Doc No: WG21 N3452 =.16 12-0142

Date: 2012-09-23

Reply to: Herb Sutter (hsutter@microsoft.com)
Subgroup: EWG — Evolution

Let {x,y,z} = explicit

Herb Sutter

This paper proposes allowing an initializer-list expression to be used in “explicit” situations, notably to
call an explicit constructor.

Rationale: By definition, an initializer-list expression (and/or an initializer_list object) exists to initialize
something — a conversion is not only expected, but tantamount required. Therefore the {x,y,z} syntax is
already “explicit” and should be acknowledged in the language as explicit without requiring the user to
still-more-explicitly redundantly type out the name of an already-known type.

Examples

For convenience, I'll use unique_ptr and tuple as strawman types that have explicit constructors, and
have already raised concerns about usability with { init } expressions (see References).

Note that using a helper like make_tuple is a partial workaround, but is more verbose and not always
available on other types with explicit constructors (e.g., there is currently no make_unique).

Example 1: Return Values
Consider:

// Example 1(a)

unique_ptr<widget> void f() {
return new widget(); // error: right, this should be an error
return { new widget() }; // error: why shouldn’t this work?

}

This doesn’t work because the constructor is explicit. Instead, the user is forced to write the type
redundantly:

return unique_ptr<widget>{ new widget() };

What value is there in forcing the author of the function — the same person who just wrote the return
type — to explicitly write out this longer version with the explicit type (which now has to be repeated
twice in the same expression, on top of being repeated from where he just wrote it as the return type),
when it can’t be anything else and there’s nothing else he could possibly be doing but intending to
construct a unique_ptr with those parameters?

The original example should be allowed, and call the explicit constructor.

Similarly, now that we have standard tuples, we should be encouraging people to use them as return
types when a function has multiple return values (‘yes, C++11 really supports multiple return values!’).
But:

// Example 1(b)
tuple<int,float> f() {
tuple<int,float> this_is_okay{ 1, 2.}; // ok (demonstration for ironic value)
return {1, 2. }; // error: (wha?!) (oh, not that again...)
}
Same deal: The last line doesn’t work, because tuple’s ctor is explicit. You have to write:
return tuple<int,float>{ 1, 2. };
or
return make_tuple(1, 2.);

What value is there in forcing people to explicitly write out the type or call a helper that merely deduces
the types(!), when it can’t be anything else than the return type — never mind that | myself just wrote
that return because I’'m the author of the function?

This should be allowed, because there’s nothing else the programmer could possibly be intending.
Writing:

widget func() { return {init}; } // not ok if explicit, but should be
should be considered just as “explicit” a syntax as the already-allowed

widget var{ init-list }; // ok if explicit

The only difference is that I'm defining a function vs. a variable, and in both cases: (a) | can’t possibly be
doing anything else so | can’t see any room for implicit-conversion errors here; and (b) requiring the type
to be written again explicitly is redundant because the author of the type and the expression are
necessarily the same.

Example 2: Arguments
Consider:

// Example 2(a)
void f(tuple<int,float>);
f({1,2.}); // error: only because ctor is explicit

This doesn’t work because the constructor is explicit. Instead, the user is forced to write the type
redundantly:

f(tuple<int,float >{ 1, 2. });
or use make_tuple which happens to be available for tuple but isn’t actually much better here:
f(make_tuple(1, 2.)); // arguably an attempt to make it “implicit”

What value is there in making him write out the type (or a factory that deduces the type) by hand? If
there is only one function f that takes a single argument, what else could be possibly mean —
remembering that the user knows he’s getting a conversion because he’s explicitly asking for it with { },
unlike the cases where we don’t want him to accidentally get an implicit conversion when he’s not aware
of it?

The original example should be allowed, and call the explicit constructor.
Consider also:

// Example 2(b)

void f(unique_ptr<widget>);

auto spw = make_shared<widget>();

f(spw.get()); // error: right, this should be an error
f(new widget); // error: right, this should be an error
f({ new widget }); // error: only because ctor is explicit

This doesn’t work because the constructor is explicit. Instead, the user is forced to write the type
redundantly:

f(unique_ptr<widget>{ new widget });

What value is there in making him write out the type by hand — remembering that the user knows he’s
getting a conversion because he’s explicitly asking for it with { }, unlike the cases where we don’t want
him to accidentally get an implicit conversion when he’s not aware of it?

The original example should be allowed, and call the explicit constructor.

Consider:
// Example 3(a)
tuple<int,float> f() {
tuple<int,float> this_is_okay{ 1, 2.}; // ok (demonstration for ironic value)
tuple<int,float> this_is_not ={1, 2. }; // error: explicit
}

Here again, the last line doesn’t work, because tuple’s ctor is explicit. The simplest workaround is to omit
the ‘=’, otherwise you have to write this:

tuple<int,float> this_is_okay = tuple<int,float>{ 1, 2. };
or this:
tuple<int,float> this_is_okay = make_tuple(1, 2.);

What value is there in forcing people to explicitly write out the type, or explicitly ask for it to be
deduced," when it can’t be anything else than the variable’s type — which | just wrote?

This should be allowed, because there’s nothing else the programmer could possibly be intending.

In this particular case, | would make the argument that the correct fix is to say that “= { init-list }” should
not be viewed as copy-initialization at all, but as a synonym for “{ init-list }” alone (i.e., the ‘=" is
redundant and optional and is guaranteed not to involve a temporary object).

Aside: { } Copy Construction
Since we’re speaking of copying and {}, we should allow {} to be used for copy constructors:

complex<float>z1 {1.};

complex<float> z2{z1};

References
-ext thread starting with [c++std-ext-12178]

-core thread starting with [c++std-core-21937]

LWG Issue 2051 on tuple: http://lwg.github.com/issues/lwg-closed.htm|#2051

! “|sn’t it ironic? Don’t you think?” — A. Morissette

http://lwg.github.com/issues/lwg-closed.html#2051

