxed”
loads. This effectively makes the “cache coherence” guarantee provided by most hardware available to C++
atomic operations. — end note| [ Note: The visible sequence depends on the happens before relation, which
depends on the values observed by loads of atomics, which we are restricting here. The intended reading
is that there must exist an association of atomic loads with modifications they observe that, together with
suitably chosen modification orders and the happens before relation derived as described above, satisfy the
resulting constraints as imposed here. — end note]

The execution of a program contains a data race if it contains two conflicting actions in different threads,
at least one of which is not atomic, and neither happens before the other. Any such data race results in
undefined behavior. [Note: It can be shown that programs that correctly use simple locks to prevent all
data races and use no other synchronization operations behave as though the executions of their constituent
threads were simply interleaved, with each observed value of an object being the last value assigned in that
interleaving. This is normally referred to as “sequential consistency”. However, this applies only to race-free
programs, and race-free programs cannot observe most program transformations that do not change single-
threaded program semantics. In fact, most single-threaded program transformations continue to be allowed,
since any program that behaves differently as a result must perform an undefined operation. — end note]

[ Note: Compiler transformations that introduce assignments to a potentially shared memory location that
would not be modified by the abstract machine are generally precluded by this standard, since such an
assignment might overwrite another assignment by a different thread in cases in which an abstract machine
execution would not have encountered a data race. This includes implementations of data member assign-
ment that overwrite adjacent members in separate memory locations. Reordering of atomic loads in cases
in which the atomics in question may alias is also generally precluded, since this may violate the “visible
sequence” rules. — end note

[ Note: Transformations that introduce a speculative read of a potentially shared memory location may not
preserve the semantics of the C++ program as defined in this standard, since they potentially introduce a
data race. However, they are typically valid in the context of an optimizing compiler that targets a specific
machine with well-defined semantics for data races. They would be invalid for a hypothetical machine that
is not tolerant of races or provides hardware race detection. — end note|
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2 Lexical conventions [lex]

2.1 Separate translation [lex.separate]

The text of the program is kept in units called source files in this International Standard. A source file
together with all the headers (17.6.1.2) and source files included (16.2) via the preprocessing directive
#include, less any source lines skipped by any of the conditional inclusion (16.1) preprocessing directives, is
called a translation unit. [ Note: a C++ program need not all be translated at the same time. — end note ]

[ Note: previously translated translation units and instantiation units can be preserved individually or in
libraries. The separate translation units of a program communicate (3.5) by (for example) calls to functions
whose identifiers have external linkage, manipulation of objects whose identifiers have external linkage, or
manipulation of data files. Translation units can be separately translated and then later linked to produce
an executable program (3.5). — end note|

2.2 Phases of translation [lex.phases]

The precedence among the syntax rules of translation is specified by the following phases.'?

1. Physical source file characters are mapped, in an implementation-defined manner, to the basic source
character set (introducing new-line characters for end-of-line indicators) if necessary. The set of phys-
ical source file characters accepted is implementation-defined. Trigraph sequences (2.4) are replaced
by corresponding single-character internal representations. Any source file character not in the basic
source character set (2.3) is replaced by the universal-character-name that designates that charac-
ter. (An implementation may use any internal encoding, so long as an actual extended character
encountered in the source file, and the same extended character expressed in the source file as a
universal-character-name (i.e., using the \uXXXX notation), are handled equivalently.)

2. Each instance of a backslash character (\) immediately followed by a new-line character is deleted,
splicing physical source lines to form logical source lines. Only the last backslash on any physical
source line shall be eligible for being part of such a splice. If, as a result, a character sequence that
matches the syntax of a universal-character-name is produced, the behavior is undefined. If a source
file that is not empty does not end in a new-line character, or ends in a new-line character immediately
preceded by a backslash character before any such splicing takes place, the behavior is undefined.

3. The source file is decomposed into preprocessing tokens (2.5) and sequences of white-space characters
(including comments). A source file shall not end in a partial preprocessing token or in a partial com-
ment.'! Each comment is replaced by one space character. New-line characters are retained. Whether
each nonempty sequence of white-space characters other than new-line is retained or replaced by one
space character is unspecified. The process of dividing a source file’s characters into preprocessing to-
kens is context-dependent. [ Ezample: see the handling of < within a #include preprocessing directive.
— end example ]

4. Preprocessing directives are executed, macro invocations are expanded, and _Pragma unary operator
expressions are executed. If a character sequence that matches the syntax of a universal-character-name

10) Implementations must behave as if these separate phases occur, although in practice different phases might be folded
together.

11) A partial preprocessing token would arise from a source file ending in the first portion of a multi-character token that
requires a terminating sequence of characters, such as a header-name that is missing the closing " or >. A partial comment
would arise from a source file ending with an unclosed /* comment.
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is produced by token concatenation (16.3.3), the behavior is undefined. A #include preprocessing di-
rective causes the named header or source file to be processed from phase 1 through phase 4, recursively.
All preprocessing directives are then deleted.

5. Each source character set member and universal-character-name in a character literal or a string literal,
as well as each escape sequence in a character literal or a non-raw string literal, is converted to the
corresponding member of the execution character set (2.14.3, 2.14.5); if there is no corresponding
member, it is converted to an implementation-defined member other than the null (wide) character.'?

6. Adjacent string literal tokens are concatenated.

7. White-space characters separating tokens are no longer significant. FEach preprocessing token is con-
verted into a token. (2.7). The resulting tokens are syntactically and semantically analyzed and trans-
lated as a translation unit. [ Note: The process of analyzing and translating the tokens may occasionally
result in one token being replaced by a sequence of other tokens (14.3). — end note] [ Note: Source
files, translation units and translated translation units need not necessarily be stored as files, nor need
there be any one-to-one correspondence between these entities and any external representation. The
description is conceptual only, and does not specify any particular implementation. — end note]

8. Translated translation units and instantiation units are combined as follows: [ Note: some or all of
these may be supplied from a library. — end note] Each translated translation unit is examined to
produce a list of required instantiations. [Note: this may include instantiations which have been
explicitly requested (14.8.2). —end note] The definitions of the required templates are located.
It is implementation-defined whether the source of the translation units containing these definitions
is required to be available. [Note: an implementation could encode sufficient information into the
translated translation unit so as to ensure the source is not required here. —end note] All the
required instantiations are performed to produce instantiation units. [Note: these are similar to
translated translation units, but contain no references to uninstantiated templates and no template
definitions. — end note] The program is ill-formed if any instantiation fails.

9. All external object and function references are resolved. Library components are linked to satisfy
external references to functions and objects not defined in the current translation. All such transla-
tor output is collected into a program image which contains information needed for execution in its
execution environment.

2.3 Character sets [lex.charset]

The basic source character set consists of 96 characters: the space character, the control characters repre-
senting horizontal tab, vertical tab, form feed, and new-line, plus the following 91 graphical characters:'?

abcdefghijklmnopgrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWIXY?Z
0123456789

SAYITI# ) <> o7 x+ -/ &~ =, "0

The universal-character-name construct provides a way to name other characters.

12) An implementation need not convert all non-corresponding source characters to the same execution character.

13) The glyphs for the members of the basic source character set are intended to identify characters from the subset of
ISO/IEC 10646 which corresponds to the ASCII character set. However, because the mapping from source file characters to the
source character set (described in translation phase 1) is specified as implementation-defined, an implementation is required to
document how the basic source characters are represented in source files.
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hex-quad:

hexadecimal-digit hexadecimal-digit hexadecimal-digit hexadecimal-digit
universal-character-name:

\u hez-quad

\U hez-quad hex-quad

The character designated by the universal-character-name \UNNNNNNNN is that character whose character
short name in ISO/TEC 10646 is NNNNNNNN; the character designated by the universal-character-name \uNNNN
is that character whose character short name in ISO/IEC 10646 is 0000NNNN. If the hexadecimal value for a
universal-character-name corresponds to a surrogate code point (in the range 0xD800-0xDFFF, inclusive),
the program is ill-formed. Additionally, if the hexadecimal value for a universal-character-name outside a
character or string literal corresponds to a control character (in either of the ranges 0x00-0x1F or 0x7F-0x9F,
both inclusive) or to a character in the basic source character set, the program is ill-formed.

The basic execution character set and the basic execution wide-character set shall each contain all the
members of the basic source character set, plus control characters representing alert, backspace, and carriage
return, plus a null character (respectively, null wide character), whose representation has all zero bits. For
each basic execution character set, the values of the members shall be non-negative and distinct from one
another. In both the source and execution basic character sets, the value of each character after 0 in the
above list of decimal digits shall be one greater than the value of the previous. The execution character
set and the execution wide-character set are supersets of the basic execution character set and the basic
execution wide-character set, respectively. The values of the members of the execution character sets are
implementation-defined, and any additional members are locale-specific.

2.4 Trigraph sequences [lex.trigraph]

Before any other processing takes place, each occurrence of one of the following sequences of three characters
(“trigraph sequences”) is replaced by the single character indicated in Table 1.

Table 1 — Trigraph sequences

’ Trigraph  Replacement \ Trigraph  Replacement \ Trigraph  Replacement ‘

?77= # ?27( [ ?77< {
77/ \ ?7) ] 77> i
777 : 77! I 77— ~

[ Example:

becomes

#define arraycheck(a,b) a[b] || b[al

— end example]

No other trigraph sequence exists. Each 7 that does not begin one of the trigraphs listed above is not
changed.
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2.5 Preprocessing tokens [lex.pptoken]

preprocessing-token:
header-name
identifier
pp-number
character-literal
user-defined-character-literal
string-literal
user-defined-string-literal
Preprocessing-op-or-punc
each non-white-space character that cannot be one of the above

Each preprocessing token that is converted to a token (2.7) shall have the lexical form of a keyword, an
identifier, a literal, an operator, or a punctuator.

A preprocessing token is the minimal lexical element of the language in translation phases 3 through 6. The
categories of preprocessing token are: header names, identifiers, preprocessing numbers, character literals
(including user-defined character literals), string literals (including user-defined string literals), preprocessing
operators and punctuators, and single non-white-space characters that do not lexically match the other
preprocessing token categories. If a > or a " character matches the last category, the behavior is undefined.
Preprocessing tokens can be separated by white space; this consists of comments (2.8), or white-space
characters (space, horizontal tab, new-line, vertical tab, and form-feed), or both. As described in Clause 16,
in certain circumstances during translation phase 4, white space (or the absence thereof) serves as more
than preprocessing token separation. White space can appear within a preprocessing token only as part of
a header name or between the quotation characters in a character literal or string literal.

If the input stream has been parsed into preprocessing tokens up to a given character, the next preprocessing
token is the longest sequence of characters that could constitute a preprocessing token, even if that would
cause further lexical analysis to fail.

[ Ezample: The program fragment 1Ex is parsed as a preprocessing number token (one that is not a valid
floating or integer literal token), even though a parse as the pair of preprocessing tokens 1 and Ex might
produce a valid expression (for example, if Ex were a macro defined as +1). Similarly, the program fragment
1E1 is parsed as a preprocessing number (one that is a valid floating literal token), whether or not E is a
macro name. — end ezample ]

[ Ezample: The program fragment x+++++y is parsed as x ++ ++ + y, which, if x and y are of built-in types,
violates a constraint on increment operators, even though the parse x ++ + ++ y might yield a correct
expression. — end example|

2.6 Alternative tokens [lex.digraph)]

Alternative token representations are provided for some operators and punctuators.

In all respects of the language, each alternative token behaves the same, respectively, as its primary token,
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Table 2 — Alternative tokens

’ Alternative Primary \ Alternative Primary \ Alternative Primary ‘

<% { and && and_eq &=

%> } bitor | or_eq |=

<: L or [ xor_eq t=

> ] xor - not !

% # compl ~ not_eq 1=
hih: #it bitand &

except for its spelling.!® The set of alternative tokens is defined in Table 2.
2.7 Tokens [lex.token]

token:
identifier
keyword
literal
operator
punctuator

There are five kinds of tokens: identifiers, keywords, literals,'® operators, and other separators. Blanks,
horizontal and vertical tabs, newlines, formfeeds, and comments (collectively, “white space”), as described
below, are ignored except as they serve to separate tokens. [ Note: Some white space is required to sepa-
rate otherwise adjacent identifiers, keywords, numeric literals, and alternative tokens containing alphabetic
characters. — end note]

2.8 Comments [lex.comment]

The characters /* start a comment, which terminates with the characters */. These comments do not
nest. The characters // start a comment, which terminates with the next new-line character. If there is a
form-feed or a vertical-tab character in such a comment, only white-space characters shall appear between it
and the new-line that terminates the comment; no diagnostic is required. [ Note: The comment characters
//, /*, and */ have no special meaning within a // comment and are treated just like other characters.
Similarly, the comment characters // and /* have no special meaning within a /* comment. — end note]

2.9 Header names [lex.header]

header-name:
< h-char-sequence >
" g-char-sequence "
h-char-sequence:
h-char
h-char-sequence h-char
h-char:
any member of the source character set except new-line and >

14) These include “digraphs” and additional reserved words. The term “digraph” (token consisting of two characters) is not
perfectly descriptive, since one of the alternative preprocessing-tokens is %:%: and of course several primary tokens contain two
characters. Nonetheless, those alternative tokens that aren’t lexical keywords are colloquially known as “digraphs”.

15) Thus the “stringized” values (16.3.2) of [ and <: will be different, maintaining the source spelling, but the tokens can
otherwise be freely interchanged.

16) Literals include strings and character and numeric literals.
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g-char-sequence:
g-char
g-char-sequence q-char

g-char:
any member of the source character set except new-line and "

Header name preprocessing tokens shall only appear within a #include preprocessing directive (16.2). The
sequences in both forms of header-names are mapped in an implementation-defined manner to headers or
to external source file names as specified in 16.2.

If either of the characters ’ or \, or either of the character sequences /* or // appears in a ¢-char-sequence
or a h-char-sequence, or the character " appears in a h-char-sequence, the behavior is undefined.!”

2.10 Preprocessing numbers [lex.ppnumber]

pp-number:
digit
. digit
pp-number digit
pp-number identifier-nondigit
pp-number e sign
pp-number E sign
pp-number .

Preprocessing number tokens lexically include all integral literal tokens (2.14.2) and all floating literal to-
kens (2.14.4).

A preprocessing number does not have a type or a value; it acquires both after a successful conversion (as
part of translation phase 7 (2.2)) to an integral literal token or a floating literal token.

2.11 Identifiers [lex.name]

identifier:
identifier-nondigit
identifier identifier-nondigit
identifier digit
identifier-nondigit:
nondigit
universal-character-name
other implementation-defined characters

nondigit: one of
abcdefghijklm
nopgrstuvwzxyz
ABCDEFGHIJKLM
NOPQRSTUVWIXYZ _
digit: one of
0123456789
An identifier is an arbitrarily long sequence of letters and digits. Each universal-character-name in an
identifier shall designate a character whose encoding in ISO 10646 falls into one of the ranges specified in
Annex A of TR 10176:2003. Upper- and lower-case letters are different. All characters are significant.!'®

17) Thus, sequences of characters that resemble escape sequences cause undefined behavior.

18) On systems in which linkers cannot accept extended characters, an encoding of the universal-character-name may be used
in forming valid external identifiers. For example, some otherwise unused character or sequence of characters may be used to
encode the \u in a universal-character-name. Extended characters may produce a long external identifier, but C++ does not
place a translation limit on significant characters for external identifiers. In C++, upper- and lower-case letters are considered
different for all identifiers, including external identifiers.
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In addition, some identifiers are reserved for use by C++ implementations and standard libraries (17.6.3.3.2)
and shall not be used otherwise; no diagnostic is required.

2.12 Keywords [lex.key]

The identifiers shown in Table 3 are reserved for use as keywords (that is, they are unconditionally treated
as keywords in phase 7) except in an attribute-token (7.6.1):

Table 3 — Keywords

alignof decltype goto return typedef
asm default if short typeid
auto delete inline signed typename
bool double int sizeof union
break do long static unsigned
case dynamic_cast mutable static_assert wusing
catch else namespace static_cast virtual
char16_t enum new struct void
char32_t explicit nullptr switch volatile
char export operator template wchar_t
class extern private this while
const false protected thread_local

constexpr float public throw

const_cast for register true

continue friend reinterpret_cast try

Furthermore, the alternative representations shown in Table 4 for certain operators and punctuators (2.6)
are reserved and shall not be used otherwise:

Table 4 — Alternative representations

and and_eq bitand bitor compl not
not_eq or or_eq  Xor xXor_eq
2.13 Operators and punctuators [lex.operators]

The lexical representation of C++ programs includes a number of preprocessing tokens which are used in
the syntax of the preprocessor or are converted into tokens for operators and punctuators:

preprocessing-op-or-punc: one of

{ } [ ] # ## ( )

<: > <% > e hoth: ; :

new delete ? HH . L ¥

+ - * / A - & | ~
! = < > += -= *= = %=
c= &= = << >> >>= <<= == I=
<= >= && I ++ -= , =>% ->
and and_eq bitand bitor compl not not_eq

or or_eq xor xor_eq
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Each preprocessing-op-or-punc is converted to a single token in translation phase 7 (2.2).

2.14 Literals [lex.literal]
2.14.1 Kinds of literals [lex.literal.kinds]

There are several kinds of literals.!?

literal:
integer-literal
character-literal
floating-literal
string-literal
boolean-literal
pointer-literal
user-defined-literal

2.14.2 Integer literals [lex.icon]

integer-literal:
decimal-literal integer-suffizop:
octal-literal integer-suffizop:
hezadecimal-literal integer-suffizop:

decimal-literal:
nonzero-digit
decimal-literal digit

octal-literal:
0
octal-literal octal-digit

hezadecimal-literal:
0x hexadecimal-digit
0X hexadecimal-digit
hexadecimal-literal hexadecimal-digit

nonzero-digit: one of
123456789

octal-digit: one of
01234567

hezxadecimal-digit: one of
0123456789
abcdef
ABCDEF
integer-suffix:
unsigned-suffiz long-suffizop:
unsigned-suffiz long-long-suffizop:
long-suffiz unsigned-suffizop:
long-long-suffix unsigned-suffizop:
unsigned-suffiz: one of
ul
long-suffiz: one of
1L
long-long-suffix: one of
11 LL

19) The term “literal” generally designates, in this International Standard, those tokens that are called “constants” in ISO C.
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An integer literal is a sequence of digits that has no period or exponent part. An integer literal may have
a prefix that specifies its base and a suffix that specifies its type. The lexically first digit of the sequence
of digits is the most significant. A decimal integer literal (base ten) begins with a digit other than 0 and
consists of a sequence of decimal digits. An octal integer literal (base eight) begins with the digit 0 and
consists of a sequence of octal digits.?® A heradecimal integer literal (base sixteen) begins with 0x or 0X and
consists of a sequence of hexadecimal digits, which include the decimal digits and the letters a through f
and A through F with decimal values ten through fifteen. | Ezample: the number twelve can be written 12,
014, or 0XC. — end example]

The type of an integer literal is the first of the corresponding list in Table 5 in which its value can be
represented.

Table 5 — Types of integer constants

Suffix Decimal constant Octal or hexadecimal constant
none int int
long int unsigned int
long long int long int
unsigned long int
long long int
unsigned long long int
uorU unsigned int unsigned int
unsigned long int unsigned long int
unsigned long long int | unsigned long long int
lorlL long int long int
long long int unsigned long int
long long int
unsigned long long int
Bothuor U | unsigned long int unsigned long int
and 1 or L unsigned long long int | unsigned long long int
11 or LL long long int long long int
unsigned long int
BothuorU | unsigned long long int | unsigned long long int
and 11 or LL

3 If an integer literal cannot be represented by any type in its list and an extended integer type can represent

its value, it may have that extended integer type. If all of the types in the list for the literal are signed, the
extended integer type shall be signed. If all of the types in the list for the literal are unsigned, the extended
integer type shall be unsigned. If the list contains both signed and unsigned types, the extended integer
type may be signed or unsigned. A program is ill-formed if one of its translation units contains an integer
literal that cannot be represented by any of the allowed types.

2.14.3 Character literals [lex.ccon]

character-literal:
> c-char-sequence °
u’ c-char-sequence °’
U’ c-char-sequence ’
L’ c-char-sequence ’

20) The digits 8 and 9 are not octal digits.
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c-char-sequence:
c-char
c-char-sequence c-char

c-char:
any member of the source character set except
the single-quote ’, backslash \, or new-line character
escape-sequence
universal-character-name
escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence

stmple-escape-sequence: one of

VoA N7\

\a o \Mf \n \r \t \v
octal-escape-sequence:

\ octal-digit

\ octal-digit octal-digit

\ octal-digit octal-digit octal-digit
hexadecimal-escape-sequence:

\x hezxadecimal-digit

hexadecimal-escape-sequence hexadecimal-digit

A character literal is one or more characters enclosed in single quotes, as in ’x’, optionally preceded by
one of the letters u, U, or L, as in u’y’, U’z’, or L’x’, respectively. A character literal that does not begin
with u, U, or L is an ordinary character literal, also referred to as a narrow-character literal. An ordinary
character literal that contains a single c-char has type char, with value equal to the numerical value of the
encoding of the c-char in the execution character set. An ordinary character literal that contains more than
one c-char is a multicharacter literal. A multicharacter literal has type int and implementation-defined
value.

A character literal that begins with the letter u, such as u’y’, is a character literal of type char16_t. The
value of a char16_t literal containing a single c-char is equal to its ISO 10646 code point value, provided that
the code point is representable with a single 16-bit code unit. (That is, provided it is a basic multi-lingual
plane code point.) If the value is not representable within 16 bits, the program is ill-formed. A char16_t
literal containing multiple c-chars is ill-formed. A character literal that begins with the letter U, such as
U’z’, is a character literal of type char32_t. The value of a char32_t literal containing a single c-char is
equal to its ISO 10646 code point value. A char32_t literal containing multiple c-chars is ill-formed. A
character literal that begins with the letter L, such as L’x’, is a wide-character literal. A wide-character
literal has type wchar_t.2! The value of a wide-character literal containing a single c-char has value equal
to the numerical value of the encoding of the c-char in the execution wide-character set. The value of a
wide-character literal containing multiple c-chars is implementation-defined.

Certain nongraphic characters, the single quote ’, the double quote ", the question mark ?,?2 and the
backslash \, can be represented according to Table 6. The double quote " and the question mark 7, can
be represented as themselves or by the escape sequences \" and \? respectively, but the single quote °’
and the backslash \ shall be represented by the escape sequences \’ and \\ respectively. Escape sequences
in which the character following the backslash is not listed in Table 6 are conditionally-supported, with
implementation-defined semantics. An escape sequence specifies a single character.

The escape \ooo consists of the backslash followed by one, two, or three octal digits that are taken to specify

21) They are intended for character sets where a character does not fit into a single byte.
22) Using an escape sequence for a question mark can avoid accidentally creating a trigraph.
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Table 6 — Escape sequences

new-line NL(LF) \n
horizontal tab ~ HT \t
vertical tab vT \v
backspace BS \b
carriage return = CR \r
form feed FF \f
alert BEL \a
backslash \ \\
question mark 7 \?
single quote ’ \?
double quote " \"
octal number 000 \ooo
hex number hhh \xhhh

the value of the desired character. The escape \xhhh consists of the backslash followed by x followed by one
or more hexadecimal digits that are taken to specify the value of the desired character. There is no limit to
the number of digits in a hexadecimal sequence. A sequence of octal or hexadecimal digits is terminated by
the first character that is not an octal digit or a hexadecimal digit, respectively. The value of a character
literal is implementation-defined if it falls outside of the implementation-defined range defined for char (for
literals with no prefix), char16_t (for literals prefixed by ’u’), char32_t (for literals prefixed by *U’), or
wchar_t (for literals prefixed by ’L”).

A universal-character-name is translated to the encoding, in the execution character set, of the character
named. If there is no such encoding, the universal-character-name is translated to an implementation-
defined encoding. [Note: in translation phase 1, a universal-character-name is introduced whenever an
actual extended character is encountered in the source text. Therefore, all extended characters are described
in terms of universal-character-names. However, the actual compiler implementation may use its own native
character set, so long as the same results are obtained. — end note |

2.14.4 Floating literals [lex.fcon]

floating-literal:
fractional-constant exponent-partop: floating-suffizep:
digit-sequence exponent-part floating-suffizop:
fractional-constant:
digit-sequenceop; . digit-sequence
digit-sequence .
exponent-part:
e sign.p: digit-sequence
E signop: digit-sequence
sign: one of
+ -
digit-sequence:
digit
digit-sequence digit
floating-suffiz: one of
f1FL
A floating literal consists of an integer part, a decimal point, a fraction part, an e or E, an optionally signed
integer exponent, and an optional type suffix. The integer and fraction parts both consist of a sequence of
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decimal (base ten) digits. Either the integer part or the fraction part (not both) can be omitted; either the
decimal point or the letter e (or E ) and the exponent (not both) can be omitted. The integer part, the
optional decimal point and the optional fraction part form the significant part of the floating literal. The
exponent, if present, indicates the power of 10 by which the significant part is to be scaled. If the scaled
value is in the range of representable values for its type, the result is the scaled value if representable, else the
larger or smaller representable value nearest the scaled value, chosen in an implementation-defined manner.
The type of a floating literal is double unless explicitly specified by a suffix. The suffixes £ and F specify
float, the suffixes 1 and L specify long double. If the scaled value is not in the range of representable
values for its type, the program is ill-formed.

2.14.5 String literals [lex.string]

string-literal:
" s-char-sequenceop; "
u8" s-char-sequenceop; "
u" s-char-sequenceopt "
U" s-char-sequenceopt "
L" s-char-sequenceop; "
R raw-string
u8R raw-string
uR raw-string
UR raw-string
LR raw-string

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
any member of the source character set except
the double-quote ", backslash \, or new-line character
escape-sequence
universal-character-name

raw-string:
" d-char-sequenceo,p: [ T-char-sequenceop: 1 d-char-sequenceop: "

r-char-sequence:
r-char
r-char-sequence r-char

r-char:
any member of the source character set, except
(1), a backslash \followed by a u or U, or
(2), a right square bracket 1 followed by the initial d-char-sequence
(which may be empty) followed by a double quote ".
universal-character-name

d-char-sequence:
d-char
d-char-sequence d-char

d-char:
any member of the basic source character set except:
space, the left square bracket [, the right square bracket 1,
and the control characters representing horizontal tab,
vertical tab, form feed, and newline.
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A string literal is a sequence of characters (as defined in 2.14.3) surrounded by double quotes, optionally
prefixed by R, u8, u8R, u, uR, U, UR, L, or LR, as in "...", R"[...]1" u8"..." uBR"#x[...JTxx" u"...",
uR"*x~[. .. J*~" U"..." UR"zzz[...lzzz", L"..." or LR"[...]" respectively.

A string literal that has an R in the prefix is a raw string literal. The d-char-sequence serves as a delimiter.
The terminating d-char-sequence of a raw-string is the same sequence of characters as the initial d-char-
sequence. A d-char-sequence shall consist of at most 16 characters.

[ Note: The characters ’ [> and ’]’ are permitted in a raw-string. Thus, R"delimiter[[a-z]]delimiter"
is equivalent to "[a-z]". — end note]

[ Note: A source-file new-line in a raw string literal results in a new-line in the resulting execution string-
literal, unless preceded by a backslash. Assuming no whitespace at the beginning of lines in the following
example, the assert will succeed:

const char *p = R"[a\
b
cl";

assert(std::strcmp(p, "ab\nc") == 0);

— end note ]

A string literal that does not begin with u8, u, U, or L is an ordinary string literal, and is initialized with
the given characters.

A string literal that begins with u8, such as u8"asdf", is a UTF-8 string literal and is initialized with the
given characters as encoded in UTF-8.

Ordinary string literals and UTF-8 string literals are also referred to as narrow string literals. A narrow
string literal has type “array of n const char”, where n is the size of the string as defined below, and has
static storage duration (3.7).

A string literal that begins with u, such as u"asdf", is a char16_t string literal. A char16_t string literal
has type “array of n const chari16_t”, where n is the size of the string as defined below; it has static storage
duration and is initialized with the given characters. A single c-char may produce more than one char16_t
character in the form of surrogate pairs.

A string literal that begins with U, such as U"asdf", is a char32_t string literal. A char32_t string literal
has type “array of n const char32_t”, where n is the size of the string as defined below; it has static storage
duration and is initialized with the given characters.

A string literal that begins with L, such as L"asdf", is a wide string literal. A wide string literal has type
“array of n const wchar_t”, where n is the size of the string as defined below; it has static storage duration
and is initialized with the given characters.

Whether all string literals are distinct (that is, are stored in nonoverlapping objects) is implementation-
defined. The effect of attempting to modify a string literal is undefined.

In translation phase 6 (2.2), adjacent string literals are concatenated. If both string literals have the same
prefix, the resulting concatenated string literal has that prefix. If one string literal has no prefix, it is treated
as a string literal of the same prefix as the other operand. If a UTF-8 string literal token is adjacent to a
wide string literal token, the program is ill-formed. Any other concatenations are conditionally supported
with implementation-defined behavior. [Note: This concatenation is an interpretation, not a conversion.
— end note] [ Example: Here are some examples of valid concatenations:

— end example|

Characters in concatenated strings are kept distinct.
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Table 7 — String literal concatenations

Source Means Source Means Source Means
ulIall ullbll ullabﬂ Ullall Ullbll Ullabll Lllall Lllbll Lllabll
ullall ||bl| ullabll Ullall |Ibl| Ullabll Lllall Ilbll Lllabll
||al| ullbll ullabll ||al| U||b|l U||abll Ilall Lllbll Lllabll

[ Ezample:

"\XA" ngn

contains the two characters *\xA’ and ’B’ after concatenation (and not the single hexadecimal character
’\xAB’). —end example]

After any necessary concatenation, in translation phase 7 (2.2), \0’ is appended to every string literal so
that programs that scan a string can find its end.

Escape sequences in non-raw string literals and universal-character-names in string literals have the same
meaning as in character literals (2.14.3), except that the single quote ’ is representable either by itself or
by the escape sequence \’, and the double quote " shall be preceded by a \. In a narrow string literal, a
universal-character-name may map to more than one char element due to multibyte encoding. The size of
a char32_t or wide string literal is the total number of escape sequences, universal-character-names, and
other characters, plus one for the terminating U’\0’ or L’\0’. The size of a char16_t string literal is
the total number of escape sequences, universal-character-names, and other characters, plus one for each
character requiring a surrogate pair, plus one for the terminating u’\0’. [Note: The size of a charl6_t
string literal is the number of code units, not the number of characters. — end note] Within char32_t and
char16_t literals, any universal-character-names shall be within the range 0x0 to 0x10FFFF. The size of a
narrow string literal is the total number of escape sequences and other characters, plus at least one for the
multibyte encoding of each universal-character-name, plus one for the terminating >\0°.

2.14.6 Boolean literals [lex.bool]
boolean-literal:
false
true

The Boolean literals are the keywords false and true. Such literals are rvalues and have type bool.
2.14.7 Pointer literals [lex.nullptr]

pointer-literal:
nullptr

The pointer literal is the keyword nullptr. It is an rvalue of type std: :nullptr_t.
2.14.8 User-defined literals [lex.ext]

user-defined-literal:
user-defined-integer-literal
user-defined-floating-literal
user-defined-string-literal
user-defined-character-literal

user-defined-integer-literal:
decimal-literal ud-suffiz
octal-literal ud-suffix
hexadecimal-literal ud-suffix

§2.14.8 28



©ISO/IEC N2960=09-0150

user-defined-floating-literal:
fractional-constant exponent-partop: ud-suffic
digit-sequence exponent-part ud-suffix

user-defined-string-literal:
string-literal ud-suffiz

user-defined-character-literal:
character-literal ud-suffix

ud-suffix:
identifier

If a token matches both user-defined-literal and another literal kind, it is treated as the latter. [ Fzample:
123_km, 1.2LL, "Hello"s are all user-defined-literals, but 12LL is an integer-literal. — end example]

A user-defined-literal is treated as a call to a literal operator or literal operator template (13.5.8). To
determine the form of this call for a given user-defined-literal L with wud-suffiz X, the literal-operator-id
whose literal suffix identifier is X is looked up in the context of L using the rules for unqualified name
lookup (3.4.1). Let S be the set of declarations found by this lookup. S shall not be empty.

If L is a user-defined-integer-literal, let n be the literal without its ud-suffix. If S contains a literal operator
with parameter type unsigned long long, the literal L is treated as a call of the form

operator "" X (n ULL)
Otherwise, S shall contain a raw literal operator or a literal operator template (13.5.8) but not both. If S
contains a raw literal operator the literal L is treated as a call of the form

operator "" X ("n")

Otherwise (S contains a literal operator template), L is treated as a call of the form

operator "" X <’ci’, ’c2’, ... ’ci’>(Q)
where n is the source character sequence c¢;ca...ci. [ Note: the sequence ¢jcs...c;, can only contain characters
from the basic source character set. — end note]

If L is a user-defined-floating-literal, let f be the literal without its ud-suffiz. If S contains a literal operator
with parameter type long double, the literal L is treated as a call of the form

operator "" X (f L)
Otherwise, S shall contain a raw literal operator or a literal operator template (13.5.8) but not both. If S
contains a raw literal operator the literal L is treated as a call of the form

operator L '¢ (ufu)

Otherwise (S contains a literal operator template), L is treated as a call of the form

operator "" X <’ci’, ’c2’, ... ’cx’>(Q)
where f is the source character sequence ¢jca...c. [ Note: the sequence c¢;ca...c, can only contain characters
from the basic source character set. — end note ]

If L is a user-defined-string-literal, let str be the literal without its ud-suffix and let len be the number of
characters (or code points) in str (i.e., its length excluding the terminating null character). The literal L is
treated as a call of the form

operator "" X (str , len )
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6 If L is a user-defined-character-literal, let ch be the literal without its ud-suffiz. The literal L is treated as
a call of the form

operator "" X (ch )

7 [ Example:
long double operator "" w(long double);
std::string operator "" w(const charl6_t*, size_t);
unsigned operator "" w(const charx);
int main() {
1.2w; // calls operator "" w(1.2L)
u"one"w; // calls operator "" w(u"one", 3)
12w; // calls operator "" w("12")
"two'"w; // error: no applicable literal operator
}

— end example ]

8 In translation phase 6 (2.2), adjacent string literals are concatenated and user-defined-string-literals are
considered string literals for that purpose. During concatenation, ud-suffizes are removed and ignored and
the concatenation process occurs as described in 2.14.5. At the end of phase 6, if a string literal is the result
of a concatenation involving at lease one user-defined-string-literal, all the participating user-defined-string-
literals shall have the same ud-suffiz and that suffix is applied to the result of the concatenation.

9 [ Ezample:

int main() {
L"A" "B" "C"x; // OK: same as L"ABC"x

"P"x "Q" "R"y; // error: two different ud-suffizes
}

— end example|
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3 Basic concepts [basic]

[ Note: this Clause presents the basic concepts of the C++ language. It explains the difference between an
object and a name and how they relate to the notion of an lvalue. It introduces the concepts of a declaration
and a definition and presents C++’s notion of type, scope, linkage, and storage duration. The mechanisms
for starting and terminating a program are discussed. Finally, this Clause presents the fundamental types
of the language and lists the ways of constructing compound types from these. — end note]

[ Note: this Clause does not cover concepts that affect only a single part of the language. Such concepts are
discussed in the relevant Clauses. — end note]

An entity is a value, object, variable, reference, function, enumerator, type, class member, template, template

specialization, namespace, or parameter pack—eeneept—or-coneept—nap.

A name is a use of an identifier (2.11), operator-function-id (13.5), conversion-function-id (12.3.2), or
template-id (14.3) that denotes an entity or label (6.6.4, 6.1).

Every name that denotes an entity is introduced by a declaration. Every name that denotes a label is
introduced either by a goto statement (6.6.4) or a labeled-statement (6.1).

A wvariable is introduced by the declaration of an object. The variable’s name denotes the object.

Some names denote types;€ ps; or templates. In general, whenever a name is encountered
it is necessary to determine Whether that name denotes one of these entities before continuing to parse the
program that contains it. The process that determines this is called name lookup (3.4).

Two names are the same if
— they are identifiers composed of the same character sequence, or
— they are operator-function-ids formed with the same operator, or
— they are conversion-function-ids formed with the same type, or
— they are template-ids that refer to the same class or function (14.5), or
— they are the names of literal operators (13.5.8) formed with the same literal suffix identifier.

A name used in more than one translation unit can potentially refer to the same entity in these translation
units depending on the linkage (3.5) of the name specified in each translation unit.

3.1 Declarations and definitions [basic.def]

A declaration (Clause 7) introduces names into a translation unit or redeclares names introduced by previous
declarations. A declaration specifies the interpretation and attributes of these names.

A declaration is a definition unless it declares a function without specifying the function’s body (8.4), it
contains the extern specifier (7.1.1) or a linkage-specification®® (7.5) and neither an initializer nor a function-
body, it declares a static data member in a class definition (9.4), it is a class name declaration (9.1), it is

23) Appearing inside the braced-enclosed declaration-seq in a linkage-specification does not affect whether a declaration is a
definition.
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an opaque-enum-declaration (7.2), or it is a typedef declaration (7.1.3), a using-declaration (7.3.3), or a

using-directive (7.3.4).

[ Ezample: all but one of the following are definitions:

int a; // defines a
extern const int ¢ = 1; // defines c
int f(int x) { return x+a; } // defines £ and defines x
struct S { int a; int b; }; // defines S, S::a, and S::b
struct X { // defines X
int x; // defines non-static data member x
static int y; // declares static data member y
XO: x0) {2 // defines a constructor of X
};
int X::y = 1; // defines X::y
enum { up, down }; // defines up and down
namespace N { int d; } // defines N and N: :d
namespace N1 = N; // defines N1
X anX; // defines anX

whereas these are just declarations:

extern int a; // declares a
extern comnst int c; // declares ¢

int f(int); // declares £

struct S; // declares S
typedef int Int; // declares Int
extern X anotherX; // declares anotherX
using N::d; // declares N: :d

— end example ]

3 [Note: in some circumstances, C++ implementations implicitly define the default constructor (12.1), copy
constructor (12.8), assignment operator (12.8), or destructor (12.4) member functions. [ Ezample: given

#include <string>

struct C {

std::string s; // std::string is the standard library class (Clause 21)
}
int main() {

C a;

Cb=aj;

b = a;

}

the implementation will implicitly define functions to make the definition of C equivalent to

struct C {
std::string s;
cO :s0O {12

C(const C& x): s(x.s) { }
C& operator=(const C& x) { s = x.s; return *this; }

cO {12
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— end example] — end note]
[ Note: a class name can also be implicitly declared by an elaborated-type-specifier (7.1.6.3). — end note]
A program is ill-formed if the definition of any object gives the object an incomplete type (3.9).

3.2 One definition rule [basic.def.odr]

No translation unit shall contain more than one definition of any variable, function, class type, eoreept;
coneept—map; enumeration type, or template.

An expression is potentially evaluated unless it is an unevaluated operand (Clause 5) or a subexpression
thereof. An object or non-overloaded function whose name appears as a potentially-evaluated expression
is used unless it is an object that satisfies the requirements for appearing in a constant expression (5.19)
and the lvalue-to-rvalue conversion (4.1) is immediately applied. A virtual member function is used if it is
not pure. An overloaded function is used if it is selected by overload resolution when referred to from a
potentially-evaluated expression. [ Note: this covers calls to named functions (5.2.2), operator overloading
(Clause 13), user-defined conversions (12.3.2), allocation function for placement new (5.3.4), as well as non-
default initialization (8.5). A copy constructor is used even if the call is actually elided by the implementation.
— end note] An allocation or deallocation function for a class is used by a new expression appearing in a
potentially-evaluated expression as specified in 5.3.4 and 12.5. A deallocation function for a class is used
by a delete expression appearing in a potentially-evaluated expression as specified in 5.3.5 and 12.5. A
non-placement allocation or deallocation function for a class is used by the definition of a constructor of that
class. A non-placement deallocation function for a class is used by the definition of the destructor of that
class, or by being selected by the lookup at the point of definition of a virtual destructor (12.4).2* A copy-
assignment function for a class is used by an implicitly-defined copy-assignment function for another class
as specified in 12.8. A default constructor for a class is used by default initialization or value initialization
as specified in 8.5. A constructor for a class is used as specified in 8.5. A destructor for a class is used as
specified in 12.4.

Every program shall contain exactly one definition of every non-inline function or object that is used in that
program; no diagnostic required. The definition can appear explicitly in the program, it can be found in the
standard or a user-defined library, or (when appropriate) it is implicitly defined (see 12.1, 12.4 and 12.8).
An inline function shall be defined in every translation unit in which it is used.

Exactly one definition of a class is required in a translation unit if the class is used in a way that requires the
class type to be complete. | Example: the following complete translation unit is well-formed, even though it
never defines X:

struct X; // declare X as a struct type
struct X* x1; // use X in pointer formation
X* x2; // use X in pointer formation

— end example] [ Note: the rules for declarations and expressions describe in which contexts complete class
types are required. A class type T must be complete if:

— an object of type T is defined (3.1), or
— a non-static class data member of type T is declared (9.2), or
— T is used as the object type or array element type in a new-expression (5.3.4), or

— an lvalue-to-rvalue conversion is applied to an lvalue referring to an object of type T (4.1), or

24) An implementation is not required to call allocation and deallocation functions from constructors or destructors; however,
this is a permissible implementation technique.
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— an expression is converted (either implicitly or explicitly) to type T (Clause 4, 5.2.3, 5.2.7, 5.2.9, 5.4),
or

— an expression that is not a null pointer constant, and has type other than void*, is converted to the
type pointer to T or reference to T using an implicit conversion (Clause 4), a dynamic_cast (5.2.7) or
a static_cast (5.2.9), or

— a class member access operator is applied to an expression of type T (5.2.5), or

— the typeid operator (5.2.8) or the sizeof operator (5.3.3) is applied to an operand of type T, or
— a function with a return type or argument type of type T is defined (3.1) or called (5.2.2), or

— a class with a base class of type T is defined (10), or

— an lvalue of type T is assigned to (5.17), or

— the type T is the subject of an alignof expression (5.3.6), or

— an ezception-declaration has type T, reference to T, or pointer to T (15.3).

— end note

5 There can be more than one definition of a class type (Clause 9), eoncept A s
enumeration type (7.2), inline function with external linkage (7.1.2), class template (Clause 14), non-static
function template (14.6.6), static data member of a class template (14.6.1.3), member function of a class
template (14.6.1.1), or template specialization for which some template parameters are not specified (14.8,
14.6.5) in a program provided that each definition appears in a different translation unit, and provided
the definitions satisfy the following requirements. Given such an entity named D defined in more than one
translation unit, then

— each definition of D shall consist of the same sequence of tokens; and

— in each definition of D, corresponding names, looked up according to 3.4, shall refer to an entity defined
within the definition of D, or shall refer to the same entity, after overload resolution (13.3) and after
matching of partial template specialization (14.9.3), except that a name can refer to a const object
with internal or no linkage if the object has the same literal type in all definitions of D, and the object
is initialized with a constant expression (5.19), and the value (but not the address) of the object is
used, and the object has the same value in all definitions of D; and

— in each definition of D, the overloaded operators referred to, the implicit calls to conversion functions,
constructors, operator new functions and operator delete functions, shall refer to the same function,
or to a function defined within the definition of D; and

— in each definition of D, a default argument used by an (implicit or explicit) function call is treated as
if its token sequence were present in the definition of D; that is, the default argument is subject to
the three requirements described above (and, if the default argument has sub-expressions with default
arguments, this requirement applies recursively).??

— if D is a class with an implicitly-declared constructor (12.1), it is as if the constructor was implicitly
defined in every translation unit where it is used, and the implicit definition in every translation unit
shall call the same constructor for a base class or a class member of D. [ Example:

//translation unit 1:
struct X {
X(int);
X(int, int);

25) 8.3.6 describes how default argument names are looked up.
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};

X::X@nt = 0) { }

class D: public X { };

D 42; // X(int) called by DO)

//translation unit 2:
struct X {
X(int);
X(int, int);
3
X::X(int = 0, int = 0) { }
class D: public X { }; // X(int, int) called by DO);
// DQ’s implicit definition
// violates the ODR

— end example]

If D is a template and is defined in more than one translation unit, then the last four requirements from the
list above shall apply to names from the template’s enclosing scope used in the template definition (14.7.3),
and also to dependent names at the point of instantiation (14.7.2). If the definitions of D satisfy all these
requirements, then the program shall behave as if there were a single definition of D. If the definitions of D
do not satisfy these requirements, then the behavior is undefined.

3.3 Scope [basic.scope]

3.3.1 Declarative regions and scopes [basic.scope.declarative]

Every name is introduced in some portion of program text called a declarative region, which is the largest part
of the program in which that name is valid, that is, in which that name may be used as an unqualified name
to refer to the same entity. In general, each particular name is valid only within some possibly discontiguous
portion of program text called its scope. To determine the scope of a declaration, it is sometimes convenient
to refer to the potential scope of a declaration. The scope of a declaration is the same as its potential scope
unless the potential scope contains another declaration of the same name. In that case, the potential scope
of the declaration in the inner (contained) declarative region is excluded from the scope of the declaration
in the outer (containing) declarative region.

[ Example: in

int j = 24;

int main() {
int 1 = j, j;
Jj = 42;

}

the identifier j is declared twice as a name (and used twice). The declarative region of the first j includes
the entire example. The potential scope of the first j begins immediately after that j and extends to the
end of the program, but its (actual) scope excludes the text between the , and the }. The declarative region
of the second declaration of j (the j immediately before the semicolon) includes all the text between { and
}, but its potential scope excludes the declaration of i. The scope of the second declaration of j is the same
as its potential scope. — end example]

The names declared by a declaration are introduced into the scope in which the declaration occurs, except
that the presence of a friend specifier (11.4), certain uses of the elaborated-type-specifier (7.1.6.3), and
using-directives (7.3.4) alter this general behavior.
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Given a set of declarations in a single declarative region, each of which specifies the same unqualified name,
— they shall all refer to the same entity, or all refer to functions and function templates; or

— exactly one declaration shall declare a class name or enumeration name that is not a typedef name
and the other declarations shall all refer to the same object or enumerator, or all refer to functions
and function templates; in this case the class name or enumeration name is hidden (3.3.11). [ Note: a
namespace name or a class template name must be unique in its declarative region (7.3.2, Clause 14).
— end note]

[ Note: these restrictions apply to the declarative region into which a name is introduced, which is not neces-
sarily the same as the region in which the declaration occurs. In particular, elaborated-type-specifiers (7.1.6.3)
and friend declarations (11.4) may introduce a (possibly not visible) name into an enclosing namespace; these
restrictions apply to that region. Local extern declarations (3.5) may introduce a name into the declarative
region where the declaration appears and also introduce a (possibly not visible) name into an enclosing

namespace; these restrictions apply to both regions. — end note]
[ Note: the name lookup rules are summarized in 3.4. — end note]
3.3.2 Point of declaration [basic.scope.pdecl]

The point of declaration for a name is immediately after its complete declarator (Clause 8) and before its
ingtializer (if any), except as noted below. [ Example:

int x = 12;
{int x = x; }
Here the second x is initialized with its own (indeterminate) value. — end example]

[ Note: a nonlocal name remains visible up to the point of declaration of the local name that hides
it.[ Example:

const int i = 2;

{ int 4i[il; }

declares a local array of two integers. — end example] — end note]

The point of declaration for a class or class template first declared by a class-specifier is immediately after
the identifier or simple-template-id (if any) in its class-head (Clause 9). The point of declaration for an
enumeration is immediately after the identifier (if any) in either its enum-specifier (7.2) or its first opaque-
enum-declaration (7.2), whichever comes first. The point of declaration of a template alias immediately
follows the identifier for the alias being declared.

The point of declaration for an enumerator is immediately after its enumerator-definition.[ Example:
const int x = 12;
{enum { x=x3; }

Here, the enumerator x is initialized with the value of the constant x, namely 12. — end ezample]

After the point of declaration of a class member, the member name can be looked up in the scope of its
class. [ Note: this is true even if the class is an incomplete class. For example,

struct X {

enum E { z = 16 };

int b[X::z]; // OK
};
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— end note
The point of declaration of a class first declared in an elaborated-type-specifier is as follows:
— for a declaration of the form
class-key identifier attribute-specifierop: ;
the identifier is declared to be a class-name in the scope that contains the declaration, otherwise
— for an elaborated-type-specifier of the form
class-key identifier

if the elaborated-type-specifier is used in the decl-specifier-seq or parameter-declaration-clause of a
function defined in namespace scope, the identifier is declared as a class-name in the namespace that
contains the declaration; otherwise, except as a friend declaration, the identifier is declared in the
smallest non-class, non-function-prototype scope that contains the declaration. [ Note: these rules also
apply within templates. — end note] [ Note: other forms of elaborated-type-specifier do not declare a
new name, and therefore must refer to an existing type-name. See 3.4.4 and 7.1.6.3. — end note]

The point of declaration for an injected-class-name (9) is immediately following the opening brace of the
class definition.

The point of declaration for a function-local predefined variable (8.4) is immediately before the function-body
of a function definition.

[ Note: friend declarations refer to functions or classes that are members of the nearest enclosing namespace,
but they do not introduce new names into that namespace (7.3.1.2). Function declarations at block scope
and object declarations with the extern specifier at block scope refer to declarations that are members of
an enclosing namespace, but they do not introduce new names into that scope. — end note |

[ Note: for point of instantiation of a template, see 14.7.4.1. — end note]

3.3.3 Local scope [basic.scope.local]

A name declared in a block (6.3) is local to that block. Its potential scope begins at its point of declara-
tion (3.3.2) and ends at the end of its declarative region.

The potential scope of a function parameter name (including one appearing in a 4 :
lambda-declarator ) or of a function-local predefined variable in a function definition (8. 4) begms at 1ts pomt
of declaration. If the function has a function-try-block the potential scope of a parameter or of a function-
local predefined variable ends at the end of the last associated handler, otherwise it ends at the end of the
outermost block of the function definition. A parameter name shall not be redeclared in the outermost block
of the function definition nor in the outermost block of any handler associated with a function-try-block.
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The name in a catch exception-declaration is local to the handler and shall not be redeclared in the outermost
block of the handler.

Names declared in the for-init-statement, the for-range-declaration, and in the condition of if, while, for,
and switch statements are local to the if, while, for, or switch statement (including the controlled
statement), and shall not be redeclared in a subsequent condition of that statement nor in the outermost
block (or, for the if statement, any of the outermost blocks) of the controlled statement; see 6.4.

3.3.4 Function prototype scope [basic.scope.proto]

In a function declaration, or in any function declarator except the declarator of a function definition (8.4),
names of parameters (if supplied) have function prototype scope, which terminates at the end of the nearest
enclosing function declarator.

3.3.5 Function scope [basic.funscope]

Labels (6.1) have function scope and may be used anywhere in the function in which they are declared. Only
labels have function scope.

3.3.6 Namespace scope [basic.scope.namespace]

The declarative region of a namespace-definition is its namespace-body. The potential scope denoted by
an original-namespace-name is the concatenation of the declarative regions established by each of the
namespace-definitions in the same declarative region with that original-namespace-name. Entities declared
in a namespace-body are said to be members of the namespace, and names introduced by these declarations
into the declarative region of the namespace are said to be member names of the namespace. A namespace
member name has namespace scope. Its potential scope includes its namespace from the name’s point of
declaration (3.3.2) onwards; and for each using-directive (7.3.4) that nominates the member’s namespace,
the member’s potential scope includes that portion of the potential scope of the using-directive that follows
the member’s point of declaration. [ Exzample:

namespace N {
int i;
int g(int a) { return a; }
int jO;
void qQ);
}
namespace { int 1=1; }
// the potential scope of 1 is from its point of declaration
// to the end of the translation unit

namespace N {
int g(char a) { // overloads N::g(int)

return l+a; // 1 is from unnamed namespace
}
int i; // error: duplicate definition
int jO; // OK: duplicate function declaration
int jO { // OK: definition of N::j()
return g(i); // calls N: :g(int)
}
int qQ; // error: different return type

§ 3.3.6 38



1

©ISO/IEC N2960=09-0150

— end example]

A namespace member can also be referred to after the :: scope resolution operator (5.1) applied to the name
of its namespace or the name of a namespace which nominates the member’s namespace in a using-directive;
see 3.4.3.2.

The outermost declarative region of a translation unit is also a namespace, called the global namespace. A
name declared in the global namespace has global namespace scope (also called global scope). The potential
scope of such a name begins at its point of declaration (3.3.2) and ends at the end of the translation unit
that is its declarative region. Names with global namespace scope are said to be global.

3.3.7 Class scope [basic.scope.class]

The following rules describe the scope of names declared in classes.

1) The potential scope of a name declared in a class consists not only of the declarative region following
the name’s point of declaration, but also of all function bodies, brace-or-equal-initializers of non-static
data members, and default arguments in that class (including such things in nested classes).

2) A name N used in a class S shall refer to the same declaration in its context and when re-evaluated in
the completed scope of S. No diagnostic is required for a violation of this rule.

3) If reordering member declarations in a class yields an alternate valid program under (1) and (2), the
program is ill-formed, no diagnostic is required.

4) A name declared within a member function hides a declaration of the same name whose scope extends
to or past the end of the member function’s class.

5) The potential scope of a declaration that extends to or past the end of a class definition also ex-
tends to the regions defined by its member definitions, even if the members are defined lexically
outside the class (this includes static data member definitions, nested class definitions, member func-
tion definitions (including the member function body and any portion of the declarator part of such
definitions which follows the declarator-id, including a parameter-declaration-clause and any default
arguments (8.3.6).] Ezample:

typedef int c;
enum { i = 1 };

class X {
char v[il; // error: i refers to ::i
// but when reevaluated is X: :1i
int £() { return sizeof(c); } // OK: X::c

char c;
enum { i = 2 };
};
typedef char* T;
struct Y {
T a; // error: T refers to ::T

// but when reevaluated is Y: : T
typedef long T;
T b;
};

typedef int I;

class D {
typedef I I; // error, even though no reordering involved
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};

— end example]
2 The name of a class member shall only be used as follows:
— in the scope of its class (as described above) or a class derived (Clause 10) from its class,

— after the . operator applied to an expression of the type of its class (5.2.5) or a class derived from its
class,

— after the -> operator applied to a pointer to an object of its class (5.2.5) or a class derived from its
class,

— after the :: scope resolution operator (5.1) applied to the name of its class or a class derived from its
class.

3.3.8 Concept scope [basic.scope.concept]

[ Example:

concept A<class B> {
void g(const B&);
}

template<class T, class U>
requires A<U>
void £(T & x, U & y) {
g(y); // binds to A<U’>"::g(const U’ &)
g(x); // error: no overload of g takes T' values.

}
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e

3.3.10 Enumeration scope [basic.scope.enum)|

The name of a scoped enumerator (7.2) has enumeration scope. Its potential scope begins at its point of
declaration and terminates at the end of the enum-specifier.

3.3.11 Name hiding [basic.scope.hiding)]

A name can be hidden by an explicit declaration of that same name in a nested declarative regions—mere

refined-eoneept{22); or derived class (10.2).

A class name (9.1) or enumeration name (7.2) can be hidden by the name of an object, function, or enu-
merator declared in the same scope. If a class or enumeration name and an object, function, or enumerator
are declared in the same scope (in any order) with the same name, the class or enumeration name is hidden
wherever the object, function, or enumerator name is visible.

In a member function definition, the declaration of a local name hides the declaration of a member of the
class with the same name; see 3.3.7. The declaration of a member in a derived class (Clause 10) hides the
declaration of a member of a base class of the same name; see 10.2.

During the lookup of a name qualified by a namespace name, declarations that would otherwise be made
visible by a using-directive can be hidden by declarations with the same name in the namespace containing
the using-directive; see (3.4.3.2).

If a name is in scope and is not hidden it is said to be wisible.

3.4 Name lookup [basic.lookup]

The name lookup rules apply unlformly to all names (including typedef-names (7.1.3), namespace-names (7.3),

-5 22y and class-names (9.1)) wherever the grammar allows such
names in the context dlscussed by a partlcular rule. Name lookup associates the use of a name with a
declaration (3.1) of that name. Name lookup shall find an unambiguous declaration for the name (see 10.2).
Name lookup may associate more than one declaration with a name if it finds the name to be a function
name; the declarations are said to form a set of overloaded functions (13.1). Overload resolution (13.3) takes
place after name lookup has succeeded. The access rules (Clause 11) are considered only once name lookup
and function overload resolution (if applicable) have succeeded. Only after name lookup, function overload
resolution (if applicable) and access checking have succeeded are the attributes introduced by the name’s
declaration used further in expression processing (Clause 5).

A name “looked up in the context of an expression” is looked up as an unqualified name in the scope where
the expression is found.

The injected-class-name of a class (Clause 9) is also considered to be a member of that class for the purposes
of name hiding and lookup.

[ Note: 3.5 discusses linkage issues. The notions of scope, point of declaration and name hiding are discussed
in 3.3. — end note]

3.4.1 Unqualified name lookup [basic.lookup.unquall]

In all the cases listed in 3.4.1, the scopes are searched for a declaration in the order listed in each of the
respective categories; name lookup ends as soon as a declaration is found for the name. If no declaration is
found, the program is ill-formed.
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The declarations from the namespace nominated by a using-directive become visible in a namespace enclosing
the using-directive; see 7.3.4. For the purpose of the unqualified name lookup rules described in 3.4.1, the
declarations from the namespace nominated by the using-directive are considered members of that enclosing
namespace.

The lookup for an unqualified name used as the postfiz-expression of a function call is described in 3.4.2.
[ Note: for purposes of determining (during parsing) whether an expression is a postfiz-expression for a func-
tion call, the usual name lookup rules apply. The rules in 3.4.2 have no effect on the syntactic interpretation
of an expression. For example,

typedef int f;
namespace N {
struct A {
friend void f(A &);
operator int();
void g(A a) {
int i = £(a); // £ is the typedef, not the friend
// function: equivalent to int(a)
}
};
}

Because the expression is not a function call, the argument-dependent name lookup (3.4.2) does not apply
and the friend function f is not found. — end note]

A name used in global scope, outside of any function, class or user-declared namespace, shall be declared
before its use in global scope.

A name used in a user-declared namespace outside of the definition of any function or class shall be declared
before its use in that namespace or before its use in a namespace enclosing its namespace.

A name used in the definition of a function following the function’s declarator-id?® that is a member of
namespace N (where, only for the purpose of exposition, N could represent the global scope) shall be declared
before its use in the block in which it is used or in one of its enclosing blocks (6.3) or, shall be declared
before its use in namespace N or, if N is a nested namespace, shall be declared before its use in one of N’s
enclosing namespaces. | Example:

namespace A {
namespace N {
void £();
}
}
void A::N::f() {
i = b5;
// The following scopes are searched for a declaration of i:
// 1) outermost block scope of A::N::f, before the use of i
// 2) scope of namespace N
// 8) scope of namespace A
// 4) global scope, before the definition of A::N::f

— end example|

26) This refers to unqualified names that occur, for instance, in a type or default argument expression in the parameter-
declaration-clause or used in the function body.
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7 A name used in the definition of a class X outside of a member function body or nested class definition?”
shall be declared in one of the following ways:

— before its use in class X or be a member of a base class of X (10.2), or

— if X is a nested class of class Y (9.7), before the definition of X in Y, or shall be a member of a base
class of Y (this lookup applies in turn to Y ’s enclosing classes, starting with the innermost enclosing

class),?8 or

— if X is a local class (9.8) or is a nested class of a local class, before the definition of class X in a block
enclosing the definition of class X, or

— if X is a member of namespace N, or is a nested class of a class that is a member of N, or is a local class
or a nested class within a local class of a function that is a member of N, before the definition of class
X in namespace N or in one of N ’s enclosing namespaces.

[ Ezample:

namespace M {
class B { };
}

namespace N {
class Y : public M::B {
class X {
int alil;
};
};
}

// The following scopes are searched for a declaration of i:
// 1) scope of class N::Y::X, before the use of i

// 2) scope of class N: :Y, before the definition of N::Y::X
// 3) scope of N::Y’s base class M: :B

// 4) scope of namespace N, before the definition of N::Y
// &) global scope, before the definition of N

— end example] [ Note: when looking for a prior declaration of a class or function introduced by a friend
declaration, scopes outside of the innermost enclosing namespace scope are not considered; see 7.3.1.2. —
end note| [ Note: 3.3.7 further describes the restrictions on the use of names in a class definition. 9.7 further
describes the restrictions on the use of names in nested class definitions. 9.8 further describes the restrictions
on the use of names in local class definitions. — end note|

8 A name used in the definition of a member function (9.3) of class X following the function’s declarator-id 2°
or in the brace-or-equal-initializer of a non-static data member (9.2) of class X shall be declared in one of
the following ways:

— before its use in the block in which it is used or in an enclosing block (6.3), or

— shall be a member of class X or be a member of a base class of X (10.2), or

27) This refers to unqualified names following the class name; such a name may be used in the base-clause or may be used in
the class definition.

28) This lookup applies whether the definition of X is nested within Y’s definition or whether X’s definition appears in a
namespace scope enclosing Y ’s definition (9.7).

29) That is, an unqualified name that occurs, for instance, in a type or default argument expression in the parameter-
declaration-clause or in the function body.
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— if X is a nested class of class Y (9.7), shall be a member of Y, or shall be a member of a base class of Y
(this lookup applies in turn to Y’s enclosing classes, starting with the innermost enclosing class),*? or

— if X is a local class (9.8) or is a nested class of a local class, before the definition of class X in a block
enclosing the definition of class X, or

— if X is a member of namespace N, or is a nested class of a class that is a member of N, or is a local class
or a nested class within a local class of a function that is a member of N, before the use of the name,
in namespace N or in one of N ’s enclosing namespaces.

[ Ezample:

class B { };
namespace M {
namespace N {
class X : public B {

void £();
};
}
}
void M::N::X::f() {
i= 16;
}

// The following scopes are searched for a declaration of i:
// 1) outermost block scope of M::N::X::£, before the use of i
// 2) scope of class M::N::X

// 8) scope of M::N::X’s base class B

// 4) scope of namespace M: :N

// 5) scope of namespace M

// 6) global scope, before the definition of M::N::X::f

— end example] [ Note: 9.3 and 9.4 further describe the restrictions on the use of names in member function
definitions. 9.7 further describes the restrictions on the use of names in the scope of nested classes. 9.8
further describes the restrictions on the use of names in local class definitions. — end note ]

Name lookup for a name used in the definition of a friend function (11.4) defined inline in the class granting
friendship shall proceed as described for lookup in member function definitions. If the friend function is
not defined in the class granting friendship, name lookup in the friend function definition shall proceed as
described for lookup in namespace member function definitions.

In a friend declaration naming a member function, a name used in the function declarator and not part
of a template-argument in a template-id is first looked up in the scope of the member function’s class. If it
is not found, or if the name is part of a template-argument in a template-id, the look up is as described for
unqualified names in the definition of the class granting friendship. [ Example:

struct A {
typedef int AT;
void f1(AT);
void f2(float);

};
struct B {
typedef float BT;
friend void A::f1(AT); // parameter type is A: :AT

30) This lookup applies whether the member function is defined within the definition of class X or whether the member function
is defined in a namespace scope enclosing X’s definition.
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friend void A::f2(BT); // parameter type is B: :BT
};

— end example|

During the lookup for a name used as a default argument (8.3.6) in a function parameter-declaration-clause
or used in the expression of a mem-initializer for a constructor (12.6.2), the function parameter names are
visible and hide the names of entities declared in the block, class or namespace scopes containing the function
declaration. [ Note: 8.3.6 further describes the restrictions on the use of names in default arguments. 12.6.2
further describes the restrictions on the use of names in a ctor-initializer. — end note|

During the lookup of a name used in the constant-expression of an enumerator-definition, previously declared
enumerators of the enumeration are visible and hide the names of entities declared in the block, class, or
namespace scopes containing the enum-specifier.

A name used in the definition of a static data member of class X (9.4.2) (after the qualified-id of the static
member) is looked up as if the name was used in a member function of X. [ Note: 9.4.2 further describes the
restrictions on the use of names in the definition of a static data member. — end note|

If a variable member of a namespace is defined outside of the scope of its namespace then any name used in
the definition of the variable member (after the declarator-id) is looked up as if the definition of the variable
member occurred in its namespace. | Example:

namespace N {
int i = 4;
extern int j;

}
int i = 2;
int N::j = i; J/N:ij ==

— end example]

A name used in the handler for a function-try-block (Clause 15) is looked up as if the name was used in
the outermost block of the function definition. In particular, the function parameter names shall not be
redeclared in the ezception-declaration nor in the outermost block of a handler for the function-try-block.
Names declared in the outermost block of the function definition are not found when looked up in the scope
of a handler for the function-try-block. [ Note: but function parameter names are found. — end note

typedef int result_type;
concept C<class F, class T1> {

result_type operator() (F&, T1);

typename result_type; // error result_type used before declared
}
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[ Note: the rules for name lookup in template definitions are described in 14.7. — end note]

3.4.2 Argument-dependent name lookup [basic.lookup.argdep]

When an unqualified name is used as the postfiz-expression in a function call (5.2.2), other namespaces not
considered during the usual unqualified lookup (3.4.1) may be searched, and in those namespaces, namespace-
scope friend function declarations (11.4) not otherwise visible may be found. These modifications to the
search depend on the types of the arguments (and for template template arguments, the namespace of the
template argument).

For each argument type T in the function call, there is a set of zero or more associated namespaces and a
set of zero or more associated classes to be considered. The sets of namespaces and classes is determined
entirely by the types of the function arguments (and the namespace of any template template argument).
Typedef names and using-declarations used to specify the types do not contribute to this set. The sets of
namespaces and classes are determined in the following way:

— If T is a fundamental type, its associated sets of namespaces and classes are both empty.

— If T is a nen-archetype class type (including unions), its associated classes are: the class itself; the class
of which it is a member, if any; and its direct and indirect base classes. Its associated namespaces are
the namespaces of which its associated classes are members. Furthermore, if T is a class template spe-
cialization, its associated namespaces and classes also include: the namespaces and classes associated
with the types of the template arguments provided for template type parameters (excluding template
template parameters); the namespaces of which any template template arguments are members; and
the classes of which any member templates used as template template arguments are members. [ Note:
non-type template arguments do not contribute to the set of associated namespaces. — end note|

— If T is an enumeration type, its associated namespace is the namespace in which it is defined. If it is
class member, its associated class is the member’s class; else it has no associated class.

— If T is a pointer to U or an array of U, its associated namespaces and classes are those associated with
U.

— If T is a function type, its associated namespaces and classes are those associated with the function
parameter types and those associated with the return type.

— If T is a pointer to a member function of a class X, its associated namespaces and classes are those
associated with the function parameter types and return type, together with those associated with X.

— If T is a pointer to a data member of class X, its associated namespaces and classes are those associated
with the member type together with those associated with X.

If an associated namespace is an inline namespace (7.3.1), its enclosing namespace is also included in the set.
If an associated namespace directly contains inline namespaces, those inline namespaces are also included in
the set. In addition, if the argument is the name or address of a set of overloaded functions and/or function
templates, its associated classes and namespaces are the union of those associated with each of the members
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of the set: the namespace in which the function or function template is defined and, i.e., the classes and
namespaces associated with its (non-dependent) parameter types and return type.

Let X be the lookup set produced by unqualified lookup (3.4.1) and let ¥ be the lookup set produced by
argument dependent lookup (defined as follows). If X contains

— a declaration of a class member, or
— a block-scope function declaration that is not a using-declaration, or
— a declaration that is neither a function or a function template

then Y is empty. Otherwise Y is the set of declarations found in the namespaces associated with the
argument types as described below. The set of declarations found by the lookup of the name is the union of
X and Y. [ Note: the namespaces and classes associated with the argument types can include namespaces
and classes already considered by the ordinary unqualified lookup. — end note] [ Example:

namespace NS {
class T { };
void f(T);
void g(T, int);
}
NS::T parm;
void g(NS::T, float);
int main() {

f (parm) ; // OK: calls NS: : £
extern void g(NS::T, float);
g(parm, 1); // OK: calls g(NS::T, float)

}

— end example]

When considering an associated namespace, the lookup is the same as the lookup performed when the
associated namespace is used as a qualifier (3.4.3.2) except that:

— Any using-directives in the associated namespace are ignored.

— Any namespace-scope friend functions or friend function templates declared in associated classes are
visible within their respective namespaces even if they are not visible during an ordinary lookup (11.4).

— All names except those of (possibly overloaded) functions and function templates are ignored.

3.4.3 Qualified name lookup [basic.lookup.qual]

The name of a class; : pt}; or namespace member or enumerator can be referred
to after the :: scope resolutlon operator (5. 1) apphed to a nested-name-specifier that nominates its class,
eoneept—map; namespace, or enumeration. During the lookup for a name preceding the :: scope resolution
operator, object, function, and enumerator names are ignored. If the name found does not designate a
namespace;-eoneept—ap; or a class, enumeration, or dependent type, the program is ill-formed.[ Ezample:

class A {
public:
static int n;
};
int main() {
int A;
A::n = 42; // OK
A b; // ill-formed: A does not name a type
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}

— end example]

[ Note: multiply qualified names, such as N1::N2::N3::n, can be used to refer to members of nested
classes (9.7) or members of nested namespaces. — end note]

In a declaration in which the declarator-id is a qualified-id, names used before the qualified-id being declared
are looked up in the defining namespace scope; names following the qualified-id are looked up in the scope
of the member’s class or namespace. [ Ezample:

class X { };
class C {
class X { };
static const int number = 50;
static X arr[number];
};
X C::arr[number]; // ill-formed:
// equivalent to: ::X C::arr[C: :number];
// mot to: C::X C::arr[C: :number];

— end example]

A name prefixed by the unary scope operator :: (5.1) is looked up in global scope, in the translation unit
where it is used. The name shall be declared in global namespace scope or shall be a name whose declaration
is visible in global scope because of a using-directive (3.4.3.2). The use of :: allows a global name to be
referred to even if its identifier has been hidden (3.3.11).

A name prefixed by a nested-name-specifier that nominates an enumeration type shall represent an enumer-
ator of that enumeration.

If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier, the type-names are looked up as types
in the scope designated by the nested-name-specifier. Similarly, in a qualified-id of the form:

:topt nested-name-specifierop: class-name :: ~ class-name
the second class-name is looked up in the same scope as the first. [ Ezample:

struct C {
typedef int I;
};
typedef int I1, I2;
extern int* p;
extern int* q;
p—>C::I::"I0); // 1 is looked up in the scope of C
q—>I1::7120); // 12 is looked up in the scope of
// the postfiz-expression

struct A {
“AQ;
};
typedef A AB;
int main() {
AB *p;
p->AB::"ABQ); // explicitly calls the destructor for A
}
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— end example] [ Note: 3.4.5 describes how name lookup proceeds after the . and -> operators. — end
note |

concept C<typename T> {
typename assoc_type;

}
template<typename T, typename U> requires C<T> && C<U>
T::assoc_type // okay: refers to C<T>::assoc_type
£0;
3.4.3.1 Class members [class.qual]

If the nested-name-specifier of a qualified-id nominates a class, the name specified after the nested-name-
specifier is looked up in the scope of the class (10.2), except for the cases listed below. The name shall
represent one or more members of that class or of one of its base classes (Clause 10). [ Note: a class member
can be referred to using a qualified-id at any point in its potential scope (3.3.7). — end note| The exceptions
to the name lookup rule above are the following:

— a destructor name is looked up as specified in 3.4.3;

— a conversion-type-id of an conversion-function-id is looked up both in the scope of the class and in the
context in which the entire postfiz-expression occurs and shall refer to the same type in both contexts;

— the names in a template-argument of a template-id are looked up in the context in which the entire
postfiz-expression occurs.

— the lookup for a name specified in a using-declaration (7.3.3) also finds class or enumeration names
hidden within the same scope (3.3.11).

In a lookup in which the constructor is an acceptable lookup result and the nested-name-specifier nominates
a class C:

— if the name specified after the nested-name-specifier, when looked up in C, is the injected-class-name
of C (Clause 9), or

— if the name specified after the nested-name-specifier is the same as the identifier or the simple-template-
id’s template-name in the last component of the nested-name-specifier,

the name is instead considered to name the constructor of class C. [ Note: for example, the constructor is
not an acceptable lookup result in an elaborated-type-specifier so the constructor would not be used in place
of the injected-class-name. — end note| Such a constructor name shall be used only in the declarator-id of
a declaration that names a constructor or in a using-declaration. | Example:

struct A { AQ; };
struct B: public A { BO; };

A::AQ) {2}
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B::BO { }

B::A ba; // object of type A

A::A a; // error, A: :A is not a type name
struct A::A a2; // object of type A

— end example|

3 A class member name hidden by a name in a nested declarative region or by the name of a derived class
member can still be found if qualified by the name of its class followed by the :: operator.

3.4.3.2 Namespace members [namespace.qual]

1 If the nested-name-specifier of a qualified-id nominates a namespace, the name specified after the nested-
name-specifier is looked up in the scope of the namespace, except that the names in a template-argument of
a template-id are looked up in the context in which the entire postfiz-expression occurs.

2 Given X::m (where X is a user-declared namespace), or given ::m (where X is the global namespace),
let S be the set of all declarations of m in X and in the transitive closure of all namespaces nominated
by wusing-directives in X and its used namespaces, except that using-directives that nominate non-inline
namespaces (7.3.1) are ignored in any namespace, including X, directly containing one or more declarations
of m. No namespace is searched more than once in the lookup of a name. If S is the empty set, the
program is ill-formed. Otherwise, if S has exactly one member, or if the context of the reference is a using-
declaration (7.3.3), S is the required set of declarations of m. Otherwise if the use of m is not one that allows
a unique declaration to be chosen from S, the program is ill-formed. [ Example:

int x;

namespace Y {
void f(float);
void h(int);

}

namespace Z {
void h(double);
}

namespace A {
using namespace Y;
void f(int);
void g(int);
int i;

}

namespace B {
using namespace Z;
void f(char);
int i;

}

namespace AB {
using namespace A;
using namespace B;
void g();

}
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void h()
{
AB::g(); // g is declared directly in AB,
// therefore S is { AB::g() } and AB::g() is chosen
AB::f(1); // £ is not declared directly in AB so the rules are
// applied recursively to A and B;
// mamespace Y is not searched and Y: :f(float)
// is not considered;
// S s { A::£(int), B::f(char) } and overload
// resolution chooses A: :f (int)
AB::f(°c’); // as above but resolution chooses B: : £ (char)
AB: :x++; // % is not declared directly in AB, and

// is not declared in A or B , so the rules are
// applied recursively to Y and Z,
// 8 is { } so the program is ill-formed

AB: :i++; // i is not declared directly in AB so the rules are
// applied recursively to A and B,
// S is{ A::i B::i } so the use is ambiguous
// and the program is ill-formed

AB::h(16.8); // h is not declared directly in AB and
// not declared directly in A or B so the rules are
// applied recursively to Y and Z,
// S s { Y::h(int), Z::h(double) } and overload
// resolution chooses Z: :h(double)

}

3 The same declaration found more than once is not an ambiguity (because it is still a unique declaration).
For example:

namespace A {
int a;

}

namespace B {
using namespace A;

}

namespace C {
using namespace A;

}

namespace BC {
using namespace B;
using namespace C;

}
void £()
{
BC: :at++; // OK:Sis { At:a, A::a }
}

namespace D {
using A::a;

}
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namespace BD {
using namespace B;
using namespace D;

}
void g()
{
BD: :at+; // OK: Sis{ A::a, A::a}
}

4 Because each referenced namespace is searched at most once, the following is well-defined:

namespace B {
int b;
}

namespace A {
using namespace B;
int a;

}

namespace B {
using namespace A;

}

void £()

{
A::at+; // OK: a declared directly in A, S is {A::a}
B::at++; // OK: both A and B searched (once), S is {A::a}
A::bt+; // OK: both A and B searched (once), S is {B::b}
B::b++; // OK: b declared directly in B, S is {B::b}

}

— end example]

5 During the lookup of a qualified namespace member name, if the lookup finds more than one declaration of
the member, and if one declaration introduces a class name or enumeration name and the other declarations
either introduce the same object, the same enumerator or a set of functions, the non-type name hides the
class or enumeration name if and only if the declarations are from the same namespace; otherwise (the
declarations are from different namespaces), the program is ill-formed. [ Ezample:

namespace A {
struct x { };
int x;
int y;

}

namespace B {
struct y { };
}

namespace C {
using namespace A;
using namespace B;
int i = C::x; // OK, A::x (of type int )
int j = C::y; // ambiguous, A::y or B::y
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}

— end example]

6 In a declaration for a namespace member in which the declarator-id is a qualified-id, given that the qualified-id
for the namespace member has the form

nested-name-specifier unqualified-id
the unqualified-id shall name a member of the namespace designated by the nested-name-specifier. [ Example:

namespace A {
namespace B {
void f1(int);
}
using namespace B;
}
void A::f1(int){ } //ill-formed, £1 is not a member of A

— end example] However, in such namespace member declarations, the nested-name-specifier may rely on
using-directives to implicitly provide the initial part of the nested-name-specifier. | Example:

namespace A {
namespace B {
void f1(int);
}
}

namespace C {
namespace D {
void f1(int);
}
}

using namespace A;
using namespace C::D;
void B::f1(int){ } // OK, defines A::B::f1(int)

— end example]

3.4.3.3 Concept map members [concept.qual]
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concept C<typename F, typename T1> {
typename result_type;
result_type operator() (F&, T1);

}

template<typename F, typename T1>

requires C<F, T1>

C<F, T1>::result_type g(F& f, const T1& t1) {
return f(t1);

}

3.4.4 Elaborated type specifiers [basic.lookup.elab]

An elaborated-type-specifier (7.1.6.3) may be used to refer to a previously declared class-name or enum-name
even though the name has been hidden by a non-type declaration (3.3.11).

If the elaborated-type-specifier has no nested-name-specifier, and unless the elaborated-type-specifier appears
in a declaration with the following form:

class-key identifier attribute-specifierop: ;

the identifier is looked up according to 3.4.1 but ignoring any non-type names that have been declared. If
the elaborated-type-specifier is introduced by the enum keyword and this lookup does not find a previously
declared type-name, the elaborated-type-specifier is ill-formed. If the elaborated-type-specifier is introduced by
the class-key and this lookup does not find a previously declared type-name, or if the elaborated-type-specifier
appears in a declaration with the form:

class-key identifier attribute-specifierop: ;
the elaborated-type-specifier is a declaration that introduces the class-name as described in 3.3.2.

If the elaborated-type-specifier has a nested-name-specifier, qualified name lookup is performed, as described
in 3.4.3, but ignoring any non-type names that have been declared. If the name lookup does not find a
previously declared type-name, the elaborated-type-specifier is ill-formed. [ Ezample:

struct Node {
struct Node* Next; // OK: Refers to Node at global scope
struct Data* Data; // OK: Declares type Data
// at global scope and member Data
3

struct Data {
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struct Nodex Node; // OK: Refers to Node at global scope
friend struct ::Glob; // error: Glob is not declared
// cannot introduce a qualified type (7.1.6.3)
friend struct Glob; // OK: Refers to (as yet) undeclared Glob
// at global scope.

};
struct Base {

struct Data; // OK: Declares nested Data

struct ::Datax thatData; // OK: Refers to ::Data

struct Base::Datax thisData; // OK: Refers to nested Data

friend class ::Data; // OK: global Data is a friend

friend class Data; // OK: nested Data is a friend

struct Data { /* ... %/ }; // Defines nested Data
};
struct Data; // OK: Redeclares Data at global scope
struct ::Data; // error: cannot introduce a qualified type (7.1.6.3)
struct Base::Data; // error: cannot introduce a qualified type (7.1.6.3)
struct Base::Datum; // error: Datum undefined
struct Base::Data* pBase; // OK: refers to nested Data

— end example]

3.4.5 Class member access [basic.lookup.classref]

In a class member access expression (5.2.5), if the . or -=> token is immediately followed by an identifier
followed by a <, the identifier must be looked up to determine whether the < is the beginning of a template
argument list (14.3) or a less-than operator. The identifier is first looked up in the class of the object
expression. If the identifier is not found, it is then looked up in the context of the entire postfixz-expression
and shall name a class template. If the lookup in the class of the object expression finds a template, the
name is also looked up in the context of the entire postfiz-expression and

— if the name is not found, the name found in the class of the object expression is used, otherwise

— if the name is found in the context of the entire postfiz-expression and does not name a class template,
the name found in the class of the object expression is used, otherwise

— if the name found is a class template, it shall refer to the same entity as the one found in the class of
the object expression, otherwise the program is ill-formed.

If the id-expression in a class member access (5.2.5) is an unqualified-id, and the type of the object expression
is of a class type C, the unqualified-id is looked up in the scope of class C. If the type of the object expression
is of pointer to scalar type, the unqualified-id is looked up in the context of the complete postfiz-expression.

If the unqualified-id is ~type-name, the type-name is looked up in the context of the entire postfiz-expression.
If the type T of the object expression is of a class type C, the type-name is also looked up in the scope of
class C. At least one of the lookups shall find a name that refers to (possibly cv-qualified) T. [ Ezample:

struct A { };
struct B {
struct A { };

void £(::A* a);
};
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void B::f(::A*x a) {
a->"A(); // OK: lookup in *a finds the injected-class-name
}

— end example]

If the id-expression in a class member access is a qualified-id of the form

the class-name-or-namespace-name following the . or -> operator is looked up both in the context of the
entire postfiz-expression and in the scope of the class of the object expression. If the name is found only in
the scope of the class of the object expression, the name shall refer to a class-name. If the name is found
only in the context of the entire postfiz-expression, the name shall refer to a class-name or namespace-name.
If the name is found in both contexts, the class-name-or-namespace-name shall refer to the same entity.

If the qualified-id has the form

the class-name-or-namespace-name is looked up in global scope as a class-name or namespace-name.

If the nested-name-specifier contains a simple-template-id (14.3), the names in its template-arguments are
looked up in the context in which the entire postfix-expression occurs.

If the id-expression is a conversion-function-id, its conversion-type-id shall denote the same type in both the
context in which the entire postfiz-expression occurs and in the context of the class of the object expression
(or the class pointed to by the pointer expression).

3.4.6 Using-directives and namespace aliases [basic.lookup.udir|

When looking up a namespace-name in a wusing-directive or namespace-alias-definition, only namespace
names are considered.

3.5 Program and linkage [basic.link]

A program consists of one or more translation units (Clause 2) linked together. A translation unit consists
of a sequence of declarations.

translation-unit:
declaration-seqop:

A name is said to have linkage when it might denote the same object, reference, function, type, template,
namespace or value as a name introduced by a declaration in another scope:

— When a name has external linkage, the entity it denotes can be referred to by names from scopes of
other translation units or from other scopes of the same translation unit.

— When a name has internal linkage, the entity it denotes can be referred to by names from other scopes
in the same translation unit.

— When a name has no linkage, the entity it denotes cannot be referred to by names from other scopes.
A name having namespace scope (3.3.6) has internal linkage if it is the name of
— an object, reference, function or function template that is explicitly declared static; or,

— an object or reference that is explicitly declared const and neither explicitly declared extern nor
previously declared to have external linkage; or
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— a data member of an anonymous union.

A name having namespace scope has external linkage if it is the name of
— an object or reference, unless it has internal linkage; or
— a function, unless it has internal linkage; or

— a named class (Clause 9), or an unnamed class defined in a typedef declaration in which the class has
the typedef name for linkage purposes (7.1.3); or

— a named enumeration (7.2), or an unnamed enumeration defined in a typedef declaration in which the
enumeration has the typedef name for linkage purposes (7.1.3); or

— an enumerator belonging to an enumeration with external linkage; or
— a template, unless it is a function template that has internal linkage (Clause 14); or
— a namespace (7.3), unless it is declared within an unnamed namespace.

In addition, a member function, static data member, a named class or enumeration of class scope, or an
unnamed class or enumeration defined in a class-scope typedef declaration such that the class or enumeration
has the typedef name for linkage purposes (7.1.3), has external linkage if the name of the class has external
linkage.

The name of a function declared in block scope and the name of an object declared by a block scope extern
declaration have linkage. If there is a visible declaration of an entity with linkage having the same name and
type, ignoring entities declared outside the innermost enclosing namespace scope, the block scope declaration
declares that same entity and receives the linkage of the previous declaration. If there is more than one such
matching entity, the program is ill-formed. Otherwise, if no matching entity is found, the block scope entity
receives external linkage.[ Example:

static void £f();

static int i = 0; // 1
void g() {
extern void £(); // internal linkage
int i; // 2: i has no linkage
{
extern void £(); // internal linkage
extern int i; // 8: external linkage
}
}

There are three objects named i in this program. The object with internal linkage introduced by the
declaration in global scope (line //1 ), the object with automatic storage duration and no linkage introduced
by the declaration on line //2, and the object with static storage duration and external linkage introduced
by the declaration on line //3. — end example]

When a block scope declaration of an entity with linkage is not found to refer to some other declaration,
then that entity is a member of the innermost enclosing namespace. However such a declaration does not
introduce the member name in its namespace scope. [ Ezample:

namespace X {

void p() {
q0; // error: q not yet declared
extern void q(); // q is a member of namespace X
}

void middle() {
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q0; // error: q not yet declared
}
void qOO { /x ... */} // definition of X::q
}
void qO) { /* ... =x/} // some other, unrelated q

— end example]

Names not covered by these rules have no linkage. Moreover, except as noted, a name declared in a local
scope (3.3.3) has no linkage. A type is said to have linkage if and only if:

— it is a class or enumeration type that is named (or has a name for linkage purposes (7.1.3)) and the
name has linkage; or

— it is a specialization of a class template (14)3!; or
— it is a fundamental type (3.9.1); or

— it is a compound type (3.9.2) other than a class or enumeration, compounded exclusively from types
that have linkage; or

— it is a cv-qualified (3.9.3) version of a type that has linkage.
A type without linkage shall not be used as the type of a variable or function with linkage, unless

— the variable or function has extern "C" linkage (7.5), or

the variable or function is not

used (3.2) or is defined in the same translation unit.

[ Note: in other words, a type without linkage contains a class or enumeration that cannot be named outside
its translation unit. An entity with external linkage declared using such a type could not correspond to
any other entity in another translation unit of the program and thus is—net—permitted must be defined in
the translation unit if it is used. Also note that classes with linkage may contain members whose types do
not have linkage, and that typedef names are ignored in the determination of whether a type has linkage.
— end note] [ Example:

void£0O—{
struet—{—int—x—3+ // wo-tinkage
typedefAB+

3

— end example]
[ Ezample:

template<elass—T>—struet—A—{
// ’
B

};;

31) A class template always has external linkage, and the requirements of 14.4.1 and 14.4.2 ensure that the template arguments
will also have appropriate linkage.
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template <class T> struct B {
void g(T) { }

void h(T);
friend void i(B, T) { }
x5
void £() {
struct A { int x; }; // no linkage
Aa={11}3;
B<A> ba; // declares B<A>::g(A) and B<A>::h(A)
ba.g(a); // OK
ba.h(a); // error: B<A>::h(A) not defined in the translation unit
i(ba, a); // OK
s

— end example]

9 Two names that are the same (Clause 3) and that are declared in different scopes shall denote the same

10

11

object, reference, function, type, enumerator, template or namespace if

— both names have external linkage or else both names have internal linkage and are declared in the
same translation unit; and

— both names refer to members of the same namespace or to members, not by inheritance, of the same
class; and

— when both names denote functions, the parameter-type-lists of the functions (8.3.5) are identical; and
— when both names denote function templates, the signatures (14.6.6.1) are the same.

After all adjustments of types (during which typedefs (7.1.3) are replaced by their definitions), the types
specified by all declarations referring to a given object or function shall be identical, except that declara-
tions for an array object can specify array types that differ by the presence or absence of a major array
bound (8.3.4). A violation of this rule on type identity does not require a diagnostic.

[ Note: linkage to non-C++ declarations can be achieved using a linkage-specification (7.5). — end note]
3.6 Start and termination [basic.start]
3.6.1 Main function [basic.start.main]

A program shall contain a global function called main, which is the designated start of the program. It
is implementation-defined whether a program in a freestanding environment is required to define a main
function. [ Note: in a freestanding environment, start-up and termination is implementation-defined; start-
up contains the execution of constructors for objects of namespace scope with static storage duration;
termination contains the execution of destructors for objects with static storage duration. — end note|
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An implementation shall not predefine the main function. This function shall not be overloaded. It shall
have a return type of type int, but otherwise its type is implementation-defined. All implementations shall
allow both of the following definitions of main:

int main() { /* ... */ }
and
int main(int argc, charx argv[]) { /*x ... =*/ 1}

In the latter form argc shall be the number of arguments passed to the program from the environ-
ment in which the program is run. If argc is nonzero these arguments shall be supplied in argv[0]
through argv[argc-1] as pointers to the initial characters of null-terminated multibyte strings (NTMBS
s) (17.5.2.1.4.2) and argv[0] shall be the pointer to the initial character of a NTMBS that represents the

name used to invoke the program or "". The value of argc shall be nonnegative. The value of argv[argc]
shall be 0. [Note: it is recommended that any further (optional) parameters be added after argv. — end
note]

The function main shall not be used (3.2) within a program. The linkage (3.5) of main is implementation-
defined. A program that declares main to be inline, static, or constexpr is ill-formed. The name main
is not otherwise reserved. [ Ezample: member functions, classes, and enumerations can be called main, as
can entities in other namespaces. — end example]

Calling the function std::exit(int) declared in <cstdlib> (18.5) terminates the program without leaving
the current block and hence without destroying any objects with automatic storage duration (12.4). If
std::exit is called to end a program during the destruction of an object with static or thread storage
duration, the program has undefined behavior.

A return statement in main has the effect of leaving the main function (destroying any objects with automatic
storage duration) and calling std: :exit with the return value as the argument. If control reaches the end
of main without encountering a return statement, the effect is that of executing

return O;

3.6.2 Initialization of non-local objects [basic.start.init]

There are two broad classes of named non-local objects: those with static storage duration (3.7.1) and
those with thread storage duration (3.7.2). Non-local objects with static storage duration are initialized
as a consequence of program initiation. Non-local objects with thread storage duration are initialized as a
consequence of thread execution. Within each of these phases of initiation, initialization occurs as follows.

Objects with static storage duration (3.7.1) or thread storage duration (3.7.2) shall be zero-initialized (8.5)
before any other initialization takes place.

Constant initialization is performed:

— if each full-expression (including implicit conversions) that appears in the initializer of a reference with
static or thread storage duration is a constant expression (5.19) and the reference is bound to an lvalue
designating an object with static storage duration or to a temporary (see 12.2)

— if an object with static or thread storage duration is initialized such that the initialization satisfies the
requirements for the object being declared with constexpr (7.1.5).

Together, zero-initialization and constant initialization are called static initialization; all other initialization is
dynamic initialization. Static initialization shall be performed before any dynamic initialization takes place.
Dynamic initialization of a non-local object with static storage duration is either ordered or unordered.
Definitions of explicitly specialized class template static data members have ordered initialization. Other
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class template static data members (i.e., implicitly or explicitly instantiated specializations) have unordered
initialization. Other objects defined in namespace scope have ordered initialization. Objects with ordered
initialization defined within a single translation unit shall be initialized in the order of their definitions
in the translation unit. If a program starts a thread (30.3), the subsequent initialization of an object is
unsequenced with respect to the initialization of an object defined in a different translation unit. Otherwise,
the initialization of an object is indeterminately sequenced with respect to the initialization of an object
defined in a different translation unit. If a program starts a thread, the subsequent unordered initialization
of an object is unsequenced with respect to every other dynamic initialization. Otherwise, the unordered
initialization of an object is indeterminately sequenced with respect to every other dynamic initialization.
[ Note: This definition permits initialization of a sequence of ordered objects concurrently with another
sequence. — end note] [ Note: 8.5.1 describes the order in which aggregate members are initialized. The
initialization of local static objects is described in 6.7. — end note]

3 An implementation is permitted to perform the initialization of an object of namespace scope as a static
initialization even if such initialization is not required to be done statically, provided that

— the dynamic version of the initialization does not change the value of any other object of namespace
scope prior to its initialization, and

— the static version of the initialization produces the same value in the initialized object as would be
produced by the dynamic initialization if all objects not required to be initialized statically were
initialized dynamically.

— [ Note: as a consequence, if the initialization of an object obj1 refers to an object obj2 of namespace
scope potentially requiring dynamic initialization and defined later in the same translation unit, it is
unspecified whether the value of obj2 used will be the value of the fully initialized obj2 (because obj2
was statically initialized) or will be the value of obj2 merely zero-initialized. For example,

inline double fd() { return 1.0; }

extern double di;

double d2 = di; // unspecified:
// may be statically initialized to 0.0 or
// dynamically initialized to 1.0

double d1 = £d();  // may be initialized statically to 1.0

— end note]

4 Tt is implementation-defined whether the dynamic initialization (8.5, 9.4, 12.1, 12.6.1) of an object of name-
space scope with static storage duration is done before the first statement of main. If the initialization is
deferred to some point in time after the first statement of main, it shall occur before the first use of any
function or object defined in the same translation unit as the object to be initialized.?? [ Ezample:

// - File 1 -

#include "a.h"

#include "b.h"

B b;

A::AQ0{
b.Use();

}

// - File 2 -
#include "a.h"
A a;

32) An object defined in namespace scope having initialization with side-effects must be initialized even if it is not used (3.7.1).
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// - File 3 -
#include "a.h"
#include "b.h"
extern A a;
extern B b;

int main() {
a.Use();
b.Use();

}

It is implementation-defined whether either a or b is initialized before main is entered or whether the
initializations are delayed until a is first used in main. In particular, if a is initialized before main is entered,
it is not guaranteed that b will be initialized before it is used by the initialization of a, that is, before A: : A
is called. If, however, a is initialized at some point after the first statement of main, b will be initialized
prior to its use in A::A. — end exzample ]

It is implementation-defined whether the dynamic initialization (8.5, 9.4, 12.1, 12.6.1) of an object of name-
space scope and with thread storage duration is done before the first statement of the initial function of the
thread. If the initialization is deferred to some point in time after the first statement of the initial function
of the thread, it shall occur before the first use of any object with thread storage duration defined in the
same translation unit as the object to be initialized.

If construction or destruction of a non-local static or thread duration object ends in throwing an uncaught
exception, the result is to call std: :terminate (18.8.3.3).

3.6.3 Termination [basic.start.term)]

Destructors (12.4) for initialized objects with static storage duration are called as a result of returning from
main and as a result of calling std::exit (18.5). Destructors for initialized objects with thread storage
duration within a given thread are called as a result of returning from the initial function of that thread and
as a result of that thread calling std::exit. The completions of the destructors for all initialized objects
with thread storage duration within that thread are sequenced before the initiation of the destructors of
any object with static storage duration. If the completion of the constructor or dynamic initialization of an
object with thread storage duration is sequenced before that of another, the completion of the destructor of
the second is sequenced before the initiation of the destructor of the first. If the completion of the constructor
or dynamic initialization of an object with static storage duration is sequenced before that of another, the
completion of the destructor of the second is sequenced before the initiation of the destructor of the first.
[ Note: this definition permits concurrent destruction. — end note| If an object is initialized statically, the
object is destroyed in the same order as if the object was dynamically initialized. For an object of array or
class type, all subobjects of that object are destroyed before any local object with static storage duration
initialized during the construction of the subobjects is destroyed.

If a function contains a local object of static or thread storage duration that has been destroyed and the
function is called during the destruction of an object with static or thread storage duration, the program
has undefined behavior if the flow of control passes through the definition of the previously destroyed local
object. Likewise, the behavior is undefined if the function-local object is used indirectly (i.e., through a
pointer) after its destruction.

If the completion of the initialization of a non-local object with static storage duration is sequenced before
a call to std::atexit (see <cstdlib>, 18.5), the call to the function passed to std::atexit is sequenced
before the call to the destructor for the object. If a call to std: :atexit is sequenced before the completion
of the initialization of a non-local object with static storage duration, the call to the destructor for the
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object is sequenced before the call to the function passed to std::atexit. If a call to std::atexit is
sequenced before another call to std: :atexit, the call to the function passed to the second std::atexit
call is sequenced before the call to the function passed to the first std: :atexit call.

If there is a use of a standard library object or function not permitted within signal handlers (18.10) that
does not happen before (1.10) completion of destruction of objects with static storage duration and execution
of std::atexit registered functions (18.5), the program has undefined behavior. [Note: if there is a use
of an object with static storage duration that does not happen before the object’s destruction, the program
has undefined behavior. Terminating every thread before a call to std::exit or the exit from main is
sufficient, but not necessary, to satisfy these requirements. These requirements permit thread managers as
static-storage-duration objects. — end note|

Calling the function std::abort() declared in <cstdlib> terminates the program without executing any
destructors and without calling the functions passed to std::atexit() or std::at_quick_exit().

3.7 Storage duration [basic.stc]

Storage duration is the property of an object that defines the minimum potential lifetime of the storage
containing the object. The storage duration is determined by the construct used to create the object and is
one of the following:

— static storage duration

— thread storage duration

— automatic storage duration
— dynamic storage duration

Static, thread, and automatic storage durations are associated with objects introduced by declarations (3.1)
and implicitly created by the implementation (12.2). The dynamic storage duration is associated with objects
created with operator new (5.3.4).

The storage duration categories apply to references as well. The lifetime of a reference is its storage duration.

3.7.1 Static storage duration [basic.stc.static]

All objects which do not have dynamic storage duration, do not have thread storage duration, and are
not local have static storage duration. The storage for these objects shall last for the duration of the
program (3.6.2, 3.6.3).

If an object of static storage duration has initialization or a destructor with side effects, it shall not be
eliminated even if it appears to be unused, except that a class object or its copy may be eliminated as
specified in 12.8.

The keyword static can be used to declare a local variable with static storage duration. [ Note: 6.7 describes
the initialization of local static variables; 3.6.3 describes the destruction of local static variables. — end
note |

The keyword static applied to a class data member in a class definition gives the data member static
storage duration.

3.7.2 Thread storage duration [basic.stc.thread]

All objects and references declared with the thread_local keyword have thread storage duration. The
storage for these objects and references shall last for the duration of the thread in which they are created.
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There is a distinct object or reference per thread, and use of the declared name refers to the object or
reference associated with the current thread.

An object or reference with thread storage duration shall be initialized before its first use and, if constructed,
shall be destroyed on thread exit.

3.7.3 Automatic storage duration [basic.stc.auto]

Local objects explicitly declared register or not explicitly declared static or extern have automatic
storage duration. The storage for these objects lasts until the block in which they are created exits.

[ Note: these objects are initialized and destroyed as described in 6.7. — end note]

If a named automatic object has initialization or a destructor with side effects, it shall not be destroyed
before the end of its block, nor shall it be eliminated as an optimization even if it appears to be unused,
except that a class object or its copy may be eliminated as specified in 12.8.

3.7.4 Dynamic storage duration [basic.stc.dynamic|

Objects can be created dynamically during program execution (1.9), using new-expressions (5.3.4), and
destroyed using delete-expressions (5.3.5). A C++ implementation provides access to, and management
of, dynamic storage via the global allocation functions operator new and operator newl[] and the global
deallocation functions operator delete and operator deletel[].

The library provides default definitions for the global allocation and deallocation functions. Some global
allocation and deallocation functions are replaceable (18.6.1). A C++ program shall provide at most one
definition of a replaceable allocation or deallocation function. Any such function definition replaces the
default version provided in the library (17.6.3.6). The following allocation and deallocation functions (18.6)
are implicitly declared in global scope in each translation unit of a program.

void* operator new(std::size_t) throw(std::bad_alloc);
void* operator new[](std::size_t) throw(std::bad_alloc);
void operator delete(void*) throw();

void operator delete[](void*) throw();

These implicit declarations introduce only the function names operator new, operator new[], operator
delete, operator delete[]. [ Note: the implicit declarations do not introduce the names std, std: :bad_-
alloc, and std::size_t, or any other names that the library uses to declare these names. Thus, a new-
expression, delete-expression or function call that refers to one of these functions without including the
header <new> is well-formed. However, referring to std, std::bad_alloc, and std::size_t is ill-formed
unless the name has been declared by including the appropriate header. — end note] Allocation and/or
deallocation functions can also be declared and defined for any class (12.5).

Any allocation and/or deallocation functions defined in a C++ program, including the default versions in
the library, shall conform to the semantics specified in 3.7.4.1 and 3.7.4.2.

3.7.4.1 Allocation functions [basic.stc.dynamic.allocation]

An allocation function shall be a class member function or a global function; a program is ill-formed if an
allocation function is declared in a namespace scope other than global scope or declared static in global
scope. The return type shall be void*. The first parameter shall have type std::size_t (18.2). The first
parameter shall not have an associated default argument (8.3.6). The value of the first parameter shall be
interpreted as the requested size of the allocation. An allocation function can be a function template. Such
a template shall declare its return type and first parameter as specified above (that is, template parameter
types shall not be used in the return type and first parameter type). Template allocation functions shall
have two or more parameters.
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The allocation function attempts to allocate the requested amount of storage. If it is successful, it shall
return the address of the start of a block of storage whose length in bytes shall be at least as large as
the requested size. There are no constraints on the contents of the allocated storage on return from the
allocation function. The order, contiguity, and initial value of storage allocated by successive calls to an
allocation function are unspecified. The pointer returned shall be suitably aligned so that it can be converted
to a pointer of any complete object type with a fundamental alignment requirement (3.11) and then used
to access the object or array in the storage allocated (until the storage is explicitly deallocated by a call to
a corresponding deallocation function). Even if the size of the space requested is zero, the request can fail.
If the request succeeds, the value returned shall be a non-null pointer value (4.10) p0 different from any
previously returned value pl, unless that value pl was subsequently passed to an operator delete. The
effect of dereferencing a pointer returned as a request for zero size is undefined.33

An allocation function that fails to allocate storage can invoke the currently installed new-handler func-
tion (18.6.2.3), if any. [ Note: A program-supplied allocation function can obtain the address of the currently
installed new_handler using the std::set_new_handler function (18.6.2.4). — end note] If an allocation
function declared with an empty exception-specification (15.4), throw(), fails to allocate storage, it shall
return a null pointer. Any other allocation function that fails to allocate storage shall indicate failure only
by throwing an exception of a type that would match a handler (15.3) of type std: :bad_alloc (18.6.2.1).

A global allocation function is only called as the result of a new expression (5.3.4), or called directly using the
function call syntax (5.2.2), or called indirectly through calls to the functions in the C++ standard library.
[ Note: in particular, a global allocation function is not called to allocate storage for objects with static
storage duration (3.7.1), for objects or references with thread storage duration (3.7.2), for objects of type
std: :type_info (5.2.8), or for the copy of an object thrown by a throw expression (15.1). — end note]

3.7.4.2 Deallocation functions [basic.stc.dynamic.deallocation)]

Deallocation functions shall be class member functions or global functions; a program is ill-formed if deal-
location functions are declared in a namespace scope other than global scope or declared static in global
scope.

Each deallocation function shall return void and its first parameter shall be void*. A deallocation function
can have more than one parameter. If a class T has a member deallocation function named operator delete
with exactly one parameter, then that function is a usual (non-placement) deallocation function. If class T
does not declare such an operator delete but does declare a member deallocation function named operator
delete with exactly two parameters, the second of which has type std::size_t (18.2), then this function
is a usual deallocation function. Similarly, if a class T has a member deallocation function named operator
delete[] with exactly one parameter, then that function is a usual (non-placement) deallocation function.
If class T does not declare such an operator delete[] but does declare a member deallocation function
named operator delete[] with exactly two parameters, the second of which has type std::size_t, then
this function is a usual deallocation function. A deallocation function can be an instance of a function
template. Neither the first parameter nor the return type shall depend on a template parameter. [ Note:
that is, a deallocation function template shall have a first parameter of type void* and a return type of
void (as specified above). —end note| A deallocation function template shall have two or more function
parameters. A template instance is never a usual deallocation function, regardless of its signature.

If a deallocation function terminates by throwing an exception, the behavior is undefined. The value of the
first argument supplied to a deallocation function may be a null pointer value; if so, and if the deallocation
function is one supplied in the standard library, the call has no effect. Otherwise, the value supplied
to operator delete(void*) in the standard library shall be one of the values returned by a previous

33) The intent is to have operator new() implementable by calling std::malloc() or std::calloc(), so the rules are sub-
stantially the same. C++ differs from C in requiring a zero request to return a non-null pointer.
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invocation of either operator new(std: :size_t) or operator new(std::size_t, const std::nothrow_-
t&) in the standard library, and the value supplied to operator delete[] (void*) in the standard library
shall be one of the values returned by a previous invocation of either operator new[] (std::size_t) or
operator new[] (std::size_t, const std::nothrow_t&) in the standard library.

4 If the argument given to a deallocation function in the standard library is a pointer that is not the null pointer
value (4.10), the deallocation function shall deallocate the storage referenced by the pointer, rendering invalid
all pointers referring to any part of the deallocated storage. The effect of using an invalid pointer value
(including passing it to a deallocation function) is undefined.?*

3.7.4.3 Safely-derived pointers [basic.stc.dynamic.safety]

1 A traceable pointer object is
— an object of pointer-to-object type, or
— an object of an integral type that is at least as large as std: :intptr_t, or

— a sequence of elements in an array of character type, where the size and alignment of the sequence
match that of some pointer-to-object type.

2 A pointer value is a safely-derived pointer to a dynamic object only if it has pointer-to-object type and it is
one of the following:

— the value returned by a call to the C++ standard library implementation of : : operator new(std::size_-
£);%

— the result of taking the address of a subobject of an lvalue resulting from dereferencing a safely-derived
pointer value;

— the result of well-defined pointer arithmetic using a safely-derived pointer value;

— the result of a well-defined pointer conversion of a safely-derived pointer value;

— the result of a reinterpret_cast of a safely-derived pointer value;

— the result of a reinterpret_cast of an integer representation of a safely-derived pointer value;

— the value of an object whose value was copied from a traceable pointer object, where at the time of
the copy the source object contained a copy of a safely-derived pointer value.

3 An integer value is an integer representation of a safely-derived pointer only if its type is at least as large as
std: :intptr_t and it is one of the following:

— the result of a reinterpret_cast of a safely-derived pointer value;
— the result of a valid conversion of an integer representation of a safely-derived pointer value;

— the value of an object whose value was copied from a traceable pointer object, where at the time of
the copy the source object contained an integer representation of a safely-derived pointer value;

— the result of an additive or bitwise operation, one of whose operands is an integer representation of a
safely-derived pointer value P, if that result converted by reinterpret_cast<void#*> would compare
equal to a safely-derived pointer computable from reinterpret_cast<void*>(P).

34) On some implementations, it causes a system-generated runtime fault.

35) This section does not impose restrictions on dereferencing pointers to memory not allocated by ::operator new. This
maintains the ability of many C++ implementations to use binary libraries and components written in other languages. In
particular, this applies to C binaries, because dereferencing pointers to memory allocated by malloc is not restricted.
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If a pointer value that is not a safely-derived pointer value is dereferenced or deallocated, and the referenced
complete object is of dynamic storage duration and has not previously been declared reachable (20.8.12.6),
the behavior is undefined. [ Note: this is true even if the unsafely-derived pointer value might compare equal
to some safely-derived pointer value. — end note ]

3.7.5 Duration of subobjects [basic.stc.inherit]

The storage duration of member subobjects, base class subobjects and array elements is that of their complete
object (1.8).

3.8 Object lifetime [basic.life]

The lifetime of an object is a runtime property of the object. An object is said to have non-trivial initialization
if it is of a class or aggregate type and it or one of its members is initialized by a constructor other than
a trivial default constructor. [ Note: initialization by a trivial copy constructor is non-trivial initialization.
— end note] The lifetime of an object of type T begins when:

— storage with the proper alignment and size for type T is obtained, and
— if the object has non-trivial initialization, its initialization is complete.
The lifetime of an object of type T ends when:
— if T is a class type with a non-trivial destructor (12.4), the destructor call starts, or
— the storage which the object occupies is reused or released.

[ Note: the lifetime of an array object starts as soon as storage with proper size and alignment is obtained,
and its lifetime ends when the storage which the array occupies is reused or released. 12.6.2 describes the
lifetime of base and member subobjects. — end note|

The properties ascribed to objects throughout this International Standard apply for a given object only
during its lifetime. [ Note: in particular, before the lifetime of an object starts and after its lifetime ends
there are significant restrictions on the use of the object, as described below, in 12.6.2 and in 12.7. Also,
the behavior of an object under construction and destruction might not be the same as the behavior of an
object whose lifetime has started and not ended. 12.6.2 and 12.7 describe the behavior of objects during the
construction and destruction phases. — end note]

A program may end the lifetime of any object by reusing the storage which the object occupies or by
explicitly calling the destructor for an object of a class type with a non-trivial destructor. For an object
of a class type with a non-trivial destructor, the program is not required to call the destructor explicitly
before the storage which the object occupies is reused or released; however, if there is no explicit call to
the destructor or if a delete-expression (5.3.5) is not used to release the storage, the destructor shall not be
implicitly called and any program that depends on the side effects produced by the destructor has undefined
behavior.

Before the lifetime of an object has started but after the storage which the object will occupy has been
allocated3S or, after the lifetime of an object has ended and before the storage which the object occupied is
reused or released, any pointer that refers to the storage location where the object will be or was located
may be used but only in limited ways. Such a pointer refers to allocated storage (3.7.4.2), and using the
pointer as if the pointer were of type voidx, is well-defined. Such a pointer may be dereferenced but the
resulting lvalue may only be used in limited ways, as described below. The program has undefined behavior
if:

36) For example, before the construction of a global object of non-POD class type (12.7).
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— the object will be or was of a class type with a non-trivial destructor and the pointer is used as the
operand of a delete-expression,

— the pointer is used to access a non-static data member or call a non-static member function of the
object, or

— the pointer is implicitly converted (4.10) to a pointer to a base class type, or

— the pointer is used as the operand of a static_cast (5.2.9) (except when the conversion is to voidx,
or to void* and subsequently to char*, or unsigned char*), or

— the pointer is used as the operand of a dynamic_cast (5.2.7). [ Ezxample:
#include <cstdlib>
struct B {
virtual void f(Q);
void mutate();

virtual “B();
};

struct D1 : B { void £Q); };
struct D2 : B { void £(); };

void B::mutate() {

new (this) D2; // reuses storage — ends the lifetime of *this
£0; // undefined behavior
. = this; // OK, this points to valid memory
}
void g() {

void* p = std::malloc(sizeof(D1) + sizeof(D2));
B* pb = new (p) Di;
pb—>mutate();

&pb; // OK: pb points to valid memory
void* q = pb; // OK: pb points to valid memory
pb—>£0); // undefined behavior, lifetime of *pb has ended

}

— end example]

6 Similarly, before the lifetime of an object has started but after the storage which the object will occupy
has been allocated or, after the lifetime of an object has ended and before the storage which the object
occupied is reused or released, any lvalue which refers to the original object may be used but only in limited
ways. Such an lvalue refers to allocated storage (3.7.4.2), and using the properties of the lvalue which do
not depend on its value is well-defined. The program has undefined behavior if:

— an lvalue-to-rvalue conversion (4.1) is applied to such an lvalue,

— the lvalue is used to access a non-static data member or call a non-static member function of the
object, or

— the lvalue is implicitly converted (4.10) to a reference to a base class type, or

— the lvalue is used as the operand of a static_cast (5.2.9) except when the conversion is ultimately
to cv char& or cv unsigned char&, or

— the lvalue is used as the operand of a dynamic_cast (5.2.7) or as the operand of typeid.
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If, after the lifetime of an object has ended and before the storage which the object occupied is reused or
released, a new object is created at the storage location which the original object occupied, a pointer that
pointed to the original object, a reference that referred to the original object, or the name of the original
object will automatically refer to the new object and, once the lifetime of the new object has started, can
be used to manipulate the new object, if:

— the storage for the new object exactly overlays the storage location which the original object occupied,
and

— the new object is of the same type as the original object (ignoring the top-level cv-qualifiers), and

— the type of the original object is not const-qualified, and, if a class type, does not contain any non-static
data member whose type is const-qualified or a reference type, and

— the original object was a most derived object (1.8) of type T and the new object is a most derived
object of type T (that is, they are not base class subobjects). [ Ezample:

struct C {
int i;
void £();
const C& operator=( const C& );

};

const C& C::operator=( const C& other) {
if ( this != &other ) {

this->"CQ); // lifetime of *this ends
new (this) C(other); // new object of type C created
£0O); // well-defined
}
return *this;
}
C ci;
C c2;
cl = c2; // well-defined
cl.£0); // well-defined; c1 refers to a new object of type C

— end example]

If a program ends the lifetime of an object of type T with static (3.7.1), thread (3.7.2), or automatic (3.7.3)
storage duration and if T has a non-trivial destructor,3” the program must ensure that an object of the
original type occupies that same storage location when the implicit destructor call takes place; otherwise the
behavior of the program is undefined. This is true even if the block is exited with an exception. [ Example:

class T { };

struct B {
“BO;

};

void h() {
B b;
new (&b) T;
} // undefined behavior at block exit

37) That is, an object for which a destructor will be called implicitly—upon exit from the block for an object with automatic
storage duration, upon exit from the thread for an object with thread storage duration, or upon exit from the program for an
object with static storage duration.
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— end example]

Creating a new object at the storage location that a const object with static, thread, or automatic storage
duration occupies or, at the storage location that such a const object used to occupy before its lifetime
ended results in undefined behavior. [ Example:

struct B {
BO;
“BO;

};

const B b;
void h() {
b."BQ);

new (&b) const B; // undefined behavior
}

— end example |

3.9 Types [basic.types]

[ Note: 3.9 and the subclauses thereof impose requirements on implementations regarding the representation
of types. There are two kinds of types: fundamental types and Compound types Types describe objects
(1.8), references (8 3.2), or functions (8 3. 5) - : e e :

For any object (other than a base-class subobject) of trivially copyable type T, whether or not the object
holds a valid value of type T, the underlying bytes (1.7) making up the object can be copied into an array
of char or unsigned char.?® If the content of the array of char or unsigned char is copied back into the
object, the object shall subsequently hold its original value. [ Example:

#define N sizeof (T)
char buf[N];

T obj; // obj initialized to its original value
std: :memcpy (buf, &obj, N); // between these two calls to std: :memcpy,
// obj might be modified
std: :memcpy (&obj, buf, N); // at this point, each subobject of obj of scalar type

// holds its original value

— end example]

For any trivially copyable type T, if two pointers to T point to distinct T objects obj1 and obj2, where neither
obj1 nor obj2 is a base-class subobject, if the value of obj1 is copied into obj2, using the std: :memcpy
library function, obj2 shall subsequently hold the same value as obj1. [ Ezample:

T* tip;

T* t2p;
// provided that t2p points to an initialized object ...

std: :memcpy(tlp, t2p, sizeof(T));
// at this point, every subobject of trivially copyable type in *tlp contains
// the same value as the corresponding subobject in *t2p

38) By using, for example, the library functions (17.6.1.2) std: :memcpy or std: :memmove.
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— end example]

The object representation of an object of type T is the sequence of N unsigned char objects taken up by
the object of type T, where N equals sizeof (T). The value representation of an object is the set of bits that
hold the value of type T. For trivially copyable types, the value representation is a set of bits in the object
representation that determines a value, which is one discrete element of an implementation-defined set of

values.3?

A class that has been declared but not defined, or an array of unknown size or of incomplete element type, is
an incompletely-defined object type.*® Incompletely-defined object types and the void types are incomplete
types (3.9.1). Objects shall not be defined to have an incomplete type.

A class type (such as “class X”) might be incomplete at one point in a translation unit and complete later
on; the type “class X” is the same type at both points. The declared type of an array object might be
an array of incomplete class type and therefore incomplete; if the class type is completed later on in the
translation unit, the array type becomes complete; the array type at those two points is the same type. The
declared type of an array object might be an array of unknown size and therefore be incomplete at one point
in a translation unit and complete later on; the array types at those two points (“array of unknown bound
of T” and “array of N T”) are different types. The type of a pointer to array of unknown size, or of a type
defined by a typedef declaration to be an array of unknown size, cannot be completed. [ Ezample:

class X; // X is an incomplete type

extern X* xp; // xp is a pointer to an incomplete type
extern int arr[]; // the type of arr is incomplete

typedef int UNKA[]; // UNKA is an incomplete type

UNKA* arrp; // arrp is a pointer to an incomplete type

UNKA** arrpp;

void foo() {

Xpt+; // ill-formed: X is incomplete
arrp++; // ill-formed: incomplete type
arrpp++; // OK: sizeof UNKA* is known
}
struct X { int i; }; // now X is a complete type
int arr[10]; // mow the type of arr is complete
X x;
void bar() {
Xp = &x; // OK; type is “pointer to X”
arrp = &arr; // ill-formed: different types
XpH+; // OK: X is complete
arrp++; // ill-formed: UNKA can’t be completed
}

— end example]

[ Note: the rules for declarations and expressions describe in which contexts incomplete types are prohibited.
— end note]

An object type is a (possibly cv-qualified) type that is not a function type, not a reference type, and not a
void type.

39) The intent is that the memory model of CH++ is compatible with that of ISO/IEC 9899 Programming Language C.
40) The size and layout of an instance of an incompletely-defined object type is unknown.
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Arithmetic types (3.9.1), enumeration types, pointer types, pointer to member types (3.9.2), std: :nullptr_-
t, and cv-qualified versions of these types (3.9.3) are collectively called scalar types. Scalar types, POD
classes (Clause 9), arrays of such types and cv-qualified versions of these types (3.9.3) are collectively called
POD types. Scalar types, trivially copyable class types (Clause 9), arrays of such types, and cv-qualified
versions of these types (3.9.3) are collectively called trivially copyable types. Scalar types, trivial class types
(Clause 9), arrays of such types and cv-qualified versions of these types (3.9.3) are collectively called trivial
types. Scalar types, standard-layout class types (Clause 9), arrays of such types and cv-qualified versions of
these types (3.9.3) are collectively called standard-layout types.

A type is a literal type if it is:

— a scalar type; or

— a class type (Clause 9) with
— a trivial copy constructor,
— a trivial destructor,

— a trivial default constructor or at least one constexpr constructor other than the copy constructor,
and

— all non-static data members and base classes of literal types; or

— an array of literal type.

If two types T1 and T2 are the same type, then T1 and T2 are layout-compatible types. [ Note: Layout-
compatible enumerations are described in 7.2. Layout-compatible standard-layout structs and standard-
layout unions are described in 9.2. — end note|

3.9.1 Fundamental types [basic.fundamental]

Objects declared as characters (char) shall be large enough to store any member of the implementation’s ba-
sic character set. If a character from this set is stored in a character object, the integral value of that character
object is equal to the value of the single character literal form of that character. It is implementation-defined
whether a char object can hold negative values. Characters can be explicitly declared unsigned or signed.
Plain char, signed char, and unsigned char are three distinct types. A char, a signed char, and an
unsigned char occupy the same amount of storage and have the same alignment requirements (3.11); that
is, they have the same object representation. For character types, all bits of the object representation par-
ticipate in the value representation. For unsigned character types, all possible bit patterns of the value
representation represent numbers. These requirements do not hold for other types. In any particular imple-
mentation, a plain char object can take on either the same values as a signed char or an unsigned char;
which one is implementation-defined.

0w s

There are five standard signed integer types : “signed char”, “short int”, “int”, “long int”, and “long
long int”. In this list, each type provides at least as much storage as those preceding it in the list.
There may also be implementation-defined extended signed integer types. The standard and extended signed
integer types are collectively called signed integer types. Plain ints have the natural size suggested by the
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architecture of the execution environment®!; the other signed integer types are provided to meet special
needs.

For each of the standard signed integer types, there exists a corresponding (but different) standard un-
signed integer type: “unsigned char”, “unsigned short int”, “unsigned int”, “unsigned long int”,
and “unsigned long long int”, each of which occupies the same amount of storage and has the same
alignment requirements (3.11) as the corresponding signed integer type??; that is, each signed integer type
has the same object representation as its corresponding unsigned integer type. Likewise, for each of the
extended signed integer types there exists a corresponding extended unsigned integer type with the same
amount of storage and alignment requirements. The standard and extended unsigned integer types are
collectively called unsigned integer types. The range of nonnegative values of a signed integer type is a
subrange of the corresponding unsigned integer type, and the value representation of each corresponding
signed /unsigned type shall be the same. The standard signed integer types and standard unsigned integer
types are collectively called the standard integer types, and the extended signed integer types and extended
unsigned integer types are collectively called the extended integer types.

Unsigned integers, declared unsigned, shall obey the laws of arithmetic modulo 2™ where n is the number
of bits in the value representation of that particular size of integer.*3

Type wchar_t is a distinct type whose values can represent distinct codes for all members of the largest
extended character set specified among the supported locales (22.3.1). Type wchar_t shall have the same
size, signedness, and alignment requirements (3.11) as one of the other integral types, called its underlying
type. Types char16_t and char32_t denote distinct types with the same size, signedness, and alignment as
uint_least16_t and uint_least32_t, respectively, in <stdint.h>, called the underlying types.

Values of type bool are either true or false.* [Note: there are no signed, unsigned, short, or long

bool types or values. — end note] Values of type bool participate in integral promotions (4.5).

Types bool, char, char16_t, char32_t, wchar_t, and the signed and unsigned integer types are collectively
called integral types.*> A synonym for integral type is integer type. The representations of integral types
shall define values by use of a pure binary numeration system.*® [ Ezample: this International Standard
permits 2’s complement, 1’s complement and signed magnitude representations for integral types. — end
example]

requirement-std+IntegralType<t>-

There are three floating point types: float, double, and long double. The type double provides at least
as much precision as float, and the type long double provides at least as much precision as double.
The set of values of the type float is a subset of the set of values of the type double; the set of values
of the type double is a subset of the set of values of the type long double. The value representation of
floating-point types is implementation-defined. Integral and floating types are collectively called arithmetic
types. Specializations of the standard template std::numeric_limits (18.3) shall specify the maximum
and minimum values of each arithmetic type for an implementation.

41) that is, large enough to contain any value in the range of INT_MIN and INT_MAX, as defined in the header <climits>.

42) See 7.1.6.2 regarding the correspondence between types and the sequences of type-specifiers that designate them.

43) This implies that unsigned arithmetic does not overflow because a result that cannot be represented by the resulting
unsigned integer type is reduced modulo the number that is one greater than the largest value that can be represented by the
resulting unsigned integer type.

44) Using a bool value in ways described by this International Standard as “undefined,” such as by examining the value of an
uninitialized automatic variable, might cause it to behave as if it is neither true nor false.

45) Therefore, enumerations (7.2) are not integral; however, enumerations can be promoted to integral types as specified in 4.5.

46) A positional representation for integers that uses the binary digits O and 1, in which the values represented by successive
bits are additive, begin with 1, and are multiplied by successive integral power of 2, except perhaps for the bit with the highest
position. (Adapted from the American National Dictionary for Information Processing Systems.)
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The void type has an empty set of values. The void type is an incomplete type that cannot be completed. It
is used as the return type for functions that do not return a value. Any expression can be explicitly converted
to type cv void (5.4). An expression of type void shall be used only as an expression statement (6.2), as an
operand of a comma expression (5.18), as a second or third operand of ?: (5.16), as the operand of typeid,
or as the expression in a return statement (6.6.3) for a function with the return type void.

A value of type std: :nullptr_t is a null pointer constant (4.10). Such values participate in the pointer and
the pointer to member conversions (4.10, 4.11). sizeof (std: :nullptr_t) shall be equal to sizeof (void*).

[ Note: even if the implementation defines two or more basic types to have the same value representation,
they are nevertheless different types. — end note]

3.9.2 Compound types [basic.compound]

Compound types can be constructed in the following ways:
— arrays of objects of a given type, 8.3.4;

— functions, which have parameters of given types and return void or references or objects of a given
type, 8.3.5;

— pointers to void or objects or functions (including static members of classes) of a given type, 8.3.1;
— references to objects or functions of a given type, 8.3.2. There are two types of references:

— lvalue reference

— rvalue reference

— classes containing a sequence of objects of various types (Clause 9), a set of types, enumerations and
functions for manipulating these objects (9.3), and a set of restrictions on the access to these entities
(Clause 11);

— wunions, which are classes capable of containing objects of different types at different times, 9.5;

— enumerations, which comprise a set of named constant values. Each distinct enumeration constitutes
a different enumerated type, 7.2;

— pointers to non-static *7 class members, which identify members of a given type within objects of a
given class, 8.3.3.

These methods of constructing types can be applied recursively; restrictions are mentioned in 8.3.1, 8.3.4,
8.3.5, and 8.3.2.

A pointer to objects of type T is referred to as a “pointer to T.” [ Example: a pointer to an object of type
int is referred to as “pointer to int ” and a pointer to an object of class X is called a “pointer to X.” — end
example] Except for pointers to static members, text referring to “pointers” does not apply to pointers to
members. Pointers to incomplete types are allowed although there are restrictions on what can be done with
them (3.11). A valid value of an object pointer type represents either the address of a byte in memory (1.7)
or a null pointer (4.10). If an object of type T is located at an address A, a pointer of type cv T* whose value
is the address A is said to point to that object, regardless of how the value was obtained. [ Note: for instance,
the address one past the end of an array (5.7) would be considered to point to an unrelated object of the
array’s element type that might be located at that address. There are further restrictions on pointers to
objects with dynamic storage duration; see 3.7.4.3. — end note] The value representation of pointer types
is implementation-defined. Pointers to cv-qualified and cv-unqualified versions (3.9.3) of layout-compatible
types shall have the same value representation and alignment requirements (3.11). [Note: pointers to

47) Static class members are objects or functions, and pointers to them are ordinary pointers to objects or functions.
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over-aligned types (3.11) have no special representation, but their range of valid values is restricted by the
extended alignment requirement. This International Standard specifies only two ways of obtaining such a
pointer: taking the address of a valid object with an over-aligned type, and using one of the runtime pointer
alignment functions. An implementation may provide other means of obtaining a valid pointer value for an
over-aligned type. — end note |

Objects of cv-qualifie