
ISO/IEC WDTR 18037

02/03/15 5:03 PM Draft-version

- 1 -

WG14 N968

ISO/IEC WDTR 18037.2

Programming languages , their env ironments and s ystem software interfaces —
Extensions for the programming language C to suppo rt embedded p rocessors

REVIEW VERSION DD 2002-03-15

Contents

1 GENERAL ..5

1.1 Scope... 5

1.2 References .. 5

2 FIXED-POINT ARITHMETIC..5

2.1 Overview and principles of the fixed-point data types... 5
2.1.1 The data types... 5
2.1.2 Spelling of the new keywords.. 7
2.1.3 Overflow and Rounding... 7
2.1.4 Type conversion, usual arithmetic conversions .. 8
2.1.5 Fixed-point constants .. 10
2.1.6 Operations involving fixed-point types... 10
2.1.7 Fixed-point functions ... 12
2.1.8 Fixed-point definitions <stdfix.h>... 14
2.1.9 Formatted I/O functions for fixed-point arguments.. 14
2.1.10 List of open issues... 15

2.2 Detailed changes to ISO/IEC 9899:1999 .. 15

3 MULTIPLE ADDRESS SPACES SUPPORT..38

3.1 Overview and principles .. 38
3.1.1 Named address space support. .. 38
3.1.2 Processor-architecture-based multiple address space support .. 38
3.1.3 Application-defined multiple address space support... 38

ISO/IEC WDTR 18037

Draft version 02/03/15 5:03 PM

- 2 -

3.2 Impact on the C language usage. ... 39
3.2.1 Variable declaration... 39
3.2.2 Pointer declaration... 39
3.2.3 Pointer usage .. 39
3.2.4 Portability between implementations... 39

4 BASIC I/O HARDWARE ADDRESSING.. 40

4.1 Rationale.. 40
4.1.1 Basic Standardisation Objectives.. 40

4.2 Basic I/O-Hardware addressing header <iohw.h>... 40
4.2.1 Overview and principles .. 40
4.2.2 The abstract model.. 41
4.2.3 I/O register characteristics... 42
4.2.4 The most basic I/O operations .. 43
4.2.5 The access_spec_macros... 43

4.3 The <iohw.h> interface .. 44
4.3.1 Function like macros for single register access .. 44
4.3.2 Function like macros for register buffer access... 44
4.3.3 Function like macros for access_spec initialisation... 45
4.3.4 Function for access_spec copying .. 46

ANNEX A... 49

A.1Fixed-point ... 49
A.1.1 The fixed-point data types ... 49
A.1.2 Overflow and Rounding... 53
A.1.3 Type conversions, usual arithmetic conversions... 53
A.1.4 Operations involving fixed-point types... 53

ANNEX B... 55

B.1Embedded systems extended memory support .. 55
B.1.1 Modifiers for named address spaces .. 55
B.1.2 User-defined device drivers... 56

ANNEX C... 59

C.1General .. 59
C.1.1 Recommended steps .. 59
C.1.2 Compiler considerations.. 59

C.2Overview of I/O Hardware Connection Options .. 60
C.2.1 Multi-Addressing and I/O Register Endian .. 60
C.2.2 Address Interleave... 61
C.2.3 I/O Connection Overview: ... 61
C.2.4 Generic buffer index .. 62

ISO/IEC WDTR 18037

02/03/15 5:03 PM Draft-version

- 3 -

C.3Access_specs for different I/O addressing methods ... 62

C.4Atomic operation.. 64

C.5Read-modify-write operations and multi-addressing cases. ... 64

C.6I/O initialisation .. 64

ANNEX D ...67

D.1Generic access_spec descriptor ... 67
D.1.1 Background ... 67

D.2Syntax specification... 67

D.3Examples of access_spec descriptors .. 69

D.4Parsing... 71

D.5Comments on syntax notation ... 72

ANNEX E..73

E.1Migration path for iohw.h implementations.. 73

E.2<iohw.h> implementation based on C macros .. 73
E.2.1 The access specification method .. 73
E.2.2 An iohw implementation technique.. 74
E.2.3 Features .. 74
E.2.4 The <iohw.h> header... 75
E.2.5 The users I/O register definitions .. 77
E.2.6 The driver function... 78

ANNEX F..80

F.1 Circular buffers .. 80

F.2 Complex data types... 81

ANNEX G ...82

G.1 Compatibility with C++... 82
G.1.1 Keywords... 82
G.1.2 Fixed-point constants .. 83
G.1.3 The use of pragma's, and other issues ... 84

ISO/IEC WDTR 18037

Draft version 02/03/15 5:03 PM

- 4 -

INTRODUCTION

In the fast growing market of embedded systems there is an increasing need to write application
programs in a high-level language such as C. Basically there are two reasons for this trend:
programs for embedded systems get more complex (and hence are difficult to maintain in assembly
language) and the different types of embedded systems processors have a decreasing lifespan
(which implies more frequent re-adapting of the applications to the new instruction set). The code
re-usability achieved by C-level programming is considered to be a major step forward in addressing
these issues.

Various technical areas have been identified where functionality offered by processors (such as
DSPs) that are used in embedded systems cannot easily be exploited by applications written in C.
Examples are fixed-point operations, usage of different memory spaces, low level I/O operations
and others. The current proposal addresses only a few of these technical areas.

Embedded processors are often used to analyse analogue signals and process these signals by
applying filtering algorithms to the data received. Typical applications can be found in all wireless
devices. The common data type used in filtering algorithms is the fixed-point data type, and in order
to achieve the necessary speed, the embedded processors are often equipped with special
hardware support that data type. The C language (as defined in ISO/IEC 9899:1999) does not
provide support the fixed-point arithmetic operations, currently leaving programmers with no option
but to hand-craft most of their algorithms in assembler. This Technical Report specifies a fixed-
point data type for C, definable in a range of precision and saturation options. In this manner, fixed-
point data is supported as easily as integer and floating point data throughout the compiler,
including the critical optimisers leading to highly efficient code.

Typical for the mentioned filtering algorithms is the usage of polynomials whereby data from one
source (inputvalues) is multiplied by coefficients coming from another source (memory). Ensuring
the simultaneous flow of data and coefficient data to the multiplier/accumulator of processors
designed for FIR filtering, for example, is critical to their operation. In order to allow the programmer
to declare the memory space from which a specific data object must be fetched. This Technical
Report specifies basic support for multiple address spaces. As a result, optimising compilers can
utilise the ability of processors that support multiple address spaces, for instance, to read data from
two separate memories in a single cycle to maximise execution speed.

 [Editor's note: Are all above paragraphs necessa ry?]

As the C language has matured over the years, various extensions for accessing basic I/O
hardware (iohw) registers have been added to address deficiencies in the language. Today almost
all C compilers for freestanding environments and embedded systems support some method of
direct access to iohw registers from the C source level. However, these extensions have not been
consistent across dialects.
This Technical Report provides an approach to codifying common practice and providing a single
uniform syntax for basic iohw register addressing.

ISO/IEC WDTR 18037

02/03/15 5:03 PM Draft-version

- 5 -

Information techno logy — Programming langu ages, their
environments and system software interfaces — Extensions for
the programming langu age C to suppo rt embedded processors

1 General

1.1 Scope

This Technical Report specifies a series of extensions of the programming language C, specified by
the international standard ISO/IEC 9899:1999.

Each clause in this Technical Report deals with a specific topic. The first subclause of each clause
contains a technical description of the features of the topic. It provides an overview but does not
contain all the fine details. The second subclause of each clause contains the editorial changes to
the standard, necessary to fully specify the topic in the standard, and thereby provides a complete
definition. If necessary, additional explanation and/or rationale is given in an Annex.

1.2 References
The following standards contain provisions which, through reference in this text, constitute
provisions of Technical Report. For dated references, subsequent amendments to, or revisions of,
any of these publications do not apply. However, parties to agreements based on this Technical
Report are encouraged to investigate the possibility of applying the most recent editions of the
normative documents indicated below. For undated references, the latest edition of the normative
document referred applies. Members of IEC and ISO maintain registers of current valid
International Standards.

ISO/IEC 9899:1999, Information technology – Programming languages, their environments and
system software interfaces – Programming Language C.

2 Fixed-point arithmetic

2.1 Overview and p rinciples of the fixed-point data types

2.1.1 The data types
For the purpose of this Technical Report, fixed-point data values are either fractional data values
(with value between -1.0 and +1.0), or data values with an integral part and a fractional part. As the
position of the radix point is known implicitly, operations on the values of these data types can be

ISO/IEC WDTR 18037

Draft version 02/03/15 5:03 PM

- 6 -

implemented with (almost) the same efficiency as operations on integral values. Typical usage of
fixed-point data values and operations can be found in applications that convert analogue values to
digital representations and subsequently apply some filtering algorithm. For more information of
fixed-point data types, see clause A.1.1 in the Annex of this Technical Report.

For the purpose of this Technical Report, two groups of fixed-point data types are added to the
C language: the fract types and the accum types. The data value of a fract type has no integral
part, hence values of a fract type are between -1.0 and +1.0. The value range of an accum type
depends on the number of integral bits in the data type.

The fixed-point data types are designated with the corresponding new keywords and type-specifiers
_Fract and _Accum. These type-specifiers can be used in combination with the existing type-
specifiers short, long, signed and unsigned to designate the following twelve fixed-point
types:

unsigned short _Fract unsigned short _Accum
unsigned _Fract unsigned _Accum
unsigned long _Fract unsigned long _Accum
signed short _Fract signed short _Accum
signed _Fract signed _Accum
signed long _Fract signed long _Accum

The fixed-point data types

short _Fract short _Accum
_Fract _Accum
long _Fract long _Accum

without either unsigned or signed are aliases for the corresponding signed fixed-point types.

An implementation is required to support all above mentioned twelve fixed-point data types. Just as
for integer types, there is no requirement that the types all have different formats.

The fixed-point types are assigned a fixed-point rank. The following types are listed in order of
increasing rank:

 short _Fract, _Fract, long _Fract, short _Accum, _Accum, long _Accum

Each unsigned fixed-point type has the same size (in bytes) and the same rank as it's
corresponding signed fixed-point type.

The bits of an unsigned fixed-point type are divided into padding bits, fractional bits, and integral
bits. The bits of a signed fixed-point type are divided into padding bits, fractional bits, integral bits,
and a sign bit.

ISO/IEC WDTR 18037

02/03/15 5:03 PM Draft-version

- 7 -

The fract fixed-point types have no integral bits; consequently, values of unsigned fract types are in
the range of 0 to 1, and values of signed fract types are in the range of -1 to 1. The minimal formats
for each type are:

signed short _Fract s.7 signed short _Accum s4.7
signed _Fract s.15 signed _Accum s4.15
signed long _Fract s.23 signed long _Accum s4.23

unsigned short _Fract .7 unsigned short _Accum 4.7
unsigned _Fract .15 unsigned _Accum 4.15
unsigned long _Fract .23 unsigned long _Accum 4.23

(For the unsigned formats, the notation "x.y" means x integral bits and y fractional bits, for a total of
x + y non-padding bits. The added "s" in the signed formats denotes the sign bit.)

An implementation may give any of the fixed-point types more fractional bits, and may also give any
of the accum types more integral bits; the relevant restrictions are given in the new text for
section 6.2.5 (see section 2.2 of this Technical Report).

2.1.2 Spelli ng o f the new keywords

The natural spelling of the newly introduced keywords _Fract and _Accum, and of the new type-
qualifiers _Sat and _Modwrap, is fract, accum, sat and modwrap. However, in order to
avoid nameclashes in existing programs the new keywords are handled in the same way as the
_Complex keyword in the ISO/IEC 9899:1999 standard: the formal names of the new keywords
start with an underscore, followed by a capital letter, and in the for fixed-point arithmetic required
header <stdfix.h>, these formal names can be redefined to have their natural spelling, or to
another spelling, for instance, in an environment with pre-existing fixed-point support.

In the code fragments in this Technical Report, the natural spelling will be used.

For information on the usage of the new keywords in a combined C/C++ environment, see Annex G.

2.1.3 Overflow and Round ing

Conversion of a real numeric value to a fixed-point type may overflow and/or may require rounding.
When the source value does not fit within the range of the fixed-point type, the conversion
overflows. Two different behaviors are defined for overflow:

- Saturation: The source value is replaced by the closest available fixed-point value. (For
unsigned fixed-point types, this will be either zero or the maximal positive value of the fixed-point
type. For signed fixed-point types it will be the maximal negative or maximal positive value of
the fixed-point type.)

ISO/IEC WDTR 18037

Draft version 02/03/15 5:03 PM

- 8 -

- Modular wrap-around: For unsigned fixed-point types, the source value is replaced by a value
within the range of the fixed-point type that is congruent (in the mathematical sense) to the
source value modulo 2N, where N is the number of integral bits in the fixed-point type. (For
example, for unsigned fract types, N equals 0, and the source value is replaced by a value
between 0 and 1 that is congruent to the source value modulo 1.) For signed fixed-point types,
the source value is replaced by a value within the fixed-point range that is congruent to the
source value modulo 2(N+1), where N again is the number of integral bits in the fixed-point type.
(In either case, the effect is to discard all bits above the most significant bit of the fixed-point
format.)

Overflow behavior is controlled in two ways:

- Either of the fixed-point overflow type-qualifiers _Sat and _Modwrap (but not both) can be
added to a fixed-point type to control overflow behavior (e.g., _Sat _Fract and
_Modwrap long _Accum).

In the absence of an explicit fixed-point overflow type-qualifier, overflow behavior is controlled by
the FX_OVERFLOW pragma with SAT, MODWRAP, and DEFAULT as possible states. When the
state of the FX_OVERFLOW pragma is DEFAULT, fixed-point overflow has undefined behavior.
The default state of the FX_OVERFLOW pragma is DEFAULT.

If (after any overflow handling) the source value cannot be represented exactly by the fixed-point
type, the source value is rounded to either the closest fixed-point value greater than the source
value (rounded up) or to the closest fixed-point value less than the source value (rounded down).

Processors that support fixed-point arithmetic in hardware have no problems in attaining the
required precision without loss of speed; however, simulations using integer arithmetic may require
for multiplication and division extra instructions to get correct result; often these additional
instructions are not needed if the required precision is 2 ulps1. The FX_FULL_PRECISION
pragma provides a means to inform the implementation when a program requires full precision for
these operations (the state of the FX_FULL_PRECISION pragma is ''on''), or when the relaxed
requirements are allowed (the state of the FX_FULL_PRECISION pragma is ''off'').

Whether rounding is up or down is implementation-defined and may differ for different values and
different situations.

[Editors no te: shou ld this be con trollable via a pragma?]

2.1.4 Type conversion, usual arithmetic conversions

All conversions between a fixed-point type and another arithmetic type (which can be another fixed-
point type) are defined. Overflow and rounding are handled according to the usual rules for the

1 unit in the last place: precision upto the last bit

ISO/IEC WDTR 18037

02/03/15 5:03 PM Draft-version

- 9 -

destination type. Conversions from a fixed-point to an integer type round toward zero. The
rounding of conversions from a fixed-point type to a floating-point type is unspecified.

The usual arithmetic conversions in the C standard (see 6.3.1.8) imply three requirements:
1. given a pair of data types, the usual arithmetic conversions define the common type to be used;
2. then, if necessary, the usual arithmetic conversions require that each operand is converted to

that common type; and
3. it is required that the resulting type after the operation is again of the common type.
For the combination of an integer type and a fixed-point type, or the combination of a fract type and
an accum type the usual arithmetic rules may lead to useless results (converting an integer to a
fixed-point type) or to gratuitous loss of precision.
In order to get useful and attainable results, the usual arithmetic conversions do not apply to the
combination of an integer type and a fixed-point type, or the combination of two fixed-point types.
In these cases:
1. the operation is executed directly on the two operands, with their full precision; and
2. the result type is the type with the highest rank, whereby a fixed-point conversion rank is always

greater than an integer conversion rank, and the resulting value is converted (taking into account
rounding and overflow) to the precision of the resulting type;

3. if one operand has signed fixed-point type and the other operand has unsigned fixed-point type,
then the resulting type is the signed type corresponding to the operand type with greatest fixed-
point conversion rank.

Note that as a consequence of the above, in the following fragment

fract r, r1, r2; int i;

r1 = r * i; r2 = r * (fract) i;

the result values r1 and r2 may not be the same.

[Editor's note: shou ld (part of) the above go into the rationale?]

In addition to the standard usual arithmetic conversions (see 6.3.1.8), after the conversion rule for
conversion to the real type float, and before the integer promotion rules, the following rules
should be inserted:

Otherwise, if one operand has fixed-point type and the other operand has integer type, then
no conversions are needed.

Otherwise, if both operands have signed fixed-point types, or if both operands have
unsigned fixed-point types, then no conversions are needed.

Otherwise, if one operand has signed fixed-point type and the other operand has unsigned
fixed-point type, the operand with unsigned type is converted to the signed fixed-point type
corresponding to its own unsigned fixed-point type.

If the type of either of the operands has the _Sat qualifier, the resulting type shall have the
_Sat qualifier; if the type of either of the operands has the _Modwrap qualifier, the

ISO/IEC WDTR 18037

Draft version 02/03/15 5:03 PM

- 10 -

resulting type shall have the _Modwrap qualifier. [Note: for precision of specification sake,
this last requirement might have to be merged into the previous two]

It is recommended that a conforming compilation system provide an option to produce a diagnostic
message whenever the usual arithmetic conversions cause a fixed-point operand to be converted to
floating point.

2.1.5 Fixed-point constants

A fixed-constant is defined analogous to a floating-constant (see 6.4.4.2), with suffixes q (Q) and r
(R) for accum type constants and fract type constants; for the short variants the suffix h (H) should
be added as well.

The type of a fixed-point constant depends on its fixed-suffix as follows (note that the suffix is case
insensitive; the table below only give lowercase letters):

Suffix Fixed-point type
hr short _Fract
uhr unsigned short _Fract
r _Fract
ur unsigned _Fract
lr long _Fract
ulr unsigned long _Fract
hq short _Accum
uhq unsigned short _Accum
q _Accum
uq unsigned _Accum
lq long _Accum
ulq unsigned long _Accum

A fixed-point constant shall evaluate to a value that is in the range for the indicated type. An
exception to this requirement is made for constants of one of the fract types with value 1; these
constants shall denote the maximal value for the type.

2.1.6 Operations involving fixed-point types

2.1.6.1 Unary operators

2.1.6.1.1 Prefix and p ostfix increment and d ecrement operators

The prefix and postfix ++ and -- operators have their usual meaning of adding or subtracting the
integer value 1 to or from the operand and returning the value before or after the addition or
subtraction as the result.

ISO/IEC WDTR 18037

02/03/15 5:03 PM Draft-version

- 11 -

2.1.6.1.2 Unary arithmetic operators

The unary arithmetic operators plus (+) and negation (-) are defined for fixed-point operands, with
the result type being the same as that of the operand. The negation operation is equivalent to
subtracting the operand from the integer value zero. It is not allowed to apply the complement
operator (~) to a fixed-point operand. The result of the logical negation operator ! applied to a
fixed-point operand is 0 if the operand compares unequal to 0, 1 if the value of the operand
compares equal to 0; the result has type int.

2.1.6.2 Binary operators

2.1.6.2.1 Binary arithmetic operators

The binary arithmetic operators +, -, *, and / are supported for fixed-point data types, with their
usual arithmetic meaning, as follows:

- If the type of one operand is a fixed-point type, and the type of the other operand is an integer
type, the result type is the type of the fixed-point operand. The integer operand is not first
converted to fixed-point before the operation is performed.

- Otherwise, if both operands have fixed-point types, the result type is the operand type with
greater rank (after the usual arithmetic conversions have been applied), with the adoption of any
_Sat or _Modwrap qualifier from either operand. (For example, if the operands of an addition
have types unsigned long _Accum and _Sat _Fract, the result type is
_Sat long _Accum.) It is a constraint error for one operand to have a _Sat qualifier and the
other a _Modwrap qualifier.

If the result type of an arithmetic operation is a fixed-point type, for operators other than * and /, the
calculated result is the mathematically exact result with overflow handling and rounding performed
to the full precision of the result type as explained in the earlier section on Overflow and Rounding.
The * and / operators may return either this rounded result or, depending of the state of the
FX_FULL_PRECISION pragma, the closest larger or closest smaller value representable by the
result fixed-point type. (Between rounding and this optional adjustment, the multiplication and
division operations permit a mathematical error of almost 2 units in the last place of the result type.)

If the value of the second operand of the / operator is zero, the behaviour is undefined.

2.1.6.2.2 Bitwise shift operators

Shifts of fixed-point values using the standard << and >> operators are defined to be equivalent to
multiplication or division by a power of two (including the resulting overflow and rounding behavior).
The right operand is converted to type int and must be nonnegative and less than the total number
of (nonpadding) bits of the fixed-point operand (the left operand). The result type is the same as
that of the fixed-point operand. An exact result is calculated and then converted to the result type in
the same way as the other fixed-point arithmetic operators.

2.1.6.2.3 Relational operators, equali ty operators

ISO/IEC WDTR 18037

Draft version 02/03/15 5:03 PM

- 12 -

The standard relational operators (<, <=, >=, and >) and equality operators (==, and !=) accept
fixed-point operands. The usual arithmetic conversions are applied before the comparison is made.
Fixed-point and integer values are compared directly; the integer operand is not converted to fixed-
point before the comparison is made.

2.1.6.3 Ass ignment operators

The standard assignment operators +=, -=, *=, and /= are defined in the usual way when either
operand is fixed-point. Note, in particular, that, given the declarations

 sat fract a;
 modwrap fract b;

the expression "a += b" violates a constraint because "a + b" does.

The standard assignment operators <<= and >>= are defined in the usual way when the left
operand is fixed-point.

2.1.7 Fixed-point functions

2.1.7.1 The fixed-point absolute value functions

The absolute value functions absfx, where fx stands for one of hr, r, lr, hq, q or lq, take one
fixed-point type argument (corresponding to fx); the function type is the same as the type of the
argument.

The absolute value functions compute the absolute value of a fixed-point value. If the result cannot
be represented, the behaviour is undefined.

2.1.7.2 The fixed-point round ing functions

The rounding functions roundfx, where fx stands for one of hr, r, lr, hq, q or lq, take two
arguments: a fixed-point argument (corresponding to fx) and an integer argument; the function type
is the same as the type of the first argument.

The value of the second argument must be nonnegative and less than the number of fractional bits
in the fixed-point type of the first argument. The rounding functions compute the value of the first
argument, rounded to the number of fractional bits specified in the second argument. The rounding
applied is to-nearest, with unspecified rounding direction in the halfway case. Fractional bits beyond
the rounding point are set to zero in the result.

2.1.7.3 The fixed-point bit count functions

ISO/IEC WDTR 18037

02/03/15 5:03 PM Draft-version

- 13 -

The bit count functions countlsfx, where fx stands for one of hr, r, lr, hq, q, lq, uhr, ur,
ulr, uhq, uq or ulq, take one fixed-point type argument (corresponding to fx); the function type
is int.

The integer return value of the above functions is defined as follows:
- if the value of the fixed-point argument is non-zero, the return value is the largest integer k for

which the expression a<<k does not overflow;
- if the value of the fixed-point argument is zero, an integer value is returned that is at least as

large as N-1, where N is the total number of (nonpadding) bits of the fixed-point type of the
argument.

2.1.7.4 The bitwise fixed-point to integer conversion functions

The bitwise fixed-point to integer conversion functions bitsfx, where fx stands for one of hr, r,
lr, hq, q, lq, uhr, ur, ulr, uhq, uq or ulq, take one fixed-point type argument (corresponding
to fx); the function type is int (for signed arguments) or unsigned (for unsigned arguments).

The bitwise fixed-point to integer conversion functions return an integer value equal to the fixed-
point value of the argument multiplied by 2F, where F is the number of fractional bits in the fixed-
point type. The result type is an integer type big enough to hold all valid result values for the given
fixed-point argument type. For example, if the fract type has 15 fractional bits, then after the
declaration

fract a = 0.5;

the value of bitsr(a) is 0.5 * 2^15 = 0x4000.

2.1.7.5 The bitwise integer to fixed-point conversion functions

The bitwise fixed-point to integer conversion functions fxbits, where fx stands for one of hr, r,
lr, hq, q, lq, uhr, ur, ulr, uhq, uq or ulq, take one argument with type int or
unsigned int, the function type is a fixed-point type (corresponding to fx).

The bitwise fixed-point to integer conversion functions return an fixed-point value equal to the
integer value of the argument divided by 2F, where F is the number of fractional bits in the fixed-
point result type of the function. For example, if fract has 15 fractional bits, then the value of
rbits(0x2000) is 0.25.

2.1.7.6 Type-generic fixed-point functions

The header <stdfix.h> defines the following fixed-point type-generic macros. For each of the
fixed-point absolute value functions in 2.1.7.1, the fixed-point round functions in 2.1.7.2, the fixed-
point countls functions in 2.1.7.3, the functions for bitwise conversion of fixed-point to integer values
in 2.1.7.4 and the functions for bitwise conversion of integer to fixed-point values in 2.1.7.5, a type-
generic macro is defined as follows:

ISO/IEC WDTR 18037

Draft version 02/03/15 5:03 PM

- 14 -

type-generic macro
the fixed-point absolute value functions absfx
the fixed-point round functions roundfx
the fixed-point countls functions countlsfx
the bitwise fixed-point to integer conversion functions bitsfx
the bitwise integer to fixed-point conversion functions fxbits

.
2.1.7.7 Fixed-point numeric conversion functions

The fixed-point numeric conversion functions strtofx, where fx stands for one of hr, r, lr, hq,
q, lq, uhr, ur, ulr, uhq, uq or ulq, take two arguments: the first argument has
const char * restrict type, the second argument has char ** restrict type; the
function type is a fixed-point type (corresponding to fx).

Similar to the strtod function, the strtofx functions convert a portion of the string pointed to by
the first argument to a fixed-point representation, with a type corresponding to fx, and return that
fixed-point type value.

2.1.8 Fixed-point definitions <stdfix.h>

In the header <stdfix.h> defines macros that specify the precision of the fixed-point types and
declares functions that support fixed-point arithmetic.

2.1.9 Formatted I/O functions for fixed-point arguments

Additional conversion specifiers for fixed-point arguments are defined as follows:
r for (signed) fract types
R for unsigned fract types
q for (signed) accum types
Q for unsigned accum types.

Together with the standard length modifiers h (for short fixed-point arguments) and l (for long fixed-
point arguments) all fixed-point types can be converted in the normal manner. Conversions to and
from infinity and NaN representations are not supported.

The fprintf function and its derived functions with the r, R, q and Q conversion formats convert
the argument with a fixed-point type representing a fixed-point number to decimal notation in the
style [-]ddd.ddd, where the number of digits after the decimal point is equal to the precision
specification (i.e., it corresponds to the output format of the f (F) conversion specifier).

ISO/IEC WDTR 18037

02/03/15 5:03 PM Draft-version

- 15 -

The fscanf function and its derived functions match an optionally signed fixed-point number
whose format is the same as expected for the subject sequence of the corresponding strtofx
function. The corresponding argument of fscanf shall be a pointer to a fixed-point type variable with
a type corresponding to fx.

[Editor's notes:
- the usage of a lowercase letter for a signed type and the correspond ig capital letter for

the correspond ing un signed type is un ique for fixed-point types; an alternative could be
to use rr, RR, qq and QQ as conversion specifiers (but that would also be unique);

- conversion on ly follows the f conversion, but not the also po ss ible e, g or a
conversions; is this an issue?]

2.1.10 List of open issues

- should there be a further requirement on the relation between the number of bits in the various
fixed-point types and the number of bits in the 'related' integer types, e.g. (see email
(embedded-c.37) from John Hauser):
If N(T) is the number of (non-padding) bits in type T, then add the requirements

N(fract) <= N(int)
N(long fract) <= N(long)
N(short accum) <= N(int)
N(accum) <= N(long)
N(long accum) <= N(long long)
N(unsigned fract) <= N(unsigned int)
N(unsigned long fract) <= N(unsigned long)
N(unsigned short accum) <= N(unsigned int)
N(unsigned accum) <= N(unsigned long)
N(unsigned long accum) <= N(unsigned long long)

This would allow a better (precise) specification of the return types of the bitwise fixed-point to
integer conversion functions.

- the fixed-point to wide string conversions.

2.2 Detailed changes to ISO/IEC 9899:1999

In this section detailed additions to ISO/IEC 9899:1999 to incorporate the fixed-point functionality as
described in section 2.1 of this Technical Report are given. These additions are limited to the
syntactical and semantical additions; examples, (forward) references and other descriptive
information is omitted. The additions are ordered according to the sections of ISO/IEC 9899:1999 to
which they refer; if a section of ISO/IEC 9899:1999 is not mentioned, no changes to that section are
needed. New sections are indicated with (NEW SECTION), however resulting changes in the
existing numbering are not indicated.

Section 4 - Conformance

ISO/IEC WDTR 18037

Draft version 02/03/15 5:03 PM

- 16 -

When incorporating the functionality, as described in section 2.1 of this Technical Report, the issue
of conformance should be investigated: is it necessary to treat the fixed-point types the same as the
complex types for a conforming freestanding implementation? Or are there other approaches to
(partial) conformance?

Section 5.2.4.2.3 - Characteristics of f ixed-point types (NEW SECTION)
The characteristics of fixed-point data types are defined in terms of a model that describes a
representation of fixed-point numbers and values that provide information about an implementation's
fixed-point arithmetic. (The fixed-point model is intended to clarify the description of each fixed-point
characteristic and does not require the fixed-point arithmetic of the implementation to be identical.)

Analogous to the Scaled data type, as defined in ISO/IEC 11404:199x - Language-Independent
Datatypes (LID), a fixed-point number (x) is defined by the following model:

x = s * n * (b f)

with the following parameters:

s sign (±1)
b base or radix of nominator representation (an integer > 1)
p precision (the number of base-b digits in the nominator)
n nominator (nonnegative integer less than b raised to the power p)
f factor (an integer value).

For the purpose of this Technical Report, the following restrictions to the above general model
apply:
- b equals 2: only binary fixed-point is considered;
- (-p) <= f < 0: integer values (f >= 0) are not considered to form part of the fixed-point values, and

the radix dot is assumed to be between or immediately to the left of the most significant digit in
the nominator.

Fixed-point infinities or NaNs are not supported.

For fract fixed-point types, f equals (-p): values with (signed) fract fixed-point types are between -1
and 1, values with unsigned fract fixed-point types are between 0 and 1.
For accum fixed-point types, f is between (-p) and zero: the value range of accum fixed-point types
depends on the number of integral bits (f - p) in the type.

If the result type of an arithmetic operation is a fixed-point type, the operation is performed exact
according to its mathematical definition, and then overflow handling and rounding is performed for
the result type.

Two different behaviors are defined for fixed-point overflow: saturation and modular wrap-around
(see clause 6.7.3).

Overflow behavior is controlled in two ways:

ISO/IEC WDTR 18037

02/03/15 5:03 PM Draft-version

- 17 -

- Either of the fixed-point overflow type-qualifiers _Sat and _Modwrap (but not both) can be
added to a fixed-point type to control overflow behavior (e.g., _Sat _Fract and
_Modwrap long _Accum).

- In the absence of an explicit fixed-point overflow type-qualifier, overflow behavior is controlled by
the FX_OVERFLOW pragma. The FX_OVERFLOW pragma follows the same scoping rules as
existing STDC pragmas (see clause 6.10.6 of the C standard), and has the following syntax:

#pragma STDC FX_OVERFLOW overflow-switch

where overflow-switch is one of SAT, MODWRAP, or DEFAULT. When the state of the
FX_OVERFLOW pragma is DEFAULT, fixed-point overflow has undefined behavior. The default
state of the FX_OVERFLOW pragma is DEFAULT.

It shall be an error if one of the operands of a binary arithmetic operation has a _Sat type qualifier
and the other operand has a _Modwrap type qualifier.

If (after any overflow handling) the source value cannot be represented exactly by the fixed-point
type, the source value is rounded to either the closest fixed-point value greater than the source
value (rounded up) or to the closest fixed-point value less than the source value (rounded down).

For arithmetic operators other than * and /, the rounded result is returned as the result of the
operation. The * and / operators may return either this rounded result or, depending of the state of
the FX_FULL_PRECISION pragma, the closest larger or closest smaller value representable by
the result fixed-point type. (Between rounding and this optional adjustment, the multiplication and
division operations permit a mathematical error of almost 2 units in the last place of the result type.)

Whether rounding is up or down is implementation-defined and may differ for different values and
different situations.

Section 6.2.5 - Types, add the following new paragraphs after paragraph 13.

There are six fract types, designated as short _Fract, _Fract, long _Fract,
unsigned short _Fract, unsigned _Fract, and unsigned long _Fract. There are
six accum types, designated as short _Accum, _Accum, long _Accum,
unsigned short _Accum, unsigned _Accum, and unsigned long _Accum. The fract
types and accum types are collectively called fixed-point types.

The minimum values for the number of fractional bits and the number of integral bits in the various
fixed-point types are specified in section 5.2.4.2.3. An implementation may give any of the fixed-
point types more fractional bits, and may also give any of the accum types more integral bits,
subject to the following restrictions:

- Each unsigned fract type has either the same number of fractional bits or one more fractional bit
than its corresponding signed fract type.

ISO/IEC WDTR 18037

Draft version 02/03/15 5:03 PM

- 18 -

- Each fixed-point type is assigned a fixed-point conversion rank, as defined below. A fixed-point
conversion rank is always greater than an integer conversion rank (see 6.3.1.1).

- The number of fractional bits is nondecreasing for each of the following sets of fixed-point types
when arranged in order of increasing rank:
- signed fract types
- unsigned fract types
- signed accum types
- unsigned accum types.

- The number of integral bits is nondecreasing for each of the following sets of fixed-point types
when arranged in order of increasing rank:
- signed accum types
- unsigned accum types

- Each signed accum type has at least as many integral bits as its corresponding unsigned accum
type.

Furthermore, in order to promote consistency amongst implementations, the following are
recommended practice where practical:

- The signed long _Fract type has at least 31 fractional bits.

- Each accum type has at least 8 integral bits.

- Each unsigned accum type has the same number of fractional bits as its corresponding
unsigned fract type.

- Each signed accum type has the same number of fractional bits as either its corresponding
signed fract type or its corresponding unsigned fract type.

Section 6.2.5 - Types, paragraph 17: change last sentence as follows.

Integer, fixed-point and real floating types are collectively called real types.

Section 6.2.5 - Types, paragraph 18: change first sentence as follows.

Integer, fixed-point and floating types are collectively called arithmetic types.

Section 6.2.6.3 - Fixed-point types (NEW SECTION)

For unsigned fixed-point types, the bits of the object representation shall be divided into two groups:
value bits and padding bits (there need not be any of the latter). There are two types of value bits:

ISO/IEC WDTR 18037

02/03/15 5:03 PM Draft-version

- 19 -

integral bits and fractional bits; if there are N value bits and L integral bits, then there are (N-L)
fractional bits; for fract types, the number of integral bits is always zero (L=0). For fract types, each
bit shall represent a different power of 2 between 2(-1) and 2(-N), so that objects of that type shall be
capable of representing values from 0 to 1-2(-N) using a pure binary representation. For accum types,
each bit shall represent a different power of 2 between 2(L-1) and 2(L-N), so that objects of that type
shall be capable of representing values from 0 to 2L-2(L-N) using a pure binary representation. These
representations shall be known as the value representations. The values of any padding bits are
unspecified.

For signed fixed-point types, the bits of the object representation shall be divided into three groups:
value bits, padding bits, and the sign bit. There need not be any padding bits; there shall be exactly
one sign bit. Each bit that is a value bit shall have the same value as the same bit in the object
representation of the corresponding unsigned type (if there are M value bits in the signed type and
N in the unsigned type, then M<=N). If the sign bit is zero, it shall not affect the resulting value. If
the sign bit is one, the value shall be modified in one of the following ways:

- the corresponding value with sign bit 0 is negated (sign and magnitude);
- the sign bit has the value -(2L) (two's complement);
- the sign bit has the value -(2L-1) (one's complement).

[Editors note: what do we want here?]

Which of these applies is implementation-defined, as is whether the value with sign bit 1 and all
value bits zero (for the first two), or with sign bit and all value bits 1 (for one's complement), is a trap
representation or a normal value. In the case of sign and magnitude and one's complement, if this
representation is a normal value it is called a negative zero.

It is unspecified whether an implementation can support negative zeros.

The values of any padding bits are unspecified. A valid (non-trap) object representation of a signed
integer type where the sign bit is zero is a valid object representation of the corresponding unsigned
type, and shall represent the same value.

The precision of a fixed-point type is the number of bits it uses to represent values, excluding any
sign and padding bits. The width of a fixed-point type is the same but including any sign bit; thus for
unsigned integer types the two values are the same, while for signed integer types the width is one
greater than the precision.

Section 6.3.1.4 - Fixed-point types (NEW SECTION)

The fixed-point types are assigned a fixed-point rank. The following types are listed in order of
increasing rank:

 short _Fract, _Fract, long _Fract, short _Accum, _Accum, long _Accum

Each unsigned fixed-point type has the same rank as it's corresponding signed fixed-point type.

ISO/IEC WDTR 18037

Draft version 02/03/15 5:03 PM

- 20 -

All conversions between a fixed-point type and another arithmetic type (which can be another fixed-
point type) are defined. Overflow and rounding are handled according to the usual rules for the
destination type. Conversions from a fixed-point to an integer type round toward zero. The
rounding of conversions from a fixed-point type to a floating-point type is unspecified.

When a value of integer type or a value of fixed-point type is used in an expression with a value of
fixed-point type, neither values are converted before the expression is evaluated.

EXAMPLE: in the following code fragment:

fract f = 0.1r;
int i = 3;

f = f * i;

the variable f gets the value 0.3.

Section 6.3.1.8 Usual arithmetic conversions, after the conversion rule for conversion to float

Otherwise, if one operand has fixed-point type and the other operand has integer type, then
no conversions are needed.

Otherwise, if both operands have signed fixed-point types, or if both operands have
unsigned fixed-point types, then no conversions are needed.

Otherwise, if one operand has signed fixed-point type and the other operand has unsigned
fixed-point type, the operand with unsigned type is converted to the signed fixed-point type
corresponding to its own unsigned fixed-point type.

If the type of either of the operands has the _Sat qualifier, the resulting type shall have the
_Sat qualifier; if the type of either of the operands has the _Modwrap qualifier, the
resulting type shall have the _Modwrap qualifier. [Note: for precision of specification sake,
this last requirement might have to be merged into the previous two]

Section 6.4.1 Keywords, add the following new keywords:

_Accum _Fract _Modwrap _Sat

Section 6.4.4.3 Fixed-point constants (NEW SECTION)

Syntax

fixed-constant:

ISO/IEC WDTR 18037

02/03/15 5:03 PM Draft-version

- 21 -

decimal-fixed-constant
hexadecimal-fixed-constant

decimal-fixed-constant:
fractional-constant exponent-partopt fixed-suffix
digit-sequence exponent-part fixed-suffix

hexadecimal-fixed-constant:
hexadecimal-prefix hexadecimal-fractional-constant

binary-exponent-part fixed-suffix
hexadecimal-prefix hexadecimal-digit-sequence

binary-exponent-part fixed-suffix

fixed-suffix: unsigned-suffixopt fxp-suffixopt fixed-qual

fxp-suffix:
long-suffix
short-suffix

short-suffix: one of
h H

fixed-qual: one of
q Q r R

Description

The description and semantics for a fixed-constant are the same as those for a floating constant
with the following exceptions:
- when FLT_RADIX is not 2, the value of a hexadecimal fixed constant is undefined (????);
- fixed constants have always a suffx;
- fixed constant shall evaluate to a value that is in the range for the indicated type.; an exception

to this requirement is made for constants of a fract type with a value of exactly 1; such a
constant shall denote the maximal value for the type.

Section 6.5.2.2 Function calls, new sentence after second sentence of paragraph 6

If an argument has fixed-point type, the behaviour is undefined.

Section 6.5.3.3 Unary arithmetic operators, change second sentence of both paragraph 2 and 3
as follows:

If the type of the operand is an integer type, the integer promotions are performed on the operand,
and the result has the promoted type; otherwise, the result has the same type as the operand type.

ISO/IEC WDTR 18037

Draft version 02/03/15 5:03 PM

- 22 -

Section 6.5.7 Bitwise shift operands, change the constraints section as follows:

The left operand shall have integer or fixed-point type, the right operand shall have integer type.

Section 6.5.7 Bitwise shift operands, add new paragraph 6:

If the left operand has a fixed-point type, the right operand is converted to int and must be
nonnegative and less than the total number of (non-paddig) bits of the left operand. The type of the
result is that of the left operand.

The result of E1<<E2 is E1*2E2, the result of E1>>E2 is E1*2(-E2).

[Editors note: paragraphs 3-5 of 6.5.7 need to be changed to ind icate that these are on ly for
the full i nteger case]

[Editors note: 6.5.13 (log ical AND operation), 6.5.14 (log ical OR operation) and 6.5.15
(Cond itional operator) seem to apply withou t change; it is however strange that these build
on syntax express ions from 6.5.10-12 which do no t apply; note that this is also true for
po inter (sca lar but not int) types]

Section 6.6 Constant express ions, change second sentence of paragraph 5 to start with

If a floating expression or a fixed-point expression is evaluated in the translation environment, …

Section 6.6 Constant express ions, change first sentence of paragraph 8 as follows:

An arithmetic constant expression shall have arithmetic type and shall only have operands that are
integer constants, fixed-point constants, floating constants, enumeration constants, character
constants, and sizeof expressions.

Section 6.7.2 Type specifiers, add under Syntax, between long and float:

_Fract
_Accum

Section 6.7.2 Type specifiers, in paragraph 2 add before float:

- signed short _Fract, or short _Fract
- signed _Fract, or _Fract
- signed long _Fract, or long _Fract
- signed short _Accum, or short _Accum

ISO/IEC WDTR 18037

02/03/15 5:03 PM Draft-version

- 23 -

- signed _Accum, or _Accum
- signed long _Accum, or long _Accum
- unsigned short _Fract
- unsigned _Fract
- unsigned long _Fract
- unsigned short _Accum
- unsigned _Accum
- unsigned long _Accum

Section 6.7.2 Type specifiers, change paragraph 3 as follows (and change note 101 accordingly):

The type specifiers _Fract, _Accum, _Complex and _Imaginary shall not be used if the
implementation does not provide those types.

Section 6.7.3 Type quali fiers, add under Syntax after volatile:

_Modwrap
_Sat

Section 6.7.3 Type quali fiers, add following sentences under Constraints:

Types other than fixed-point types shall not be modwrap-qualified or sat-qualified. A specifier-
qualifier-list shall not contain both the modwrap and the sat qualifier. The type qualifiers _Sat and
_Modwrap shall not be used if the implementation does not provide those qualifiers.

[Editors note: this might be the place to introdu ce s taurated integers, if we want …]

Section 6.7.3 Type quali fiers, add new paragraph 10:

While computing an lvalue (???), during the conversion of an arithmetic (source) value that does
not fit within the range of the sat-qualified target type, the value is replaced by the closest available
value from the target type.
For modwrap-qualified unsigned fixed-point types, the source value is replaced by a value within the
range of the fixed-point type that is congruent (in the mathematical sense) to the source value
modulo 2L, where L is the number of integral bits in the fixed-point type. For modwrap-qualified
signed fixed-point types, the source value is replaced by a value within the fixed-point range that is
congruent to the source value modulo 2(L+1). (In either case, the effect is to discard all bits above the
most significant bit of the fixed-point format.)

Section 6.10.5 Pragma directive, add to the list in paragraph 2:

#pragma STDC FX_FULL_PRECISION on-off-switch

ISO/IEC WDTR 18037

Draft version 02/03/15 5:03 PM

- 24 -

#pragma STDC FX_OVERFLOW overflow-switch

overflow-switch: one of
SAT MODWRAP DEFAULT

Section 7.1.2 Standard headers, add to paragraph 2:

<stdfix.h>

Section 7.18 Fixed-point arithmetic <stdfix.h> (NEW SECTION)

7.18.1 Introdu ction

The header <stdfix.h> defines macros and declares functions that support fixed-point
arithmetic. Each synopsis specifies a family of functions with, depending on the type of their
parameters and return value, names with r, q, h, l or u prefixes or suffixes which are
corresponding functions with fract type and accum type parameters or return values, with the
optional type specifiers for short, long and unsigned.

The macro

fract

expands to _Fract; the macro

accum

expands to _Accum.

The macro

sat

expands to _Sat; the macro

modwrap

expands to _Modwrap.

Notwithstanding the provisions of 7.1.3, a program may undefine and perhaps then redefine the
macros fract, accum, sat and modwrap.

7.18.2 Precision marcos

ISO/IEC WDTR 18037

02/03/15 5:03 PM Draft-version

- 25 -

New constants are introduced to denote the behavior and limits of fixed-point arithmetic.

A conforming implementation shall document all the limits specified in this section, as an addition to
the limits required by the ISO C standard.

The values given below shall be replaced by constant expressions suitable for use in
#if preprocessing directives.

The values in the following sections shall be replaced by constant expressions with implementation-
defined values with the same type. Except for the various EPSILON values, their implementation-
defined values shall be greater or equal in magnitude (absolute value) to those shown, with the
same sign. For the various EPSILON values, their implementation-defined values shall be less or
equal in magnitude to those shown.

- number of fractional bits for object of type signed short _Fract

SFRACT_FBIT 7

- minimum value for an object of type signed short _Fract

SFRACT_MIN (-0.5HR-0.5HR)

- maximum value for an object of type signed short _Fract

SFRACT_MAX 0.9921875HR // decimal constant
SFRACT_MAX 0X1.FCP-1HR // hex constant

- the difference between 0.0HR and the least value greater than 0.0HR that is representable in
the signed short _Fract type

SFRACT_EPSILON 0.0078125HR // decimal constant
SFRACT_EPSILON 0X1P-7HR // hex constant

- number of fractional bits for object of type unsigned short _Fract

USFRACT_FBIT 7

- maximum value for an object of type unsigned short _Fract

USFRACT_MAX 0.9921875UHR // decimal constant
USFRACT_MAX 0X1.FCP-1UHR // hex constant

- the difference between 0.0UHR and the least value greater than 0.0UHR that is representable
in the unsigned short _Fract type

ISO/IEC WDTR 18037

Draft version 02/03/15 5:03 PM

- 26 -

USFRACT_EPSILON 0.0078125UHR // decimal constant
USFRACT_EPSILON 0X1P-7UHR // hex constant

- number of fractional bits for object of type signed _Fract

FRACT_FBIT 15

- minimum value for an object of type signed _Fract

FRACT_MIN (-0.5R-0.5R)

- maximum value for an object of type signed _Fract

FRACT_MAX 0.999969482421875R // decimal constant
FRACT_MAX 0X1.FFFCP-1R // hex constant

- the difference between 0.0R and the least value greater than 0.0R that is representable in the
signed _Fract type

FRACT_EPSILON 0.000030517578125R // decimal constant
FRACT_EPSILON 0X1P-15R // hex constant

- number of fractional bits for object of type unsigned _Fract

UFRACT_FBIT 15

- maximum value for an object of type unsigned _Fract

UFRACT_MAX 0.999969482421875UR // decimal constant
UFRACT_MAX 0X1.FFFCP-1UR // hex constant

- the difference between 0.0UR and the least value greater than 0.0UR that is representable in
the unsigned _Fract type

UFRACT_EPSILON 0.000030517578125UR // decimal constant
UFRACT_EPSILON 0X1P-15UR // hex constant

- number of fractional bits for object of type signed long _Fract

LFRACT_FBIT 23

- minimum value for an object of type signed long _Fract

LFRACT_MIN (-0.5LR-0.5LR)

- maximum value for an object of type signed long _Fract

ISO/IEC WDTR 18037

02/03/15 5:03 PM Draft-version

- 27 -

LFRACT_MAX 0.99999988079071044921875LR
// decimal constant

LFRACT_MAX 0X1.FFFFFCP-1LR // hex constant

- the difference between 0.0LR and the least value greater than 0.0LR that is representable in
the signed long _Fract type

LFRACT_EPSILON 0.00000011920928955078125LR
// decimal constant

LFRACT_EPSILON 0X1P-23LR // hex constant

- number of fractional bits for object of type unsigned long _Fract

ULFRACT_FBIT 23

- maximum value for an object of type unsigned long _Fract

ULFRACT_MAX 0.99999988079071044921875ULR
// decimal constant

ULFRACT_MAX 0X1.FFFFFCP-1ULR // hex constant

- the difference between 0.0ULR and the least value greater than 0.0ULR that is representable
in the unsigned long _Fract type

ULFRACT_EPSILON 0.00000011920928955078125ULR
// decimal constant

ULFRACT_EPSILON 0X1P-23ULR // hex constant

- number of fractional bits for object of type signed short _Accum

SACCUM_FBIT 7

- number of integral bits for object of type signed short _Accum

SACCUM_IBIT 4

- minimum value for an object of type signed short _Accum

SACCUM_MIN (-8.0HQ-8.0HQ)

- maximum value for an object of type signed short _Accum

SACCUM_MAX 15.9921875HQ // decimal constant
SACCUM_MAX 0X1.FFCP+3HQ // hex constant

ISO/IEC WDTR 18037

Draft version 02/03/15 5:03 PM

- 28 -

- the difference between 0.0HQ and the least value greater than 0.0HQ that is representable in
the signed short _Accum type

SACCUM_EPSILON 0.0078125HQ // decimal constant
SACCUM_EPSILON 0X1P-7HQ // hex constant

- maximum value for an object of type unsigned short _Accum

USACCUM_MAX 15.9921875UHQ // decimal constant
USACCUM_MAX 0X1.FFCP+3UHQ // hex constant

- the difference between 0.0UHQ and the least value greater than 0.0UHQ that is representable
in the unsigned short _Accum type

USACCUM_EPSILON 0.0078125UHQ // decimal constant
USACCUM_EPSILON 0X1P-7UHQ // hex constant

- number fractional of bits for object of type signed _Accum

ACCUM_FBIT 15

- number of integral bits for object of type signed _Accum

ACCUM_IBIT 4

- minimum value for an object of type signed _Accum

ACCUM_MIN (-8.0Q-8.0Q)

- maximum value for an object of type signed _Accum

ACCUM_MAX 15.999969482421875Q // decimal constant
ACCUM_MAX 0X1.FFFFCP+3Q // hex constant

- the difference between 0.0Q and the least value greater than 0.0Q that is representable in the
signed _Accum type

ACCUM_EPSILON 0.000030517578125Q // decimal constant
ACCUM_EPSILON 0X1P-15Q // hex constant

- maximum value for an object of type unsigned _Accum

UACCUM_MAX 15.999969482421875UQ // decimal constant
UACCUM_MAX 0X1.FFFFCP+3UQ // hex constant

ISO/IEC WDTR 18037

02/03/15 5:03 PM Draft-version

- 29 -

- the difference between 0.0UQ and the least value greater than 0.0UQ that is representable in
the unsigned _Accum type

UACCUM_EPSILON 0.000030517578125UQ // decimal constant
UACCUM_EPSILON 0X1P-15UQ // hex constant

- number of fractional bits for object of type signed long _Accum

LACCUM_FBIT 23

- number of integral bits for object of type signed long _Accum

LACCUM_FBIT 4

- minimum value for an object of type signed long _Accum

LACCUM_MIN (-8.0LQ-8.0LQ)

- maximum value for an object of type signed long _Accum

LACCUM_MAX 15.9999999995343387126922607421875LQ
// decimal constant

LACCUM_MAX 0X1.FFFFFFFFCP+3LQ // hex constant

- the difference between 0.0LQ and the least value greater than 0.0LQ that is representable in
the signed long _Accum type

LACCUM_EPSILON 0.0000000004656612873077392578125LQ
// decimal constant

LACCUM_EPSILON 0X1P-31LQ // hex constant

- maximum value for an object of type unsigned long _Accum

ULACCUM_MAX 15.9999999995343387126922607421875ULQ
// decimal constant

ULACCUM_MAX 0X1.FFFFFFFFCP+3ULQ // hex constant

- the difference between 0.0ULQ and the least value greater than 0.0ULQ that is representable
in the unsigned long _Accum type

ULACCUM_EPSILON 0.0000000004656612873077392578125ULQ
// decimal constant

ULACCUM_EPSILON 0X1P-31ULQ // hex constant

ISO/IEC WDTR 18037

Draft version 02/03/15 5:03 PM

- 30 -

7.18.3 The FX_FULL_PRECISION pragma

Synop sis

#include <stdfix.h>
#pragma STDC FX_FULL_PRECISION on-off-switch

Description

The normal required precision for fixed-point operations is 1 ulp. However, in certain environments
a precision of 2 ulps on multiply and divide operations is enough, and such relaxed requirements
may result in a significantly increased execution speed. The FX_FULL_PRECISION pragma can
be used to inform the implementation that (where the state is ''off'') the relaxed requirements are
allowed. If the indicated state is ''on'', the implementation is required to return results with full
precision. Each pragma can occur either outside external declarations or preceding all explicit
declarations and statements inside a compound statement. When outside external declarations, the
pragma takes effect from its occurrence until another FP_FULL_PRECISION pragma is
encountered, or until the end of the translation unit. When inside a compound statement, the
pragma takes effect from its occurrence until another FP_FULL_PRECISION pragma is
encountered (including within a nested compound statement), or until the end of the compound
statement; at the end of a compound statement the state for the pragma is restored to its condition
just before the compound statement. If this pragma is used in any other context, the behavior is
undefined. The default state (''on'' or ''off'') for the pragma is implementation defined.

7.18.4 The FX_OVERFLOW pragma

Synop sis

#include <stdfix.h>
#pragma STDC FX_OVERFLOW overflow-switch

overflow-switch: one of
SAT MODWRAP DEFAULT

Description

When neither operands of a fixed-point operator have the _Sat or _Modwrap type qualifier, the
overflow behavior is controlled by the FX_OVERFLOW pragma. When the state of the
FX_OVERFLOW pragma is DEFAULT, fixed-point overflow has undefined behavior. Otherwise, the
overflow behaviour is according to the set state. The default state of the FX_OVERFLOW pragma is
DEFAULT. Each pragma can occur either outside external declarations or preceding all explicit
declarations and statements inside a compound statement. When outside external declarations, the
pragma takes effect from its occurrence until another FP_OVERFLOW pragma is encountered, or
until the end of the translation unit. When inside a compound statement, the pragma takes effect
from its occurrence until another FP_OVERFLOW pragma is encountered (including within a nested

ISO/IEC WDTR 18037

02/03/15 5:03 PM Draft-version

- 31 -

compound statement), or until the end of the compound statement; at the end of a compound
statement the state for the pragma is restored to its condition just before the compound statement.
If this pragma is used in any other context, the behavior is undefined. The default state for the
pragma is DEFAULT.

7.18.5 The fixed-point intrinsic functions

7.18.5.1 The fixed-point absolute value functions

Synop sis

#include <stdfix.h>
short fract abshr(short fract f);
fract absr(fract f);
long fract abslr(long fract f);
short accum abshq(short accum f);
accum absq(accum f);
long accum abslq(long accum f);

Description

The above functions compute the absolute value of an fixed-point value f.

Returns

The functions return |f|. If the result cannot be represented, the behaviour is undefined.

7.18.5.2 The fixed-point round functions

Synop sis

#include <stdfix.h>
short fract roundhr(short fract f, int n);
fract roundr(fract f, int n);
long fract roundlr(long fract f, int n);
short accum roundhq(short accum f, int n);
accum roundq(accum f, int n);
long accum roundlq(long accum f, int n);
unsigned short fract rounduhr(unsigned short fract f, int n);
unsigned fract roundur(unsigned fract f, int n);
unsigned long fract roundulr(unsigned long fract f, int n);
unsigned short accum rounduhq(unsigned short accum f, int n);
unsigned accum rounduq(unsigned accum f, int n);
unsigned long accum roundulq(unsigned long accum f, int n);

ISO/IEC WDTR 18037

Draft version 02/03/15 5:03 PM

- 32 -

Description

The above functions compute the value of f, rounded to the number of fractional bits specified in n.
The rounding applied is to-nearest, with unspecified rounding direction in the halfway case.
Fractional bits beyond the rounding point are set to zero in the result. The value of n must be
nonnegative and less than the number of fractional bits in the fixed-point type of f.

Returns

The functions return the rounded result, as specified. If the value of n is negative or larger than the
number of fractional bits in the fixed-point type of f, the result is undefined.

7.18.5.3 The fixed-point coun tls functions

Synop sis

#include <stdfix.h>
int countlshr(short fract f);
int countlsr(fract f);
int countlslr(long fract f);
int countlshq(short accum f);
int countlsq(accum f);
int countlslq(long accum f);
int countlsuhr(unsigned short fract f);
int countlsur(unsigned fract f);
int countlsulr(unsigned long fract f);
int countlsuhq(unsigned short accum f);
int countlsuq(unsigned accum f);
int countlsulq(unsigned long accum f);

Description

The integer return value of the above functions is defined as follows:
- if the value of the fixed-point argument f is non-zero, the return value is the largest integer k for

which the expression f<<k does not overflow;
- if the value of the fixed-point argument is zero, an integer value is returned that is at least as

large as N-1, where N is the total number of (nonpadding) bits of the fixed-point type of the
argument.

Returns

The countls functions return the integer value as indicated.

7.18.5.4 The bitwise fixed-point to integer conversion functions

Synop sis

ISO/IEC WDTR 18037

02/03/15 5:03 PM Draft-version

- 33 -

#include <stdfix.h>
int bitshr(short fract f);
int bitsr(fract f);
int bitslr(long fract f);
int bitshq(short accum f);
int bitsq(accum f);
int bitslq(long accum f);
unsigned int bitsuhr(unsigned short fract f);
unsigned int bitsur(unsigned fract f);
unsigned int bitsulr(unsigned long fract f);
unsigned int bitsuhq(unsigned short accum f);
unsigned int bitsuq(unsigned accum f);
unsigned int bitsulq(unsigned long accum f);

Description

The bits functions return an integer value equal to the fixed-point value of f multiplied by 2F,
where F is the number of fractional bits in the type of f. The result type is an integer type big
enough to hold all valid result values for the given fixed-point argument type. For example, if the
fract type has 15 fractional bits, then after the declaration

fract a = 0.5;

the value of bitsr(a) is 0.5 * 2^15 = 0x4000.

Returns

The bits functions return the value of the argument as an integer bitpattern as indicated.

7.18.5.5 The bitwise integer to fixed-point conversion functions

Synop sis

#include <stdfix.h>
short fract hrbits(int n);
fract rbits(int n);
long fract lrbits(int n);
short accum hqbits(int n);
accum qbits(int n);
long accum lqbits(int n);
unsigned short fract uhrbits(unsigned int n);
unsigned fract urbits(unsigned int n);
unsigned long fract ulrbits(unsigned int n);
unsigned short accum uhqbits(unsigned int n);

ISO/IEC WDTR 18037

Draft version 02/03/15 5:03 PM

- 34 -

unsigned accum uqbits(unsigned int n);
unsigned long accum ulqbits(unsigned int n);

Description

The above functions return an fixed-point value equal to the integer value of the argument divided
by 2F, where F is the number of fractional bits in the fixed-point result type of the function. For
example, if fract has 15 fractional bits, then the value of rbits(0x2000) is 0.25.

Returns

The above functions return the indicated value.

7.18.5.6 Type-generic fixed-point functions

For each of the fixed-point absolute value functions in 7.18.4.1, the fixed-point round functions in
7.18.4.2, the fixed-point countls functions in 7.18.4.3, the functions for bitwise conversion of fixed-
point to integer values in 7.18.4.4 and the functions for bitwise conversion of integer to fixed-point
values in 7.18.4.5, a type-generic macro is defined as follows:

type-generic macro
the fixed-point absolute value functions absfx
the fixed-point round functions roundfx
the fixed-point countls functions countlsfx
the bitwise fixed-point to integer conversion functions bitsfx
the bitwise integer to fixed-point conversion functions fxbits

.

7.18.5.7 Numeric conversion functions

Synop sis

#include <stdfix.h>
short fract strtohr(const char * restrict nptr,

char ** restrict endptr);
fract strtor(const char * restrict nptr,

char ** restrict endptr);
long fract strtolr(const char * restrict nptr,

char ** restrict endptr);
short accum strtohq(const char * restrict nptr,

char ** restrict endptr);
accum strtoq(const char * restrict nptr,

char ** restrict endptr);
long accum strtolq(const char * restrict nptr,

char ** restrict endptr);

ISO/IEC WDTR 18037

02/03/15 5:03 PM Draft-version

- 35 -

unsigned short fract strtouhr(const char * restrict nptr,
char ** restrict endptr);

unsigned fract strtour(const char * restrict nptr,
char ** restrict endptr);

unsigned long fract strtoulr(const char * restrict nptr,
char ** restrict endptr);

unsigned short accum strtouhq(const char * restrict nptr,
char ** restrict endptr);

unsigned accum strtouq(const char * restrict nptr,
char ** restrict endptr);

unsigned long accum strtoulq(const char * restrict nptr,
char ** restrict endptr);

Description

The strtohr, strtor, strtolr, strtohq, strtoq, strtolq, strtouhr, strtour,
strtoulr, strtouhq, strtouq and strtoulq functions convert the initial portion of the
string pointed to by nptr to short fract, fract, long fract, short accum, accum,
long accum, unsigned short fract, unsigned fract, unsigned long fract,
unsigned short accum, unsigned accum, and unsigned long accum
representation, respectively. First, they decompose the input string into three parts: an initial,
possibly empty, sequence of white-space characters (as specified by the isspace function), a
subject sequence resembling a fixed -point constant; and a final string of one or more unrecognized
characters, including the terminating null character of the input string. Then, they attempt to convert
the subject sequence to a fixed-point number, and return the result.

The expected form of the subject sequence is an optional plus or minus sign, then one of the
following:

- a nonempty sequence of decimal digits optionally containing a decimal-point character, then an
optional exponent part as defined in 6.4.4.3;

- a 0x or 0X, then a nonempty sequence of hexadecimal digits optionally containing a decimal-
point character, then an optional binary exponent part as defined in 6.4.4.3.

The subject sequence is defined as the longest initial subsequence of the input string, starting with
the first non-white-space character, that is of the expected form. The subject sequence contains no
characters if the input string is not of the expected form.

If the subject sequence has the expected form for a fixed-point number, the sequence of characters
starting with the first digit or the decimal-point character (whichever occurs first) is interpreted as a
fixed-point constant according to the rules of 6.4.4.3, except that the decimal-point character is used
in place of a period, and that if neither an exponent part nor a decimal-point character appears in a
decimal fixed-point number, or if a binary exponent part does not appear in a hexadecimal fixed-
point number, an exponent part of the appropriate type with value zero is assumed to follow the last
digit in the string. If the subject sequence begins with a minus sign, the sequence is interpreted as

ISO/IEC WDTR 18037

Draft version 02/03/15 5:03 PM

- 36 -

negated. A pointer to the final string is stored in the object pointed to by endp tr, provided that
endp tr is not a null pointer.

The value resulting from the conversion is correctly rounded.

In other than the "C" locale, additional locale-specific subject sequence forms may be accepted.

If the subject sequence is empty or does not have the expected form, no conversion is performed;
the value of nptr is stored in the object pointed to by endptr, provided that endptr is not a null
pointer.

[Editor's note: is any of the recommended practice from 7.20.1.3 needed here?]

Returns

The functions return the converted value, if any. If no conversion could be performed, zero is
returned. If the correct value is outside the range of representable values, a saturated result is
returned (according to the return type and sign of the value), and the value of the macro ERANGE is
stored in errno.

[Editor's note: we could also leave it implementation-defined which value is returned on
overflow.]

7.19.6.1 The fprintf f unction , paragraph 4, third bullet, change begin of first sentence to

An optional precision that gives the minimum number of digits to appear for the d, i, o, u, x, and X
conversions, the numberof digits to appear after the decimal-point character for a, A, e, E, f, F, r,
R, q and Q conversions, . . .

7.19.6.1 The fprintf f unction , paragraph 6, the '#' bullet, change begin of fourth sentence to

For a, A, e, E, f, F, g, G, r, R, q and Q conversions, . . .

7.19.6.1 The fprintf f unction , paragraph 6, the 'o' bullet, change begin of first sentence to

For d, i, o, u, x, X, a, A, e, E, f, F, g, G, r, R, q and Q conversions, . . .

7.19.6.1 The fprintf f unction , paragraph 7, the 'h' bullet, add at the end of the first sentence:

that a following r, R, q or Q conversion specifier applies to a short fixed-point type argument.

7.19.6.1 The fprintf f unction , paragraph 7, the 'l (ell)' bullet, add before last semi-colon:

that a following r, R, q or Q conversion specifier applies to a fixed-point type argument;

7.19.6.1 The fprintf f unction , paragraph 8, add new bullet before the 'c' bullet:

ISO/IEC WDTR 18037

02/03/15 5:03 PM Draft-version

- 37 -

r, R, q, Q A signed fixed-point fract type (r), an unsigned fract type (R), a signed accum type
(q) or an unsigned accum type (Q) representing a fixed-point number is converted to
decimal notation in the style [-]ddd.ddd, where the number of digits after the decimal-
point character is equal to the precision specification. If the precision is missing, it is
taken as 6; if the precision is zero and the # flag is not specified, no decimal-point
character appears. If a decimal-point character appears, at least one digit appears
before it. The value is rounded to the appropriate number of digits.

7.19.6.1 The fprintf f unction , paragraph 13, change beginning of first sentence to

For e, E, f, F, g, G, r, R, q and Q conversions, . . .

7.19.6.2 The fscanf function , paragraph 11, the 'h' bullet, add at the end of the first sentence:

that a following r, R, q or Q conversion specifier applies to an argument with type pointer to short
fixed-point type.

7.19.6.2 The fscanf function , paragraph 11, the 'l (ell)' bullet, insert after last semicolon:

that a following r, R, q or Q conversion specifier applies to an argument with type pointer to fixed-
point type;

7.19.6.2 The fscanf function , paragraph 12, add new bullet before the 'c' bullet:

r, R, q, Q Matches an optinally signed fixed-point number, whose format is the same as
expected for the subject sequence of the strtofx functions. The corresponding
argument shall be a pointer to a signed fract type (r), a pointer to an unsigned fract
type (R), a pointer to a signed accum type (q) or a pointer to an unsigned fract type
(Q).

ISO/IEC WDTR 18037

Draft version 02/03/15 5:03 PM

- 38 -

3 Multiple address spaces suppo rt

3.1 Overview and p rinciples

3.1.1 Named address s pace suppo rt.
Multiple address spaces require address space modifiers in C declarations, to associate a variable
with a specific address space. There are two variations: named address spaces support which
targets inherent (processor-architecture-based) multiple address spaces in the target computer, and
user-defined named address spaces, which support user-defined application or system address
spaces.

Address space type qualifiers that refer to inherent address spaces are implementation-defined.
Address space type qualifiers that refer to user-defined address spaces are also user-defined.
Embedded system applications need to be able to refer to the separate memory spaces of the
application space with specific directives.

3.1.2 Process or-architecture-based multiple address s pace suppo rt
Processor-architecture-based multiple address space support is defined by the compiler
implementation. The architecture-based multiple address space support reflects the natural
address spaces of the processor, including but not limited to:

• ROM
• RAM spaces
• Input/Output space
• Segmented ROM
• Segmented RAM

Support for these (disjoint) memory spaces are supported directly in the instruction set of the
processor.

3.1.3 Application-defined multiple address s pace suppo rt
Support will be provided for user-defined declaration of additional memory address spaces, dictated
by application code. Application-defined multiple address spaces require user-supplied access
code. The compiler is responsible for

• Allocating variables, according to the needs of the application, in "normal" address space,
and in space accessed by the user-defined memory device drivers.

• Making calls to device drivers, when accessing variables supported by user-defined device
drivers.

• Automating the process of casting and accessing the data, between calls to access data and
the application.

ISO/IEC WDTR 18037

02/03/15 5:03 PM Draft-version

- 39 -

3.2 Impact on the C langu age usage.

3.2.1 Variable declaration

[Editors no te: to be added : syn tax]
Variables declared with a memory space modifier are allocated in that memory space. Variable
usage remains unaltered. A variable may be re-allocated to a different memory space by changing
the memory space modifier. No further changes to application source code should be necessary.

3.2.2 Pointer declaration
Pointer support for multiple address spaces requires additional constraints on pointer declarations
(ISO/IEC 9899:1999 section 6.7.5.1 Pointer declarators). Compiler support is required for pointers
that are located in any of the available address spaces, and pointers that can be declared as
pointing to a specific address space. The following additional declarations are supported:

mem_space char * ptr; // Pointer located by the compiler to char in
 // mem_space
char * mem_space ptr; // Pointer located in mem_space pointing to
 // char anywhere in memory space
mem_space1 char * mem_space2 ptr; // pointer located in mem_space2,
 // pointing to char in mem_space1.

3.2.3 Pointer usage
Conventional pointers remain unchanged. All of the memory spaces are accessible with an
unmodified pointer. Memory space modified pointers restrict access to the object to the named
space, or restrict the pointer’s location to a specific memory space.

Pointers to a specific address space are restricted to referencing that address space. General
unmodified pointers may access any address space. General pointers may point to a variable
declared within a specific address space.

3.2.4 Portabili ty between implementations
Standard C library support (ISO/IEC 9899:1999 section 7 Libraries) remains unchanged using
unmodified pointers. A library call made with a modified pointer has an implied cast, between a
pointer with a memory space modifier and an unmodified pointer.

Application portability is not compromised. It is required that applications map variable usage to
specific memory spaces at either compile or link time. Code we then port between different target
platforms.

ISO/IEC WDTR 18037

Draft version 02/03/15 5:03 PM

- 40 -

4 Basic I/O hardware address ing

4.1 Rationale
Ideally it should be possible to compile C or C++ source code which operates directly on iohw
registers with different compiler implementations for different platforms and get the same logical
behaviour at runtime. As a simple portability goal the driver source code for a given I/O hardware
should be portable to all processor architectures where the hardware itself can be connected.

4.1.1 Basic Standardisation Objectives

A standardisation method for basic I/O hardware addressing must be able to fulfil three
requirements at the same time:

- A standardised interface must not prevent compilers from producing machine code that has no
additional overhead compared to code produced by existing proprietary solutions. This
requirement is essential in order to get widespread acceptance from the market place.

- The I/O driver source code modules should be completely portable to any processor system
without any modifications to the driver source code being required [i.e. the syntax should
promote I/O driver source code portability across different execution environments.]

- A standardised interface should provide an “encapsulation” of the underlying access
mechanisms to allow different access methods, different processor architectures, and different
bus systems to be used with the same I/O driver source code [i.e. the standardisation method
should separate the characteristics of the I/O register itself form the characteristics of the
underlying execution environment (processor architecture, bus system, addresses, alignment,
endian, etc.].

4.2 Basic I/O-Hardware address ing h eader <iohw.h>

The purpose of the I/O hardware (iohw) access functions defined in a new header file <iohw.h> is to
promote portability of iohw driver source code across different execution environments.

4.2.1 Overview and p rinciples
The iohw access functions create a simple and platform independent interface between I/O driver
source code and the underlying access methods used when addressing the I/O registers in a given
platform.

The primary purpose of the interface is to separate characteristics which are portable and specific
for a given I/O register, for instance the register bit width, from characteristics which are related to a
specific execution environment, for instance the I/O register address, the processor bus type and

ISO/IEC WDTR 18037

02/03/15 5:03 PM Draft-version

- 41 -

endian, device2 bus size and endian, address interleave, the compiler access method etc. Use of
this separation principle enables I/O driver source code itself to be portable to all platforms where
the I/O registers can be connected.

In the driver source code, an I/O register must always be referred with a symbolic name. The
symbolic name must refer to a complete definition of the access method used with the given
register. A standardised I/O syntax approach creates a conceptually simple model for I/O registers:

 symbolic name for I/O register <-> complete definition of the access method

When porting the I/O driver source code to a new platform, only the definition of the access method
(definition of the symbolic name) needs to be updated.

4.2.2 The abstract model

The standardisation of basic I/O hardware addressing is based on a three layer abstract model:

The users portable source code
The users I/O register definitions
The vendors iohw implementation

The top layer contains the I/O driver code written by the compiler user. The source code in this layer
is fully portable to any platform where the I/O hardware can be connected. This code must only
access I/O hardware registers via the standardised function like macros described in this section.
Each I/O register must be identified using a symbolic name

The bottom layer is the compiler vendor's implementation of the iohw header. It provides prototypes
for the functions defined in this section and specifies the various different access methods
supported by the given processor and platform architecture (access methods refers to the various
ways of connecting and addressing I/O registers or I/O devices in the given processor architecture).
Annex C contains some general considerations which should be addressed when a compiler vendor
implements the iohw functionality.

The middle layer contains the users specification of the symbolic I/O register names used by the
source code in the top layer. This layer associates the symbolic names with access-specifications
for the I/O register in the given platform. The syntax notation and access-specification parameters
used in this layer are specific to the platform architecture and are defined by the compiler vendor
and the iohw header. The user must update these I/O register access-specifications when the I/O
driver source code is ported to a different platform.

Annex D proposes a generic syntax for I/O register specifications. Using a general syntax on this
layer may extend portability to include users I/O register specification, so it can be used with
different compiler implementations for the same platform.

2 In this document, the term device is used to mean either a discrete I/O chip or an I/O function block in a single chip
processor. The data bus width has significance to the access method used for the I/O device

ISO/IEC WDTR 18037

Draft version 02/03/15 5:03 PM

- 42 -

4.2.2.1 The modu le set

A typical I/O driver operates with a minimum of three modules, one for each of the abstract layers.

Example:
It is convenient to locate all I/O register access specifications in a separate header file
(called iohw_ta.h in the following).

I/O driver module The I/O driver C source code. Portable across compilers and
platforms. Includes IOHW.H and IOHW_TA.H

IOHW_TA.H Specifies symbolic I/O register names and the corresponding
access methods. Specific for the given execution environment. It
may furthermore be specific for the given IOHW.H specification.
Implemented and maintained by the programmer.

IOHW.H Defines I/O functions and access methods
Typically specific for a given compiler.
Implemented by the compiler vendor.

Example:

 #include <iohw.h>
 #include <iohw_ta.h> // my I/O register definitions for target

 unsigned char mybuf[10];
 //..
 iowr(MYPORT1, 0x8); // write single register
 for (int i = 0; i < 10; i++)
 mybuf[i] = iordbuf(MYPORT2, i); // read register array

The programmer only sees the characteristics of the I/O register itself. The underlying platform, bus
architecture, and compiler implementation do not matter during driver programming. The underlying
system hardware may later be changed without modifications to the I/O driver source code being
necessary.

4.2.3 I/O register characteristics

The principle behind the iohw.h interface is that all I/O register characteristics should be visible to
the driver source code, while all platform specific characteristics are encapsulated by the header
files and the underlying iohw.h implementation.

I/O registers often behave differently from the traditional memory model. They may be “read-only”,
“write-only” or “read-modify-write”, often read and write operations are only allowed once for each
event, etc.
All such I/O register specific characteristic should be visible at the I/O driver code level and should
not be hidden by the iohw.h interface implementation.

ISO/IEC WDTR 18037

02/03/15 5:03 PM Draft-version

- 43 -

4.2.4 The most basic I/O operations

The most basic operations on I/O register hardware are READ and WRITE.
Bit set, bit-clear and bit-invert of individual bits in an I/O hardware register are also commonly used
operations. Many processors have special machine instructions for doing these.
For the convenience of the programmers, and in order to promote good compiler optimisation for bit
operations, the basic logical operations OR, AND and XOR are defined by the iohw.h interface in
addition to READ and WRITE.

All other arithmetic and logical operations used by the driver source code can be build on top of
these few basic I/O operations.

4.2.5 The access_s pec_macros

The access_specifications defined in the header <iohw.h> are used only as parameters in the
functions for defining I/O register access.

The access_spec parameter represents or references a complete description of how the iohw
register should be addressed in the given hardware platform. It is an abstract entity with a well-
defined behaviour3.

The specification method and the implementation of access_specifications are processor and
platform specific.

In general an access_spec definition will specify at least the following characteristics:

• Register size (mapping to a C data type).
• Access limitations (read-only, write-only)
• Bus address for register

Other access characteristics typically specified via the access_spec:

• Processor bus (if more than one).
• Access method (if more than one).
• I/O register endian (if register width is larger than the device bus width)
• Interleave factor for I/O register buffers (if bus width for the device is smaller)
• User supplied access driver functions.

The definition of an I/O register object may or may not require a memory instantiation, depending on
how a compiler vendor has chosen to implement access_specifications. For maximum
performance, this could be a simple definition based on compiler specific address range and type
qualifiers, in which case no instantiation of an access_spec object would be needed in data
memory.

3 This use of an abstract type is similar to the philosophy behind the well-known FILE type. Some general properties for
FILE and streams are defined in the standard, but the standard deliberately avoids telling how the underlying file system
should be implemented.

ISO/IEC WDTR 18037

Draft version 02/03/15 5:03 PM

- 44 -

Further details and implementation considerations are discussed in Annex C, Annex D and Annex
E.

4.3 The <iohw.h> interface

The header <iohw.h> declare several function like macros which together creates a data type
independent interface for basic I/O hardware addressing.

4.3.1 Function like macros for sing le register access

Synop sis

#include <iohw.h>

iord(access_spec)
iowr(access_spec, value)
ioor(access_spec, value)
ioand(access_spec, value)
ioxor(access_spec, value)

Description
These names maps a iohw register operation to an underlying (platform specific) implementation
which provide access to the I/O register identified by access_spec, and perform the basic operation
READ, WRITE, OR, AND or XOR as identified by the function name on this register.

The data type (the I/O register size) for value parameters and the value returned by iord is defined
by the access_spec definition for the given register. The macro like functions iowr, ioor, ioand
and ioxor do not return a value.

4.3.2 Function like macros for register buffer access

Synop sis

#include <iohw.h>

iordbuf(access_spec, index)
iowrbuf(access_spec, index, value)
ioorbuf(access_spec, index, value)
ioandbuf(access_spec, index, value)
ioxorbuf(access_spec, index, value)

Description

ISO/IEC WDTR 18037

02/03/15 5:03 PM Draft-version

- 45 -

These names maps a iohw register buffer operation to an underlying (platform specific)
implementation which provide access to the I/O register buffer identified by access_spec, and
perform the basic operation READ, WRITE, OR, AND or XOR as identified by the function name on
this register.

The data type (the I/O register size) for value parameters and the value returned by iordbu f is
defined by the access_spec definition for the given register. The functions iowrbuf, ioorbuf,
ioandbu f and ioxorbuf do not return a value.

The index parameter is offset in the register buffer (or register array) starting from the I/O location
specified by access_spec, where element 0 is the first element located at the address defined by
access_spec, and element n+1 is located at a higher address than element n.

It should be noted that the index parameter is the offset in the I/O hardware buffer, not the
processor address offset. Conversion from a logical index to a physical address require that
interleave calculations are performed by the underlying implementation. This is discussed further in
B.2.4

4.3.3 Function like macros for access_s pec initialisation

Synop sis

#include <iohw.h>

io_at_init(access_spec)
io_at_release(access_spec)

Description
The io_at_init function maps to an underlying (platform specific) implementation which provide any
access_specification initialisation before performing any other operation on the I/O register (or set of
I/O registers) identified by access_spec. This macro should be placed in the driver source code so
it is invoked at least once before any other operations on the related registers are performed. This
function does not return a value.

The io_at_release function maps to an underlying (platform specific) implementation which
releases any resources obtained by a previous call to io_at_init for the same access_specification.
This call should be placed in the driver source code so it is invoked once after all operations on the
related registers have been completed. This function does not return a value.

Example:
In an implementation for a hosted environment, the call to io_at_init is used to identify the
point in an execution sequence where the underlying access method should obtain, or have
obtained, a handle from the operating system. This handle obtained is used in all following
access operations on the I/O register. The call to io_at_exit identifies the point in an
execution sequence where the handle can return to the operating system.

ISO/IEC WDTR 18037

Draft version 02/03/15 5:03 PM

- 46 -

If a set of memory mapped I/O registers is specified to use based addressing (defined in
C.3), the underlying implementation would dynamically obtain the base address for the I/O
range from the operating system when io_at_init is invoked (i.e. the base pointer is
initialised). During all the following I/O access operations the I/O register address is
calculated as (base-address + I/O register offset). The underlying implementation later
release the memory range when io_at_exit is invoked.

If no access_specification initialisation is required by a given <iohw.h> header implementation, the
io_at_init and io_at_release definitions may be empty.

4.3.4 Function for access_s pec copying

Synop sis

#include <iohw.h>
io_at_cpy(access_spec dest, access_spec src)

Description
This function maps to an underlying (platform specific) implementation which copies the dynamic
part of the source access_spec to the destination access_spec. The two parameters must have
the same access_specification type. The macro do not return a value.

If access_specification copying is not supported by a given <iohw.h> header implementation, or a
given access specification does not contain any dynamic elements, the io_at_cpy function may be
empty.

A typical use for io_at_cpy is when a set of driver functions for a given I/O device type are used
with multiple hardware instances of the same device. It often provides a faster alternative than
passing the access_spec as a function parameter.

Example

#include <iohw.h>
#include <iohw_ta.h> // MYCHIP_CFG and MYCHIP_DATA are defined
 // relative to a dynamic MYCHIP_BASE

// Portable driver function
uint8_t my_chip_driver(void)
{
 iowr(MYCHIP_CFG, 0x33);
 return iord(MYCHIP_DATA);
}

// Users driver application
uint8_t d1,d2;
// Read from our 2 I/O chips
io_at_cpy(MYCHIP_BASE, CHIP1); // Select chip 1

ISO/IEC WDTR 18037

02/03/15 5:03 PM Draft-version

- 47 -

d1 = my_chip_driver();
io_at_cpy(MYCHIP_BASE, CHIP2); // Select chip 2
d2 = my_chip_driver();

ISO/IEC WDTR 18037

Draft version 02/03/15 5:03 PM

- 48 -

ISO/IEC WDTR 18037

02/03/15 5:03 PM Draft-version

- 49 -

Annex A

Additi onal information and Rationale

A.1 Fixed-point

A.1.1 The fixed-point data types

The set of representable floating-point values (which is a subset of the real values) is characterised
by a sign, a precision and the position of the radix point. For those values that are commonly
denoted as floating point values, the characterising parameters are defined within a format (such as
the IEEE formats or the VAX floating point formats), usually supported by hardware instructions, that
defines the size of the container, the size (and position within the container) of the exponent, and
the size (and position within the container) of the sign. The remaining part of the container then
contains the mantissa. [The formats discussed in this section are assumed to be binary floating
point formats, with sizes expressed in bits. A generalisation to other radixes (like radix-10) is
possible, but not done here.] The value of the exponent then defines the position of the radix point.
Common hardware support for floating point operations implements a limited number of floating
point formats, usually characterised by the size of the container (32-bits, 64-bits etc); within the
container the number of bits allocated for the exponent (and thus for the mantissa) is fixed. For
programming languages this leads to a small number of distinct floating point data types (for C
these are float, double, and long double), each with its own set of representable values.

For fixed-point types, the story is slightly more complicated: a fixed-point value is characterised by
its precision (the number of databits in the fixed-point value) and an optional signbit, while the
position of the radix point is defined implicitly (i.e., outside the format representation): it is not
possible to deduct the position of the radix point within a fixed-point data value (and hence the value
of that fixed-point data value!) by simply looking at the representation of that data value. It is
however clear that, for proper interpretation of the values, the hardware (or software) implementing
the operations on the fixed-point values should know where the radix point is positioned. From a
theoretical point of view this leads (for each number of databits in a fixed-point data type) to an
infinite number of different fixed-point data types (the radix point can be located anywhere before, in
or after the bits comprising the value).
There is no (known) hardware available that can implement all possible fixed-point data types, and,
unfortunately, each hardware manufacturer has made its own selection, depending on the field of
application of the processor implementing the fixed-point data type. Unless a complete dynamic or
a parameterised typesystem is used (not part of the current C standard, hence not proposed here),
for programming language support of fixed-point data types a number of choices need to be made
to limit the number of allowable (and/or supported or to be supported) fixed-point data types. In
order to give some guidance for those choices, some aspects of fixed-point data values and their
uses are investigated here.

ISO/IEC WDTR 18037

Draft version 02/03/15 5:03 PM

- 50 -

For the sake of this discussion, a fixed-point data value is assumed to consist of a number of
databits and a signbit. On some systems, the signbit can be used as an extra databit, thereby
creating an unsigned fixed-point data type with a larger (positive) maximum value.
Note that the size of (the number of bits used for) a fixed-point data value does not necessarily
equal the size of the container in which the fixed-point data value is contained (or through which the
fixed-point data value is addressed): there may be gaps here!

As stated before, it is necessary, when using a fixed-point data value, to know the place of the radix
point. There are several possibilities.
The radix point is located immediately to the right of the rightmost (least significant) bit of the
databits. This is a form of the ordinary integer data type, and does not (for this discussion) form part
of the fixed-point data types.
- The radix point is located further to the right of the rightmost (least significant) bit of the databits.

This is a form of an integer data type (for large, but not very precise integer values) that is
normally not supported by (fixed-point) hardware. In this document, these fixed-point data types
will not be taken into account.

- The radix point is located to the left of (but not adjacent to) the leftmost (most significant) bit of
the databits. It is not clear whether this category should be taken into account: when the radix
point is only a few bits away, it could be more 'natural' to use a data type with more bits; in any
case this data type can easily (??) be simulated by using appropriate normalise (shift left/right)
operations. There is no known fixed-point hardware that supports this data type.

- The radix point is located immediately to the left of the leftmost (most significant) bit of the
databits. This data type has values (for signed data types) in the interval (-1,+1), or (for
unsigned data types) in the interval [0,1). This is a very common, hardware supported, fixed-
point data type. In the rest of this section, this fixed-point data type will be called the type-A
fixed-point data type. Note that for each number of databits, there are one (signed) or two
(signed and unsigned) possible type-A fixed-point data types.

- The radix point is located somewhere between the leftmost and the rightmost bit of the databits.
The data values for this fixed-point data type (type-B fixed-point data types) have an integral part
and a fractional part. Some of these fixed-point data types are regularly supported by hardware.
For each number of databits N, there are (N-1) (signed) or (2*N-1) (signed and unsigned)
possible type-B fixed-point data types.

Apart from the position of the radix point, there are three more aspects that influence the amount of
possible fixed-point data types: the presence of a signbit, the number of databits comprising the
fixed-point data values and the size of the container in which the fixed-point data values are stored.
In the embedded processor world, support for unsigned fixed-point data types is rare; normally only
signed fixed-point data types are supported. However, to disallow unsigned fixed-point arithmetic
from programming languages (in general, and from C in particular) based on this observation,
seems overly restrictive.

There are two further design criteria that should be considered when defining the nature of the fixed-
point data types:
- it should be possible to generate optimal fixed-point code for various processors, supporting

different sized fixed-point data types (examples could include an 8-bit fixed-point data type, but
also a 6-bit fixed-point data type in an 8-bit container, or a 12-bit fixed-point data type in a 16-bit
container);

ISO/IEC WDTR 18037

02/03/15 5:03 PM Draft-version

- 51 -

- it should be possible to write fixed-point algorithms that are independent of the actual fixed-point
hardware support. This implies that a programmer (or a running program) should have access
to all parameters that define the behaviour of the underlying hardware (in other words: even if
these parameters are implementation defined).

With the above observations in mind, the following recommendations are made.
1. Introduce signed and unsigned fixed-point data types, and use the existing signed and

unsigned keywords (in the 'normal' C-fashion) to distinguish these types. Omission of either
keyword implies a signed fixed-point data type.

2. Introduce a new keyword and type-specifier fract (similar to the existing keyword int), and
define the following three standard signed fixed-point types (corresponding to the type-A fixed-
point data types, as described above): short fract, fract and long fract. The
supported (or required) underlying fixed-point data types are mapped on the above in an
implementation-defined manner, but in a non-decreasing order with respect to the number of
databits in the corresponding fixed-point data value. Note that there is not necessarily a
correspondence between a fixed-point data type designator and the type of its container: when
an 18-bit and a 30-bit fixed-point data type are supported, the 18-bit will probably have the
short fract type and the 30-bit type will probably have the fract type, while the
containers of these types will be the same.

3. Introduce a new keyword and type-specifier accum, and define the following three standard
signed fixed-point types (corresponding to the type-B fixed-point data types, as described
above): short accum, accum and long accum, with similar representation requirements
as for the fract type.

4. If more fixed-point data types are needed, (or if there is a need to better distinguish certain fixed-
point data types), an approach similar to the <stdint.h> approach could be taken, whereby
fract_leN_t could designate a (type-A) fixed-point data type with at least N databits, while
fract_leM_leN_t could designate a (type-B) fixed-point data type with at least M integral
bits and N fractional bits. Note that the introduction of these generalised fixed-point data types
is currently not included in the main text of this Technical Report.

5. In order for the programmer to be able to write portable algorithms using fixed-point data types,
information on (and/or control over) the nature and precision of the underlying fixed-point data
types should be provided. The normal C-way of doing this is by defining macro names (like
SFRACT_FBITS etc., defi8ning in thios case the number of fractional bits in a short fract
type) that should be defined in an implementation defined manner.

The C standard , with its defined keywords, allows for yet another size for fixed-point data types:
long long fract. The specified three sizes were considered to be enough for the current
systems, the long long variant might, for the time being, be added by an implementation in an
implementation-defined manner.

Discussion on issue identified in 2.1.1 point 4:
A type for accumulating sums canno t always be fixed at the same number of f ractional bits
as the associated fractional type.

Many SIMD architectures do not support fixed-point types that have the same number of
fractional bits as a fractional type, plus some integer bits. To manufacture accumulator
types that are not supported by the hardware would add overhead and often require a loss of
parallelism. Also, often there is no way to detect a carry out of a packed data type, so even

ISO/IEC WDTR 18037

Draft version 02/03/15 5:03 PM

- 52 -

the simple implementation of providing one SIMD word of fractions plus one SIMD word of
integer bits is not always available.

In addition, manufacturing accumulator types of artificial widths is usually unnecessary since
there are already accumulator types supported by the hardware. This means that the
language needs to be flexible enough to allow the existing hardware-supported data types to
be used rather than imposing a strict model that hampers performance.

For example, Radiax pairs 16-bit objects into a 32-bit SIMD word. The accumulator type
provided for arithmetic on these objects is 40 bits wide per object, composed of 32 fractional
bits and 8 integer bits. There is no other accumulator type supported. An artificial
requirement that exactly 16 fractional bits be available would severely impact performance,
and would have the surprising effect that addition would become much slower than
multiplication.

In the VIS architecture, the supported hardware types that can be used as accumulation
types sometimes have more fractional bits than the underlying fractional types, and
sometimes fewer, but never the same number. Also, there is no direct path between SIMD
registers (which overload the floating point registers) and the integer registers, so
constructing an artificial type involves not only a loss of parallelism but also extra loads and
stores to move data between the SIMD registers and the integer registers.

The proposal to fix an accum's fractional bits at the same number as the underlying fract
type is therefore prohibitively expensive on some architectures and needs to be removed.

Table from N952:
By way of example, these tables show the fixed-point formats we would suggest for various classes
of processors:

--- signed fract --- --- signed accum ---
short middle long short middle long

typical desktop processor s.7 s.15 s.31 s8.7 s16.15 s32.31
typical 16-bit DSP s.15 s.15 s.31 s8.15 s8.15 s8.31
typical 24-bit DSP s.23 s.23 s.47 s8.23 s8.23 s8.47

Intel MMX s.7 s.15 s.31 s8.7 s16.15 s32.31
PowerPC AltiVec s.7 s.15 s.31 s8.7 s16.15 s32.31
Sun VIS s.7 s.15 s.31 s8.7 s16.15 s32.31
MIPS MDMX s.7 s.15 s.31 s8.7 s8.15 s17.30
Lexra Radiax s.7 s.15 s.31 s8.7 s8.15 s8.31
ARM Piccolo s.7 s.15 s.31 s8.7 s16.15 s16.31

--- unsigned fract --- --- unsigned accum ---
short middle long short middle long

typical desktop processor .8 .16 .32 8.8 16.16 32.32
typical 16-bit DSP .16 .16 .32 8.16 8.16 8.32

ISO/IEC WDTR 18037

02/03/15 5:03 PM Draft-version

- 53 -

typical 24-bit DSP .24 .24 .48 8.24 8.24 8.48

Intel MMX .8 .16 .32 8.8 16.16 32.32
PowerPC AltiVec .8 .16 .32 8.8 16.16 32.32
Sun VIS .8 .16 .32 8.8 16.16 32.32
MIPS MDMX .8 .16 .32 8.8 8.16 16.32
Lexra Radiax .8 .16 .32 8.8 8.16 8.32
ARM Piccolo .8 .16 .32 8.8 16.16 16.32

(The "typical" DSPs referred to in the table cannot address units in memory smaller than 16 or 24
bits, which is why these processors aren't expected to support a short fract smaller than
fract.)

A.1.2 Overflow and Round ing

A.1.3 Type conversions, usual arithmetic conversions

The fixed-point data types are positioned 'between' the integer data types and the floating point data
types: if only integer data types are involved then the current standard rules (cf. 6.3.1.1 and 6.3.1.8)
are followed, when fixed-point operands but no floating point operands are involved the operation
will be done using fixed-point data types, otherwise everything will be converted to the appropriate
floating point data type.

Since it is likely that an implementation will support more than one (type-A and/or type-B) fixed-point
data type, in order to assure arithmetic consistency it should be well-defined to which fixed-point
data type a type is converted to before an operation involving fixed-point and integer data values is
performed. There are several approaches that could be followed here:
- define that the result of any operation on fixed-point data types should be as if the operation is

done using infinite precision. This gives an implementation the possibility to choose an
implementation dependent optimal way of calculating the result (depending on the required
precision of the expression by selecting certain fixed-point operations, or, maybe, emulate the
fixed-point expression in a floating point unit), as long as the required result is obtained.

- to define an (implementation defined?) extended fixed-point data type to which every operand is
converted before the operation. It is then important that the programmer has access to the
parameters of this extended fixed-point type in order to control the arithmetic and its results.
This could either be the 'largest' type-B fixed-point data type (if supported), or the 'largest' type-A
fixed-point data type.

A.1.4 Operations involving fixed-point types

The decision not to promote integers to fixed-point to balance the operands is clearly a departure
from the way C is normally defined and, in particular, the way the same operations work when
integer and floating-point operands are mixed. The inconsistency has been introduced because
integer values often cannot be promoted honestly to fixed-point types. None of the fract types

ISO/IEC WDTR 18037

Draft version 02/03/15 5:03 PM

- 54 -

has any integer bits, and an implementation may have as few as four integer bits in its accum
types.
On such an implementation, it is impossible to convert an integer with a value larger than 8 to any
fixed-point type, which leaves only a limited range of integers to work with. Consider, for example,
the problem of dividing a fixed-point value by a (non-constant) integer value which could be as large
as 15.

The floating-point types have the property that (on all known machines) the range of all the integers
fits within even the smallest floating-point type, so converting an integer to floating-point at worst
suffers a rounding error (and often not even that). This is definitely not the case for the fixed-point
types. On the other hand, unlike with floating-point, fixed-point and integer values have very similar
representations, and their operations have similar implementations in hardware. Thus, it is less
trouble for an implementation to mix integer and fixed-point operands and perform the calculation
directly than it would be for floating-point.

The rule about 1 and -1 multiplication results is needed to permit an important optimization for sum-
of-products calculations on many DSPs (sum-of-products being primarily what DPSs are designed
to do). Using the long accum type for the accumulator that holds the running sum, a sum-of-
products (or dot product) can be naturally coded as:

 fract a[N], b[N];
 long accum acc = 0;
 for (ix = 0; ix < N; ++ix) {
 acc += (long accum) a[ix] * b[ix];
 }

While the above would be the obvious code, on many DSPs the multiply-accumulate hardware
really does this:

 acc += (long accum) ((sat long fract) a[ix] * b[ix]);

In other words, the product is saturated to the long fract format before being added into the
accumulator. The only detectable difference between this and the code above occurs when "a[ix]"
and "b[ix]" are both -1, in which case the product is 1, which cannot be represented exactly as a
long fract. In this case (and only this case), the DSP hardware saturates the 1 to the
maximum long fract value before adding.

With the original code above, the rules in the section on "Overflow and Rounding" require that the
product be represented exactly if the result type permits it. Since a 1 can always be represented
exactly by a long accum, the rounding rules do not permit the 1 to be replaced by the maximum
long fract value. (Note that the long fract type makes no appearance in the original
code.) Unfortunately, on processors that only support sum-of-product operations that saturate the
product to long fract, it is not possible to implement the code above efficiently as written
without some compromise. Rather than relax the rounding rules in general, a special case has
been made to cover this condition.

ISO/IEC WDTR 18037

02/03/15 5:03 PM Draft-version

- 55 -

Annex B

Embedded s ystems extended memory suppo rt.

B.1 Embedded systems extended memory suppo rt

B.1.1 Modifiers for named address s paces

Applications on small-scale embedded systems run in a non-hosted environment, and on resource-
constrained systems. Compilers for such systems are responsible for freeing the application
developer from most, but not all, target-specific responsibilities. Embedded systems, including most
consumer electronics products and DSP-driven devices, are optimized to support the requirements
of their intended applications. Their central processors generally contain many separate address
spaces. C language support for these systems extends the C linear address space to an address
space that, although linear within memory spaces, is not always created equal. Application
developers need the vocabulary to efficiently express their application to the target hardware.

Named address space type modifiers allow the application developer to express a very specific
requirement, that variables be associated with a specific memory space. In turn, the compiler can
generate more correct code for the target implementation.

B.1.1.1 Named address space examples.

Digital signal processing algorithms require efficient access to data contained in two separate
memory arrays. The architecture of DSPs is still evolving, but at the application level, programmers
need to define and access arrays that are used to process filter functions; these arrays almost
always have a hardware identity (separate memory spaces or special indexing modes). There is a
clear need for the application developer to define the buffers used in the X and Y sides of the filter in
separate and non-interfering memory spaces. The alternative is a significant, unnecessary,
performance penalty.

Declarations

fract xside x[size];
fract yside y[size];

The use of named address space modifiers (xside,yside) clearly tell the compiler that the arrays
x and y will be allocated into separate, (presumably) mutually-exclusive, address spaces.

The use of named address space type qualifiers can have a positive effect on the allocation and use
of pointers. Again, drawing from the DSP example,

fract * xside xptr;

ISO/IEC WDTR 18037

Draft version 02/03/15 5:03 PM

- 56 -

Such a declaration describes a pointer that is limited to accessing data located in the xside
memory area. The xptr declaration gives the compiler the option of using shorter references.

B.1.1.2 Embedded system examples

Embedded systems generally support three or four address spaces: execution memory, general
purpose random access memory, input/output access, and sometimes a fast random access
memory. These address spaces are normally supported by the compiler, and the names assigned
would be implementation- and target-specific. Different compiler implementations targeting the
same processors would normally support the same set of multiple address spaces.

Embedded systems often require user-defined address spaces, to support C-language access to
software-driven resources. Examples include external data RAM and non-volatile memory, both of
which are often connected through a software-driven bus.

B.1.2 User-defined device drivers

Many embedded systems include memory that can only be accessed with some form of device
driver. These include memories accessed by serial data busses (I2C, SPI), and on-board
non-volatile memory that must be programmed under software control. Device-driver memory
support is used in applications where the details of the access method can be separated from the
details of the application.

In contrast to memory-mapped I/O, the extended memory layout and its use should be
administrated by the compiler/linker.
Language support for embedded systems needs to address the following issues:

1) Memory with user-defined device drivers. User-defined device drivers are required for
reading and writing user-defined memory.
• Memory-read functions take as an argument an address in the user-defined memory

space, and return data of a user-defined size.
• Memory-write functions take two arguments, an address in the user-defined memory

space and data with a user-specified size. (note re: any return value?)
• Applications require support for multiple user-defined address spaces.
• User-defined memory areas may not be contiguous. Most of the applications have

gaps in the addressing within user-defined memory areas.
2) The compiler is responsible for:

• Allocating variables, according to the needs of the application, in "normal" address
space, and in space accessed by the user-defined memory device drivers.

• Making calls to device drivers, when accessing variables supported by user-defined
device drivers.

• Automating the process of casting and accessing the data, between calls to access
data and the application.

3) Application variables in user-defined memory areas :
• Need to support all of the available data types. For example, declarations for

fundamental data types, arrays, structures.

ISO/IEC WDTR 18037

02/03/15 5:03 PM Draft-version

- 57 -

• Users need to direct the compiler to use a specific memory area.
• The compiler needs to be free to use user-defined memory area as a generic,

general-purpose memory area, for the purposes of a variable spill area.

The following declaration shows all the information that is needed to declare memory for use with
user-defined device drivers.

typemod USER_MEMORY <
 access limitation type ,
 device driver for data read,
 device driver for write,
 mary address constant, // Base address of memory in
 // the drivers address space
 address range // Size of memory handled by
 // the device drivers
 [optional additional address range definitions]
 > memory_name;

The typemod definition is a method of encapsulating the memory declaration. typemod ties variable
declarations to device drivers, and provides the compiler a means of using data that the user
provides to manage variables that are required by an application. User-defined memory may be
global in nature, or local to one program segment.

typemod USER_MEMORY <rmw_t,
 ddram_r,
 ddram_w,
 0x90,0x30
 0xD0,0x30
 > ddram

/* A typemod definition always specifies a linear memory (fragment(s))*/

/* function prototypes to read and write user-defined memory.
 It is the responsibility of the device driver to transfer
 the number of bytes requested. An optimizing compiler
 can pass structures or data, and the driver will
 optimize the transfer */

void ddram_w(int location, char *src, int size);
void ddram_r(int location, char *desc, int size);

char a; /* normal memory declarations */
int b;
long c;

// Modifier puts variable in user-named address space

char ddram wa;
int ddram wb;
long ddram wc;
char ddram ar[10];
unsigned int ddram wc;

ISO/IEC WDTR 18037

Draft version 02/03/15 5:03 PM

- 58 -

wa = 0x33; // ddram_w called (must be stored as an int)
a = wa; // ddram_r called once, MSB turncated
b = wb; // ddram_r called once
c = wc; // ddram_r called more than once (implementation defined)

ISO/IEC WDTR 18037

02/03/15 5:03 PM Draft-version

- 59 -

Annex C

Implementing the <iohw.h> header

C.1 General

The <iohw.h> header defines a standardised function syntax for basic I/O hardware (iohw)
addressing. This header should normally be created by the compiler vendor.

While this standardised function syntax for basic iohw addressing provides a simple, easy-to-use
method for a programmer to write portable and hardware-platform-independent I/O driver code, the
<iohw.h> header itself may require careful consideration to achieve an efficient implementation.

This section gives some guidelines for implementers on how to implement the <iohw.h> header in a
relatively straightforward manner given a specific processor and bus architecture.

C.1.1 Recommended steps

Briefly, the recommended steps for implementing the <iohw.h> header are:

1. Get an overview of all the possible and relevant ways the I/O register hardware is typically
connected with the given bus hardware architectures, and get an overview of the basic software
methods typically used to address such I/O hardware registers.

2. Define a number of I/O functions, macros and access-specifications which support the relevant
I/O access methods for the intended compiler market.

3. Provide a way to select the right I/O function at compile time and generate the right machine
code based on the access_specification type or access_specification value.

C.1.2 Compiler considerations

In practice, an implementation will often require that very different machine code is generated for
different I/O access cases. Furthermore, with some processor architectures, iohw access will
require the generation of special machine instructions not typically used when generating code for
the traditional C memory model.

Selection between different code generation alternatives must be determined solely from the
access_specification declaration for each I/O register. Whenever possible this access method
selection should be implemented such that it may be determined entirely at compile time, in order to
avoid any runtime or machine code overhead.

For a compiler vendor, selection between code generation alternatives can always be implemented
by supporting different intrinsic access-specification types and keywords designed specially for the

ISO/IEC WDTR 18037

Draft version 02/03/15 5:03 PM

- 60 -

given processor architecture. in addition to the Standard types and keywords defined by the
language.

Simple <iohw.h> implementations limited to the most basic functionality can be implemented
efficiently using a mixture of macros, in-line functions and intrinsic types or functions. See Annex E
regarding simple macro implementations.

Full featured implementations of iohw will require direct compiler support for access_specifications.
See Annex D regarding a generic access_specification descriptor.

C.2 Overview of I/O Hardware Connec tion Options

The various ways an I/O register can be connected to processor hardware are determined primarily
by combinations of the following three hardware characteristics:

1. The bit width of the logical I/O register.
2. The bit width of the data-bus of the I/O device.
3. The bit width of the processor-bus.

C.2.1 Multi-Address ing and I/O Register Endian

If the width of the logical I/O register is greater than the width of the I/O device data bus, an I/O
access operation will require multiple consecutive addressing operations.

The I/O register endian information describes whether the MSB or the LSB byte of the logical I/O
register is located at the lowest processor bus address.
(Note that the I/O register endian has nothing to do with the endian of the underlying processor
hardware architecture).

Table: Logical I/O register / I/O device address ing overview4

I/O device bus widths

8-bit device bus 16-bit device bus 32-bit device bus 64-bit device bus

Log ical I/O register
widths

LSB-MSB MSB-
LSB

LSB-
MSB

MSB-
LSB

LSB-MSB MSB-
LSB

LSB-
MSB

MSB-
LSB

8-bit register Direct n/a n/a n/a

16-bit register r8{0-1} r8{1-0} Direct n/a n/a

32-bit register r8{0-3} r8{3-0} r16{0-1} r16{1-0} Direct n/a

64-bit register r8{0-7} r8{7-0} r16{0,3} r16{3,0} R32{0,1} r32{1,0} Direct
(For byte-aligned address ranges)

4 Note, that this table describes some common bus and register widths for I/O devices. A given platform may use other
register and bus widths.

ISO/IEC WDTR 18037

02/03/15 5:03 PM Draft-version

- 61 -

C.2.2 Address Interleave

If the size of the I/O device data bus is less than the size of the processor data bus, buffer register
addressing will require the use of address interleave.

Example:
If the processor architecture has a byte-aligned addressing range and a 32-bit processor data bus,
and an 8-bit I/O device is connected to the 32-bit data bus, then three adjacent registers in the I/O
device will have the processor addresses:

<addr + 0>, <addr + 4>, <addr + 8>

This can also be written as
<addr + interleave*0>, <addr+interleave*1>, <addr+interleave*2>

where interleave = 4.

Table: Interleave overview: (bus to bus interleave relations)

Processor bus widthsI/O device bus
widths

8-bit bus 16-bit bus 32-bit bus 64-bit bus

8-bit device bus Interleave 1 interleave 2 Interleave 4 interleave 8

16-bit device bus n/a interleave 2 Interleave 4 interleave 8

32-bit device bus n/a n/a Interleave 4 interleave 8

64-bit device bus n/a n/a n/a interleave 8
(For byte-aligned address ranges)

C.2.3 I/O Conn ection Overview:

The two tables above when combined shows all relevant cases for how I/O hardware registers can
be connected to a given processor hardware bus, thus:

Table: Interleave between adjacent I/O registers in bu ffer

Device bus Processor data bus width

width=8 width=16 width=32 width=64

I/O
Register

width Bus
width

LSB
MSB

No.
Opr.

size 1 size 2 size 4 size 8

8-bit 8-bit n/a 1 1 2 4 8

LSB 2 2 4 8 168-bit

MSB 2 2 4 8 16
16-bit

16-bit n/a 1 n/a 2 4 8

LSB 4 4 8 16 328-bit

MSB 4 4 8 16 32

ISO/IEC WDTR 18037

Draft version 02/03/15 5:03 PM

- 62 -

LSB 2 n/a 4 8 1616-bit

MSB 2 n/a 4 8 16

32-bit n/a 1 n/a n/a 4 8

MSB 8 8 16 32 648-bit

LSB 8 8 16 32 64

LSB 4 n/a 8 16 3216-bit

MSB 4 n/a 8 16 32

LSB 2 n/a n/a 8 1632-bit

MSB 2 n/a n/a 8 16

64-bit

64-bit n/a 1 n/a n/a n/a 8
(For byte-aligned address ranges)

C.2.4 Generic buffer index

The interleave distance between two logically adjacent registers in an I/O register array can be
calculated from 5:

1. The size of the logical I/O register in bytes.
2. The processor data bus width in bytes.
3. The device data bus width in bytes.

Conversion from I/O register index to address offset can be calculated using the following general
formula:

Address_offset = index *
 sizeof(logical_IO_register) *
 sizeof(processor_data_bus) /
 sizeof(device_data_bus)

Assumptions:
• address range is byte-aligned
• data bus widths are a whole number of bytes,
• width of the logical_IO_register is greater than or equal to the width of the

device_data_bus
• width of the device_data_bus is less than or equal to the processor_data_bus.

C.3 Access_sp ecs for diff erent I/O address ing methods

An implementer should consider the following typical addressing methods:

5 For systems with byte aligned addressing

ISO/IEC WDTR 18037

02/03/15 5:03 PM Draft-version

- 63 -

- Address is defined at compile time.
The address is a constant. This is the simplest case and also the most common case with
smaller architectures.

- Base address initiated at runtime.
Variable base-address + constant-offset. I.e. the access_specification must contain an address
pair (address of base register + offset of address).

The user-defined base-address is normally initialised at runtime (by some platform-dependent
part of the program). This also enables a set of I/O driver functions to be used with multiple
instances of the same iohw.

- Indexed bus addressing
Also called orthogonal or pseudo-bus addressing. It is a common way to connect a large
number of I/O registers to a bus, while still only occupying only a few addresses in the processor
address space.
This is how it works: First the index-address (or pseudo-address) of the I/O register is written to
an address bus register located at a given processor address. Then the data read/write
operation on the pseudo-bus is done via the following processor address. i.e. the
access_specification must contain an address pair (the processor-address of indexed bus, and
the pseudo-bus address (or index) of the I/O register itself).

This access method also makes it particularly easy for a user to connect common I/O devices
that have a multiplexed address/data bus, to a processor platform with non-multiplexed busses
using a minimum amount of glue logic. The driver source code for such an I/O device is then
automatically made portable to both types of bus architecture.

- Access via user-defined access driver functions.
These are typically used with larger platforms and with small single device processors (e.g. to
emulate an external bus). In this case the access_specification must contain pointers or
references to access functions.

The access driver solution makes it possible to connect a given I/O driver source library to any kind
of platform hardware and platform software using the appropriate platform-specific interface
functions.

In general, an implementation should always support the simplest addressing case, whether it is the
constant-address or base-address method that is used will depend on the processor architecture.
Apart from this, an implementer is free to add any additional cases required to satisfy a given
domain.
Because of the different number of parameters required and parameter ranges used in an
access_specification, it is often convenient to define a number of different access_specification
formats for the different access methods

ISO/IEC WDTR 18037

Draft version 02/03/15 5:03 PM

- 64 -

C.4 Atomic ope ration

It is a requirement of the <iohw.h> implementation that in each I/O function a given (partial6) I/O
register is addressed exactly once during a READ or a WRITE operation and exactly twice during a
READ-modify-WRITE operation.

It is recommended that each I/O function in an <iohw.h> implementation, be implemented such that
the I/O access operation becomes atomic whenever possible.

However, atomic operation is not guaranteed to be portable across platforms for READ-modify-
WRITE operations (ioor, ioand, ioxor) or for multi-addressing cases.

The reason for this is simply that many processor architectures do not have the instruction set
features required for assuring atomic operation.

C.5 Read-modify-write operations and multi-address ing cases .

In general READ-modify-WRITE operations should do a complete READ of the I/O register,
followed by the operation, followed by a complete WRITE to the I/O register.

It is therefore recommended that an implementation of multi-addressing cases should not use
READ-modify-WRITE machine instructions during partial register addressing operations.

The rationale for this restriction is to use the lowest common denominator of multi-addressing
hardware implementations in order to support as wide a range of I/O hardware register
implementation as possible.
For instance, more advanced multi-addressing I/O register implementations often take a snap-shot
of the whole logical I/O register when the first partial register is being read, so that data will be
stable and consistent during the whole read operation. Similarly, write registers are often made
“double-buffered” so that a consistent data set is presented to the internal logic at the time when the
access operation is completed by the last partial write.
Such hardware implementations often require that each access operation be completed before the
next access operation is initiated.

C.6 I/O initialisation

With respect to the standardisation process it is important to make a clear distinction between I/O
hardware (device) related initialisation and platform related initialisation. Typically three types of
initialisation are related to I/O:
1. I/O hardware (device) initialisation.
2. I/O access initialisation.
3. I/O selector initialisation.

6 A 32 bit logical register in a device with an 8-bit data bus contains 4 partial I/O registers

ISO/IEC WDTR 18037

02/03/15 5:03 PM Draft-version

- 65 -

Here only I/O access initialisation and I/O selector initialisation is relevant for basic I/O hardware
addressing.

I/O hardware initialisation is a natural part of a hardware driver and should always be considered as
a part of the I/O driver application itself. This initialisation is done using the standard functions for
basic iohw addressing. iohw initialisation is therefore not a topic for the standardisation process.

I/O access initialisation concerns the initialisation and definition of access_spec objects.
This process is implementation defined. It depends both on the platform and processor architecture
and also on which underlying access methods are supported by the <iohw.h> implementation.

The function:

io_at_init(access_spec)

can be used as a portable way to specify in the source code where and when such initialisation
should take place.

I/O selector initialisation is used when, for instance, the same I/O driver code needs to service
multiple iohw devices of the same type.

A standard solution is to define multiple access_specification objects, one for each of the hardware
devices, and then have the access_specification passed to the driver functions from a calling
function.

Another solution is to use access_specification copying and access_specifications with dynamic
access information. The function:

io_at_cpy(access_spec_dest, access_spec_src)

provides a portable way to do this.

With most free-standing environments and embedded systems the platform hardware is well
defined, so all access_specifications for I/O registers used by the program can be completely
defined at compile time. For such platforms standardised I/O access initialisation is not an issue.

With larger processor systems I/O hardware is often allocated dynamically at runtime. Here the
access_specification information can only be partly defined at compile time. Some platform
software dependent part of it must be initialised at runtime.

When designing the access_spec object a compiler implementer should therefore make a clear
distinction between static information and dynamic information; i.e. what can be defined and
initialised at compile time and what must be initialised at runtime.
Depending on the implementation method and depending on whether the access_spec objects
need to contain dynamic information, the access_spec object may or may not require an
instantiation in data memory. Better execution performance can usually be achieved if more of the
information is static.

ISO/IEC WDTR 18037

Draft version 02/03/15 5:03 PM

- 66 -

ISO/IEC WDTR 18037

02/03/15 5:03 PM Draft-version

- 67 -

Annex D

Generic access_s pec desc riptor for I/O hardware address ing

D.1 Generic access_s pec desc riptor

This informative annex proposes a consistent and complete specification syntax for defining I/O
registers and their access methods in C.

D.1.1 Background

Current work has shown that there are three basic requirements which must not be compromised by
any standardised solution for portable I/O register access:

- The symbolic I/O register name used in the I/O driver code must refer to a complete definition
of the access method .

- The standardised solution must be able to encapsulate all knowledge about the underlying
processor, platform, and bus system.

- It should provide a no-overhead solution (for simple access methods).

In order to fulfil the first two requirements in a consistent way, it should be possible to refer to a
complete access_spec specification as a single entity. This is necessary, for instance, to pass
access_spec parameters between functions.

This can been achieved in several different ways. Prior art has used a number of (intrinsic) memory
type qualifiers or special keywords, which have varied from compiler to compiler and from platform
to platform.

However, type qualifiers have always tended to be an inadequate description method when more
complex access methods are needed. For instance, it must be possible to encapsulate all access
method variation possible in the target platform. These differences include the widths of I/O
registers, and the qualities of the I/O device bus and processor bus: register interleave values, I/O
register endian specifications, and so on. Similarly, type qualifiers are usually inadequate when
more complex addressing methods are used (base pointer addressing, pseudo-bus addressing,
addressing via user device drivers, and others).

This paper proposes a generic syntax for defining the access_spec for an I/O register. The syntax is
a new approach and a super-set solution, intended to replace prior art.

D.2 Syntax spec ifi cation

Access specification:

ISO/IEC WDTR 18037

Draft version 02/03/15 5:03 PM

- 68 -

#pragma IODEF ACCESS_METHOD_NAME (parameter list) SYMBOLIC_PORT_NAME;

ACCESS_METHOD_NAME
Identify how the parameter list should be interpreted.

parameter list:
access method independent parameter list , access method specific parameter list

access method independent parameter list:
type for I/O register value (size of I/O register) ,
access limitation type ,
I/O register device bus type (size and endian of I/O device bus)

type for I/O register value (size of I/O register):
uint8_t
uint16_t
uint32_t
uint64_t
bool
(+ optionally any basic type native to the implementation)

access limitation type: // for compile time diagnostic
ro_t //read_only
wo_t //write_only
rw_t //read_write
rmw_t //read_modify_write

I/O register device bus type:
device8 // register width = device bus width = 8 bit
device8l // register width > device bus width, MSB on low address
device8h // register width > device bus width, MSB on high address
device16 // register width = device bus width = 16-bit
device16l // register width > device bus width, MSB on low address
device16h // register width > device bus width, MSB on high address
device32 // register width = device bus width = 32 bit
device32l // register width > device bus width, MSB on low address
device32h // register width > device bus width, MSB on high address
device64 // register width = device bus width = 64 bit
(+ optionally any bus width native to the implementation)

access method specific parameter list:
// Depends on the given access method. Examples are given later.
// Three typical parameters are:
Primary address constant ,
Processor bus width type,
Address mask constant

Processor bus width type:
bw8 // 8 bit bus
bw16 // 16 bit bus
bw32 // 32 bit bus
bw64 // 64 bit bus
(I.e. any bus widths native to the implementation)

An implementation must define at least one access method for each processor addressing range.
For instance, for the 80x86 CPU family, an implementation must define at least two
access_methods, one for the memory-mapped range, and one for the I/O-mapped range.

ISO/IEC WDTR 18037

02/03/15 5:03 PM Draft-version

- 69 -

If several different access methods are supported for a given address range, then an access
specification method must exist for each access method.

The ACCESS_METHOD_NAME is an identifier for the parameter set enclosed in the parenthesis. It
is an implementation-defined keyword which tells the compiler how to interpret the parameter set. A
compiler will typically support a number of different access_spec descriptors.

D.3 Examples of access_ spec de scriptors

Below are some examples of access_spec parameter combinations for different (typical) access
methods. (Each pragma specification below is in the source code placed on a single line).

Direct addressing:

#pragma IODEF MM_DIRECT(
type for I/O register value (size of I/O register),
access limitation type,
I/O register device bus type (size and endian of I/O device bus),
primary address constant,
processor bus width type
) PORT_NAME;

The I/O register at the primary address is addressed directly. If the bit width of the I/O
register is larger than the I/O device bus width, then the access operation is built from
multiple consecutive addressing operations.

Based addressing:

#pragma IODEF MM_BASED(
type for I/O register value (size of I/O register),
access limitation type,
I/O register device bus type (size and endian of I/O device bus),
primary address constant,
processor bus width type,
base variable
) PORT_NAME;

The I/O register at the primary_address + value of base_variable is addressed directly. If
the bit width of the I/O register is larger than the I/O device bus width, then the access
operation is built from multiple consecutive addressing operations.

Indexed-bus addressing:

#pragma IODEF MM_INDEXED(
type for I/O register value (size of I/O register) ,
access limitation type ,
I/O register device bus type (size and endian of I/O device bus),
primary address constant,
processor bus width type,
secondary address parameter
) PORT_NAME;

ISO/IEC WDTR 18037

Draft version 02/03/15 5:03 PM

- 70 -

The I/O register on an indexed bus (also called a pseudo-bus) is addressed in the following
way. The primary address is written to the register given by the secondary address
parameter (= initiate indexed bus address). The access operation itself is then done on the
location (secondary address parameter+1 = data at indexed bus).
This method is a common way to save addressing bandwidth. The method also makes it
particularly easy to connect devices using a multiplexed address/data bus interface to a
processor system having a non-multiplexed interface.

Device driver addressing:

#pragma IODEF MM_DEVICE_DRIVER(
type for I/O register value (size of I/O register) ,
access limitation type ,
I/O register device bus type (size and endian of I/O device bus),
primary address constant,
processor bus width type,
name of driver function for register write,
name of driver function for register read
) PORT_NAME;

The I/O register is addressed by invoking (user-defined) driver functions. If the bit width of
the I/O register is larger than the I/O device bus width, then the access operation is built
from multiple consecutive addressing operations. (Alternatively, the I/O register device bus
type, processor bus width type and the primary address could be transferred to the driver
functions.)

Direct bit addressing:

#pragma IODEF MM_BIT_DIRECT(
type for I/O register value (size of I/O register),
access limitation type,
I/O register device bus type (size and endian of I/O device bus),
primary address constant,
processor bus width type,
bit location in register constant,
) PORT_NAME;

The I/O register at the primary address is addressed directly.

Examples:

#pragma IODEF MM_DIRECT(uint8_t,rw_t,device8,0x3000,bw8) MYPORT;
uint8_t a = iord(MYPORT,0xAA); // Read single register

MYPORT is an 8-bit read-write register, located in a device with an 8-bit data bus, connected to a
(memory-mapped) 8-bit processor bus at address 0x3000.

#pragma IODEF MM_DIRECT(uint16_t,wo_t,device8l,0x200,bw16) PORTA;
iowr(PORTA,0xAA); // Write single register

ISO/IEC WDTR 18037

02/03/15 5:03 PM Draft-version

- 71 -

PORTA is a 16-bit write-only register, located in a device with an 8-bit data bus (with MSB register
part located at the lowest address), where the device is connected to a (memory-mapped) 16-bit
processor bus at address 0x200.

Use of user-defined device drivers:

// Memory buffer addressed via user-defined access drivers
#pragma IODEF MM_DEVICE_DRIVER

<uint8_t,rmw_t,device8,0xA,my_wr_drv,my_rd_drv> DRVREG;

// User-defined read driver to be invoked by compiler
inline uint8_t void my_rd_drv(int index)

{
// some driver code
}

// User-defined wr driver to be invoked by compiler
inline void my_wr_drv(int index , uint8_t dat)

{
// some driver code
}

// user code
int i;
i = iord(DRVREG); // = call of my_rd_drv(0xA);
for (i = 0; i < 0xA0; i++)
 iowrbuf(DRVREG,i,0x0); // = call of my_wr_drv(i+0xA,0)

D.4 Parsing

The access specifications are parsed at compile time.

If the symbolic port name is used directly in iord(..) / iowr(..) / etc. functions, the code can be
completely optimised at compile time: all information for doing this is available to the compiler at that
stage. Based on the combined parameter set, the compiler will typically select among several
internal intrinsic inline access functions to generate the appropriate code for the access operation.
No memory instantiation of an access_spec object is needed. This will fulfil the third of the primary
requirements in C.1.1 (no-overhead solution).

Example:
#pragma IODEF MM_DIRECT(uint16_t,rmw,device8l,0x3456,bw16) MY_PORT1;
uint16_t d;
//...
d = iord(MY_PORT1); // no-overhead in-line code
iowr(MY_PORT1, 0x456);

If the symbolic port name is referenced via a pointer, then an access_spec object must be
instantiated in memory; (slower) generic functions are invoked by the iord(..)/iowr(..)/etc. functions.
In this case, the access_spec parameter is mostly evaluated at runtime. (This approach is similar to
the one used for extern inline functions in C)

Example:

ISO/IEC WDTR 18037

Draft version 02/03/15 5:03 PM

- 72 -

#pragma IODEF MM_DIRECT(uint16_t,rmw_t,device8l,0x3456,bw16) MY_PORT1;
#pragma IODEF MM_DIRECT(uint16_t,ro_t,device16l,0x7890,bw16) MY_PORT2;

uint16_t foo(MM_DIRECT * iop)
 {
 return iord(iop); // invoke some generic iord function
 }

uint16_t a;
a = foo(MY_PORT1);
a +=foo(MY_PORT2);

D.5 Comments on syntax no tation

The advantages with the proposed notation are: that it can be made reasonable consistent across
processor and bus architectures, and (most importantly) it will be both fairly easy to comprehend
and to use for the average embedded programmer. (In contrast to this are pure macro-based
implementations, which tend to become rather complex to understand, create, and maintain for the
user.)

The header file which defines the hardware will look simple (typically, like a list, with one register
definition per text line). This makes it easy for a user to adapt an existing access_spec definition to
new hardware. Maintenance becomes much simpler.

ISO/IEC WDTR 18037

02/03/15 5:03 PM Draft-version

- 73 -

Annex E

Migration pa th for iohw.h implementations .

E.1 Migration path for iohw.h implementations

It may take some time before compilers have full featured support for access_specs based on
intrinsic functionality. Until then efficient iohw implementations with a limited feature set can be
implemented using C macros. This enable new I/O driver functions based on the iohw interface for
basic I/O hardware (iohw) addressing to be used with existing older compilers.

E.2 <iohw.h> implementation based on C macros

This chapter illustrates a generic and flexible implementation technique for creating efficient
<iohw.h> header implementations based on C macros. This can be done in a relatively
straightforward manner common for all processor architectures.

E.2.1 The access s pecification method

The generic syntax specification in annex D.2 defines a number of individual access specification
parameters which are combined to form the access specification for a given I/O register. A similar
approach is used with this implementation method except that an access type for a given I/O
register must be defined by concatenation of the names for the access parameters. For example:

#define portname_TYPE <bus>_<method>_<size>_<device bus>_<limitations>
 MM DIRECT 8 DEVICE8 RO
 IO DIRECT_BUF 16 DEVICE8L WO
 INDEXED 32 DEVICE8H RW
 INDEXED_BUF DEVICE16 RMW
 BASED DEVICE16L
 BASED_BUF DEVICE16H
 DRIVER DEVICE32

Any additional access parameters required by the given <bus>_<method> access method must be
defined separately in a similar manner:

#define portname_<parameter_name>

Example: The full access specification for direct memory mapped access to a 16-bit write-only
register in an 8-bit device consists of two definitions, the access type and the address location:

#define PORTA_TYPE MM_DIRECT_16_DEVICE8L_WO /* PORTA access type */
#define PORTA_ADDR 0x12000 /* PORTA address */

ISO/IEC WDTR 18037

Draft version 02/03/15 5:03 PM

- 74 -

E.2.2 An iohw implementation technique

The iohw.h header can be implemented using a technique called macro specialisation.

The macro specialisation technique uses the following implementation procedure. The I/O access
function macros ioxx(..) undergo a number of nested macro expansions until it ends in either a
special macro for the given access operation, or in a diagnostic message. A diagnostic message
can occur if either the specified access method is not supported by the implementation, or if an
illegal I/O operation is detected in the source code.

The implementation procedure (without detection of access limitations) follow these steps:
1 Define macros which translate ioxx(portname) to portname_TYPE and adds the

operation type. This defines the access methods.
2 Translate the access methods to specialised macro names.
3 Define code generation all for the access types and operations in specialised macros.

If more informative error diagnostics and detection of access limitations is wanted an extra
expansion level must be used:
1 Define macros which translate ioxx(portname) to portname_TYPE and adds the

operation type. This defines the access methods.
2a Translate the access methods to a specialised access operation names.
2b Produce informative diagnostic for illegal access operations and translate legal operations

to specialised macro names.
3 Define code generation for all the access types and operations in specialised macros.

E.2.3 Features

The iohw.h implementation technique proposed has the following advantages:
- The specification of an I/O register only requires few source lines pr register.
- The specification syntax is similar across different processor architectures.
- The specification syntax is uniform across compiler implementations.
- Only the code generation macros in step 3 may require modifications in order to adapt an

existing implementation to fit a new compiler for the same processor.
- If the access methods are the same and new the processor architecture is similar only the code

generation macros in step 3 may require adjustments to the new processor architecture.
- New access methods can be added (or deleted) to suit a particular execution environment or

market segment without interaction to the other access method implementations.
- Each access method can be optimised individually for maximum performance with respect to

execution speed and memory foot print. For instance by use of compiler intrinsic features.

The iohw.h implementation technique proposed has the following disadvantages:
- Addition of read/write limitation detection tends to lead to code bloat.

ISO/IEC WDTR 18037

02/03/15 5:03 PM Draft-version

- 75 -

E.2.4 The <iohw.h> header

The implementation header below implements the following typical access methods to illustrate the
implementation principle:
- 8-bit register and 8-bit register buffer in a memory mapped device.
- 16-bit register and 16-bit register buffer in a memory mapped device
- 16-bit register and 16-bit register buffer in a 8-bit memory mapped device
- 8-bit register and 8-bit register buffer in a I/O mapped device
- 8-bit register and 8-bit register buffer in a device on an I/O mapped indexed bus.

The example assumes the processor hardware two addressing ranges, a 16-bit wide addressing
range (memory mapped devices) and an 8-bit wide addressing range (I/O mapped devices).

//************************* Start of IOHW ************************************
#ifndef IOHW_H
#define IOHW_H
#include <stdint.h> /* uintN_t types */

// Define standard function macros for I/O hardware access.
// Translates symbolic I/O register name to an access type
#define iord(NAME) NAME##_TYPE(RD,NAME,0)
#define iowr(NAME,PVAL) NAME##_TYPE(WR,NAME,(PVAL))
#define ioor(NAME,PVAL) NAME##_TYPE(OR,NAME,(PVAL))
#define ioand(NAME,PVAL) NAME##_TYPE(AND,NAME,(PVAL))
#define ioxor(NAME,PVAL) NAME##_TYPE(XOR,NAME,(PVAL))

#define iordbuf(NAME,INDEX) NAME##_TYPE(RD,NAME,(INDEX),0)
#define iowrbuf(NAME,INDEX,VAL) NAME##_TYPE(WR,NAME,(INDEX),(VAL))
#define ioorbuf(NAME,INDEX,VAL) NAME##_TYPE(OR,NAME,(INDEX),(VAL))
#define ioandbuf(NAME,INDEX,VAL) NAME##_TYPE(AND,NAME,(INDEX),(VAL))
#define ioxorbuf(NAME,INDEX,VAL) NAME##_TYPE(XOR,NAME,(INDEX),(VAL))

#define io_at_init(NAME) NAME##_INIT
#define io_at_exit(NAME) NAME##_EXIT
#define io_at_cpy(DNAME,SNAME) ((DNAME##_ADR) = (SNAME##_ADR))

//*** Translate access type for register to specialized macros for the operations ****
// Also resolve most address, index and interleave calculations here, this
// enable single register access and buffer access can share code generation macros.
// Unsupported access methods, that is methods not defined here, will results in a
// compile time error (undefined symbol)

// Memory mapped I/O buffer and register access 8-bit
#define MM_DIR_BUF_8_DEV8(OPR,NAME,INDEX,VAL) \
 MM_DIR_8_DEV8_##OPR(NAME##_ADR+(INDEX)*MM_INTL,(VAL))
#define MM_DIR_8_DEV8(OPR,NAME,VAL) MM_DIR_8_DEV8_##OPR(NAME##_ADR,(VAL))

// Memory mapped I/O buffer and register access 16-bit
#define MM_DIR_BUF_16_DEV16(OPR,NAME,INDEX,VAL) \
 MM_DIR_16_DEV16_##OPR(NAME##_ADR+(INDEX)*MM_INTL,(VAL))
#define MM_DIR_16_DEV16(OPR,NAME,VAL) MM_DIR_16_DEV16_##OPR(NAME##_ADR,(VAL))

// Memory mapped I/O buffer and register access 16-bit register in 8-bit device
#define MM_DIR_BUF_16_DEV8L(OPR,NAME,INDEX,VAL) \
 MM_DIR_16_DEV8L_##OPR(NAME##_ADR+(INDEX)*MM_INTL*2,(VAL),MM_INTL)
#define MM_DIR_16_DEV8L(OPR,NAME,VAL) MM_DIR_16_DEV8L_##OPR(NAME##_ADR,(VAL),MM_INTL)

ISO/IEC WDTR 18037

Draft version 02/03/15 5:03 PM

- 76 -

// I/O indexed bus mapped 8-bit buffer and buffer
#define IO_DIR_BUF_8_DEV8(OPR,NAME,INDEX,VAL) \
 IO_DIR_8_DEV8_##OPR(NAME##_ADR+(INDEX)*IO_INTL,(VAL))
#define IO_DIR_8_DEV8(OPR,NAME,VAL) IO_DIR_8_DEV8_##OPR(NAME##_ADR,(VAL))

// I/O indexed bus mapped 8-bit register and buffer
#define IO_IDX_8_DEV8(OPR,NAME,VAL) \
 IO_IDX_8_DEV8_##OPR(NAME##_ADR,(VAL),NAME##_SUBADR,IO_INTL)
#define IO_IDX_BUF_8_DEV8(OPR,NAME,INDEX,VAL) \
 IO_IDX_8_DEV8_##OPR(NAME##_ADR+(INDEX)*IO_INTL,(VAL),NAME##_SUBADR,IO_INTL)

/* Add access types for other access methods to be supported here */

//****** Some access support macros and intrinsic features *********************

#define MM_ACCESS(TYPE, lADR) (*((TYPE volatile *)(lADR)))
#define IO_INP(a) _inp((unsigned short)(a))
#define IO_OUTP(a,b) _outp((unsigned short)(a),(unsigned char)(b))

#define MM_INTL 2 /* Interleave factor for 16-bit memory mapped bus (fixed) */
#define IO_INTL 1 /* Interleave factor for 8-bit I/O bus (fixed here) */

typedef union { // This compiler uses byte alignment so we can use
 uint16_t w; // a union for fast 8/16-bit conversion
 struct {
 uint8_t b0; // LSB byte
 uint8_t b1; // MSB byte
 }b;
 } iohw_union16;

//******************* Start of Code generation macros ************************
/* MM_DIR_8_DEV8 */
#define MM_DIR_8_DEV8_RD(ADR,VAL) (MM_ACCESS(uint8_t,ADR))
#define MM_DIR_8_DEV8_WR(ADR,VAL) (MM_ACCESS(uint8_t,ADR) = (uint8_t)VAL)
#define MM_DIR_8_DEV8_OR(ADR,VAL) (MM_ACCESS(uint8_t,ADR) |= (uint8_t)VAL)
#define MM_DIR_8_DEV8_AND(ADR,VAL) (MM_ACCESS(uint8_t,ADR) &= (uint8_t)VAL)
#define MM_DIR_8_DEV8_XOR(ADR,VAL) (MM_ACCESS(uint8_t,ADR) ^= (uint8_t)VAL)

/* MM_DIR_16_DEV16 */
#define MM_DIR_16_DEV16_RD(ADR,VAL) (MM_ACCESS(uint16_t,ADR))
#define MM_DIR_16_DEV16_WR(ADR,VAL) (MM_ACCESS(uint16_t,ADR) = (uint16_t)VAL)
#define MM_DIR_16_DEV16_OR(ADR,VAL) (MM_ACCESS(uint16_t,ADR) |= (uint16_t)VAL)
#define MM_DIR_16_DEV16_AND(ADR,VAL) (MM_ACCESS(uint16_t,ADR) &= (uint16_t)VAL)
#define MM_DIR_16_DEV16_XOR(ADR,VAL) (MM_ACCESS(uint16_t,ADR) ^= (uint16_t)VAL)

/* MM_DIR_16_DEV8L */
#define MM_DIR_16_DEV8L_RD(ADR,VAL,INTL) (MM_ACCESS(uint8_t,ADR) * 256 + \
 MM_ACCESS(uint8_t,ADR + INTL))
#define MM_DIR_16_DEV8L_WR(ADR,VAL,INTL) { \
 iohw_union16 temp; \
 temp.w = (uint16_t)VAL; /* Rule C.4 */ \
 MM_ACCESS(uint8_t,ADR) = temp.b.b1; \
 MM_ACCESS(uint8_t,ADR+INTL) = temp.b.b0; \
 }
#define MM_DIR_16_DEV8L_OR(ADR,VAL,INTL) MM_DIR_16_8L_OPR(ADR,VAL,INTL,|)
#define MM_DIR_16_DEV8L_AND(ADR,VAL,INTL) MM_DIR_16_8L_OPR(ADR,VAL,INTL,&)
#define MM_DIR_16_DEV8L_XOR(ADR,VAL,INTL) MM_DIR_16_8L_OPR(ADR,VAL,INTL,^)
#define MM_DIR_16_8L_OPR(ADR,VAL,INTL,OPR) { /* Common for | & ^ */ \
 iohw_union16 temp; \

ISO/IEC WDTR 18037

02/03/15 5:03 PM Draft-version

- 77 -

 temp.w = (uint16_t)VAL; /* Rule C.4 */ \
 temp.b.b1 OPR##= MM_ACCESS(uint8_t,ADR); /* Rule C.5 */ \
 temp.b.b0 OPR##= MM_ACCESS(uint8_t,ADR+INTL); \
 MM_ACCESS(uint8_t,ADR) = temp.b.b1; \
 MM_ACCESS(uint8_t,ADR+INTL) = temp.b.b0; \
 }

/* IO_DIR_8_DEV8 */
#define IO_DIR_8_DEV8_RD(ADR,VAL) (IO_INP(ADR))
#define IO_DIR_8_DEV8_WR(ADR,VAL) (IO_OUTP(ADR,VAL))
#define IO_DIR_8_DEV8_OR(ADR,VAL) (IO_OUTP(ADR,VAL | IO_INP(ADR)))
#define IO_DIR_8_DEV8_AND(ADR,VAL) (IO_OUTP(ADR,VAL & IO_INP(ADR)))
#define IO_DIR_8_DEV8_XOR(ADR,VAL) (IO_OUTP(ADR,VAL ^ IO_INP(ADR)))

/* IO_INDEXED_8_DEV8 */
#define IO_IDX_8_DEV8_RD(ADR,VAL,SUBADR,INTL) (IO_OUTP(ADR,SUBADR),IO_INP(ADR+INTL))
#define IO_IDX_8_DEV8_WR(ADR,VAL,SUBADR,INTL) (IO_OUTP(ADR,SUBADR),IO_OUTP(ADR+INTL,VAL))
#define IO_IXD_8_DEV8_OR(ADR,VAL,SUBADR,INTL) IO_IDX_8_OPR(ADR,VAL,SUBADR,INTL,|)
#define IO_IXD_8_DEV8_AND(ADR,VAL,SUBADR,INTL) IO_IDX_8_OPR(ADR,VAL,SUBADR,INTL,&)
#define IO_IXD_8_DEV8_XOR(ADR,VAL,SUBADR,INTL) IO_IDX_8_OPR(ADR,VAL,SUBADR,INTL,^)
#define IO_IXD_8_OPR(ADR,VAL,SUBADR,INTL,OPR) { /* common for | & ^*/\
 unsigned char tmp = VAL; /* Rule C.4 */\
 IO_OUTP(ADR,SUBADR); \
 tmp OPR##= IO_INP(ADR+INTL); \
 IO_OUTP(ADR,SUBADR); \
 IO_OUTP(ADR+INTL,tmp); \
 }

/* Add code generation macros for other supported access methods here */

endif
//*********************** End of IOHW ***************************

E.2.5 The users I/O register definitions

For each I/O register (each symbolic name) a complete definition of the access method must be
created. With this iohw implementation the user must define the access_type and any address
information.

These platform dependent I/O register definitions are normally placed in a separate header file.
Here called <iohw_ta.h>.

//****** Start of user I/O register definitions (IOHW_TA.H) ******
#ifndef IOHW_TA
#define IOHW_TA

#define MYPORTS_INIT {/* No initialization needed in this system */}
#define MYPORTS_RELEASE {/* No release needed in this system */}

#define MYPORT1_TYPE MM_DIR_8_DEV8 // 8-bit register in 8-bit device,
#define MYPORT1_ADR 0xc0000 // memory mapped, use direct access

#define MYPORT2_TYPE MM_DIR_16_DEV16 // 16-bit register in 16-bit device,
#define MYPORT2_ADR 0xc8000 // memory mapped, use direct access

#define MYPORT3_TYPE MM_DIR_16_DEV8L // 16-bit register in 8-bit device,

ISO/IEC WDTR 18037

Draft version 02/03/15 5:03 PM

- 78 -

#define MYPORT3_ADR 0xc8040 // memory mapped, use direct access

#define MYPORT4_TYPE IO_DIR_8_DEV8 // 8-bit register in 8-bit device,
#define MYPORT4_ADR 0x2345 // I/O bus mapped, use direct access

#define MYPORT5_TYPE IO_IDX_8_DEV8 // 8-bit register in 8-bit device,
#define MYPORT5_ADR 0x2345 // I/O indexed bus mapped, use indexed access
#define MYPORT5_SUBADR 0x56

#define MYPORT6_TYPE MM_DIR_BUF_8_DEV8 // 8-bit register buffer in 8-bit device,
#define MYPORT6_ADR 0xb0000 // memory mapped, use direct access

#define MYPORT7_TYPE MM_DIR_BUF_16_DEV16 // 16-bit register buffer in 16-bit device,
#define MYPORT7_ADR 0xb8000 // memory mapped, use direct access

#define MYPORT8_TYPE MM_DIR_BUF_16_DEV8L // 16-bit register buffer in 8-bit device,
#define MYPORT8_ADR 0xb4000 // memory mapped, use direct access

#define MYPORT9_TYPE IO_DIR_BUF_8_DEV8 // 8-bit register buffer in 8-bit device,
#define MYPORT9_ADR 0x2345 // I/O bus mapped, use direct access

#define MYPORT10_TYPE IO_IDX_BUF_8_DEV8 // 8-bit register buffer in 8-bit device,
#define MYPORT10_ADR 0x2345 // I/O indexed bus mapped, use indexed access
#define MYPORT10_SUBADR 0x56

#endif

E.2.6 The driver function

The driver function should include <iohw.h> and the user I/O register definitions for the target
system <iohw_ta.h>. The example below tests some operations on the previous I/O register
definitions.

#include <iohw.h> // includes stdint.h
#include <iohw_ta.h> // My register definitions

uint8_t cdat;
uint16_t idat;

void my_test_driver (void)
 {
 io_at_init(MYPORTS);

 cdat = iord(MYPORT1); // 8-bit memory mapped register
 iowr(MYPORT1,0x12);

iowr(MYPORT2,idat); // 16-bit memory mapped register
 ioor(MYPORT3, 0x2334); // 16-bit memory mapped register in 8-bit chip

 ioand(MYPORT4,0x34); // 8-bit I/O mapped register
 ioxor(MYPORT5,0xf0); // 8-bit I/O mapped register on indexed bus

 cdat = iordbuf(MYPORT6,20); // 8 bit memory mapped register

 iowrbuf(MYPORT7,43,0x3458); // 16-bit memory mapped register
 ioorbuf(MYPORT8,43,idat); // 16-bit memory mapped register in 8 bit chip

 ioandbuf(MYPORT9,43,0x02); // 8 bit I/O mapped register

ISO/IEC WDTR 18037

02/03/15 5:03 PM Draft-version

- 79 -

 ioxorbuf(MYPORT10,43,0x12); // 8 bit I/O mapped register on indexed bus

 io_at_release(MYPORTS);
 }

ISO/IEC WDTR 18037

Draft version 02/03/15 5:03 PM

- 80 -

Annex F

Func tionalit y no t inc luded in this Techn ical Report.

F.1 Circu lar buffers

The concept of circular buffers is widely used within the signal processing community. An example
of the use of the concept of circular buffers is in a FIR filter, where it is used to reduce the number of
memory accesses. The functionality of a FIR filter can described in this way with current C:

int x[N+1]; // data values
int h[N+1]; // coefficient values
long int accu = 0;

x[0] = new_value;

accu = x[N] * h[N];

for(i=N-1; i>0; i--)
{
 accu += (long int) x[i] * h[i];
 x[i]= x[i-1];
}

The data value copy in the last statement in the for loop would be unnecessary, if the concept of a
circular buffer was employed here, reducing the number of memory accesses. Many digital signal
processors have direct support in their addressing hardware to provide zero-overhead circular
addressing. Zero-overhead means here that calculating the address for an access to a circular
buffer can be done in the same time as performing a regular address calculation, including the
wrap-around check and, if necessary, the execution of the wrap-around. However there are often
many restrictions on how hardware supported circular addressing can be used. E.g., only address
increments by one are allowed in some implementations, and there may be requirements to the size
and/or alignment of the buffer.

Since the functional specifications of the support for circular addressing in various processors is so
divers, it is difficult to define an abstract model that can be used in a natural manner in the
C language, and that also can be translated efficiently for the various hardware paradigms.
Therefore, in this Technical Report no proposals are made for language extensions to support
circular buffers. Should, in the future, a single approach towards circular addressing become
dominant in the market, then an appropriate C language construct could be defined.

Some current approaches to circular addressing are given below.

ISO/IEC WDTR 18037

02/03/15 5:03 PM Draft-version

- 81 -

- Add a new keyword (for instance, circ) to the C language, that allows a programmer to
indicate that an array or pointer with this qualifier is to be accessed with circular addressing.

- Another solution is to define a new library function or macro, CIRC(), which could be used in the
following manner:

int *p;

p = CIRC(p+1, /* array info */);
// this does an increment by one of p

Array info in this example covers the starting address and end address of the address range
where circular addressing is desired. A compiler for an architecture that has direct hardware
support for circular addressing is then free to optimize this function call away, and exploit the
capabilities of the hardware.

- In the current C language there is provision to specify circular buffers, however only when using
array index notation:

accum += (long int) x[i % N]*h[i];
It is possible for a clever optimizer to recognize that this in fact is a circular buffer and exploit the
hardware support for this. This has the advantage that the use of circular buffers is already
possible within the current C language, but it requires the programmer to use array indices
rather than pointers. Furthermore it is not possible to specify any alignment constraint on the
allocated buffer, which might be necessary for the underlying hardware implementation.

No preferred solution is specified here.

F.2 Complex data types

In this Technical Report no complex fixed-point data types are been defined. However in the
C language, complex data types are already existing for floating point numbers. As fract and
accum types can be viewed upon as an alternative to floating-point numbers in some applications it
is worthwhile considering extending the definition of complex types in C to include fract and accum
bases. It will be beneficial for the user community to standardize such data types as they have a
clear usage in an area like communications signal processing.

ISO/IEC WDTR 18037

Draft version 02/03/15 5:03 PM

- 82 -

Annex G

Compatibilit y and Migration issues .

G.1 Compatibil ity with C++

[Editors no te: this is a fi rst draft ; comments are inv ited; spec ifi cally: I am not a C++
expert]

It is recognised that the functionality, described in the Technical Report, might also be useful in
environments where C++ is the dominant programming language. At the same time it is recognized
that the preferred C++ syntax and mechanisms to incorporate the described functionality is different.

In programming environments where the same code is envisioned to be used for both C and C++ it
is recommended to use a programming style that can easily support programming paradigms from
both communities. Unfortunately this programming style will neither be a C style or a C++ style.
In the absence of a formally agreed approach to this problem, this section gives some guidelines to
use the fixed-point arithmetic in a mixed environment.

G.1.1 Keywords

This Technical Report defines, 2 new keywords (_Fract and _Accum) and 2 new type qualifiers
(_Sat and _Modwrap) with which, in a C style, 12 new (unqualified) types and 24 qualified types
can be defined. In order to be able to efficiently switch between a C environment and a C++
environment, it is recommended to use 36 different typenames and map these names in headerfiles
to the required C or C++ language constructs.

Example: use _sat_long_fract as type, and then have in the C header

typedef _Sat long _Fract _sat_long_fract;

and in the C++ header something like

typedef fixed<sat long fract> sat_long_fract;

The full list of recommended type names is

_short_fract _sat_short_fract
_fract _sat_fract
_long_fract _sat_long_fract
_short_accum _sat_short_accum
_accum _sat_accum
_long_accum _sat_long_accum

ISO/IEC WDTR 18037

02/03/15 5:03 PM Draft-version

- 83 -

_unsigned_short_fract _sat_unsigned_short_fract
_unsigned_fract _sat_unsigned_fract
_unsigned_long_fract _sat_unsigned_long_fract
_unsigned_short_accum _sat_unsigned_short_accum
_unsigned_accum _sat_unsigned_accum
_unsigned_long_accum _sat_unsigned_long_accum
_modwrap_short_fract
_modwrap_fract
_modwrap_long_fract
_modwrap_short_accum
_modwrap_accum
_modwrap_long_accum
_modwrap_unsigned_short_fract
_modwrap_unsigned_fract
_modwrap_unsigned_long_fract
_modwrap_unsigned_short_accum
_modwrap_unsigned_accum
_modwrap_unsigned_long_accum

G.1.2 Fixed-point constants

With the 12 new types there are 12 suffixes to indicate the type of a fixed-point constant. For a
mixed C/C++ environment, it is recommended to use 12 function-like definitions for constants that
can be mapped to either C or C++.

Example: in stead of writing (in C)

long _Fract f = 0.5LR;

use

_long_fract f = _init_long_fract(0.5);

together with, in a C header file, the definition

#define _init_long_fract(f) f##LR

The definition for a C++ header could look like

. . . (???)

The full list of recommended initialiser functionnames is
_init_short_fract
_init_fract
_init_long_fract

ISO/IEC WDTR 18037

Draft version 02/03/15 5:03 PM

- 84 -

_init_short_accum
_init_accum
_init_long_accum
_init_unsigned_short_fract
_init_unsigned_fract
_init_unsigned_long_fract
_init_unsigned_short_accum
_init_unsigned_accum
_init_unsigned_long_accum

G.1.3 The use of pragma's, and o ther issues

[Editor's note: is there anything that shou ld go h ere?]

