Rationale for
| nternational Standard—
Programming L anguages—
C

Revision x23
¥x%20-Octeber-199917 March 2001

UNIX isatrademark of The Open Group.
DEC and PDP-11 are trademarks of Compagq Computer Corporation.
POSIX isatrademark of IEEE.

CONTENTS

O TR 1 0110 [8ox 1 o) I 1
0.1 Organization of the dOCUMENT..........c.eiiiiie e 5

S o0 o TR PP PP 6
A [0 01072 AV SN R E (< (1[0 6
T = 01 05Xz 00 I (< T Lo 16
N O] 110 1 1= (¢ 17
LT = 0\V 110 0]1.01= | S 19
5.1 Conceptual MOEIScocoiiiiie e e et e e e e nnreee e 19

5. 1.1 Trangdation ENVIFONMENT.eeiiiiiieiiiiiiieeeeieeeeeeeeeeeeeeeeeeseeeesessesseeeseeeeseeeeseeerrereeeren 19
5.1.2 EXECULION ENVIFONMENES.ciiiiiiiiiiiieieiieeieeeeeeeeeeeeeeeeesessessssssesssssseseesssesesssssseseseeeees 241

5.2 Environmental CONSIAEIAtIONSceuiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeseeeseseesseeeeseseereereereees 513
I I O 1= =0l (= g = 513
5.2.2 Character display SEMaNtiCS.......ccccuiiiiiieieiiiie e 916
5.2.3 SIgNalS and INTEITUPES.veieiiiieiiie ettt e e e e e e s neeas 917
I oY/)01 1= I 1T 1L E 1048

B. LANQUAOEttt et e et e e e e b e e e e e e e n e e e e e e e nne e e e e annnr e e e e annnneas 122
GO0 07 o L= T PERRRR 122
6.2.1 SCOPES Of IHENLITIENS.......veiiiiciiiie e e 122
6.2.2 Linkages of IdentifierS.........coouieiiiiiiie e 22324
6.2.3 Name paces Of IdeNtifierS.........ooeiiiiiie e 425
6.2.4 Storage durations Of ODJECES........c.eiiiiiiiie e 425
B.2.5 TYPIBS.. ettt e e e e e e e e b a e e e e e nae e e e e nne e e e e anrreeas 627
6.2.6 RePresentationS Of LYPEScciuiie ittt ne e nee e 92930
6.2.7 Compatible type and COMPOSItE LYPE.....coiuveeiiiieeiie e 930

S I 0] 01\Y< £ o] S 1030
6.3.1 ArthmetiC OPEIraNdS.........cccoiiiiiii i e 1030
6.3.2 Other OPEIraNGdS.......cccoiiuiiiie e 1334

6.4 LeXiCal BIEMENIS ..ottt 1535
B.4.1 KEYWOIUSoiiiiiieiiiie ettt ettt ettt et e e ssbe e e s see e e snneeesnneeeanseeeas 153536
B.4.2 1dentifierS ..o 1536
6.4.3 Universal character NAMES.........cooooiiiiiiii 163637
I O] 015 = | £ 1637
B.4.5 SHING HErAlS .oocoeeiiee e e e e 1940
I T = | (o (U= (] =T 2142
B.4.7 HEAHEr NAMES ... 2142
6.4.8 PreproCeSSING NUIMDENS.......coiuiiiiiiieeieieesieeeeiee st e e e s bee e s saee e sseeeesnaeeesnneeeanes 2142
I B O0 1 011 01 01K 2243

T {0 1= o] PRSP 2344
6.5.1 Primary EXPreSSIONSccccueeeiiieeeiiieieasiiieesiteeesteeesteeesseeesseeessseesessseeesnseeesnneesanes 2647
6.5.2 POSHIIX OPEIELOIS.ccciiiiiieeceiiee et e e e e e e e e e e saa e e e e e ennes 2647
6.5.3 UNAIY OPEIBLOIS.ceiiiieiiieeeieeee e e ettt e e e et e e e st e e e e e sssn e e e e e ssseeeeeasnsneeeeasnnneeeeaannes 2950
6.5.4 CaSt OPEIELOISeeeiiiieiie e e e ecttte e e e e e e e e e e e s s ar e e e e e e e e sannrarrreeaaeeeaanns 3051

CONTENTS

6.5.5 MUItIPlICALIVE OPEIELOIScceiuiieeiiiee ettt et e e e sne e e e e enes 3152
6.5.6 AdUItIVE OPEIELOISccciieeee e ettt e e et e e e e e e e e st e e e e s e e e e e sareeeeeennes 3152
6.5.7 BitwiSe Shift OPEIAlOrSceeiiiiiiee e 3354
6.5.8 Rel@ional OPEIralOrS..........coiiiiiiiie ittt e e e s e e e s e e e e e e e eanes 3354
6.5.9 EQUAlITY OPEIELOIS.eeiiieieeiieeeeieee sttt ettt e e s e e snae e e snne e e snneeeenes 3354
6.5.15 Conditional OPEratOrccceiiuiiieeeeiiiie et e 335455
6.5.16 ASSIGNMENE OPEIAIONS. ... eeeeiueeeeeiieeeteeeaieeeaieeeasseeesssreesssseesssreeesssesesnseeesnseeesnes 3455
6.5.17 COMMEA OPEILONuuveeeeeeeeeeeeiiiireere e e e e e e ssrrereeeee e e s s sssrarrereeeeeessnssssareeeeeeaaanns 3556
6.6 CONSLANT EXPIESSIONS.....cciiviieeeeiiitie e e ettt e e e e e e e e e e e e e sar e e e e e ssaeeeeeasaeeeeeasaeeeeeannnneas 3556
(S D 1w F= = ([0 S 3657
6.7.1 SLOrage-class SPECITIEIS.oii it 3657

O A Y/ 0T E o< ol 1= P RRPR 3658
6.7.3 TYPE QUAIITIEIS ...t e e 4364
6.7.4 FUNCLION SPECITIEIS ...eeeeiiiiiee et e e e e e e e e e 4868
TSI B 1w == (o] £ 4970
B.7.6 TYPENAIMES.....coiiiiieiieeeiteie e ettt e e e ettt e e e e see e e e s asse e e e e anneeeeeasseeeeaannseeeeaannnneaeaannes 5576
6.7.7 TYPEAEfINITIONS.....coiiiiieiiii et sane e 5576
(SO ST L o TNt E= 112 (o P 5677
(SRS P (= 1015 016X= 10 I oL [0 ot G 5778
(ORI R = o < 1< 0 [= (< 11 £ 6080
6.8.2 CompouNnd SEAEEMENLcceiiiiiiie e e e 6180
6.8.3 Expression and Null StalemMEeNtS............ooeeiiiiiie i 6180
6.8.4 SElECHON SLALEMENES.....ceiiiiiiiiiiiieeeeieeeeeeee e e e e e e e e e e e e e e e e e e seseseseeereseeeeeeeeeeseeeeeees 6181
(SRR (= = (0] 1K = (= 111 L £ 6281
6.8.6. JUMP SLALEMENES.......eiiiiiiiiee e e e e e e s r e e e e e e s ssnnarereeeeeeeeaans 6383
(SR I (= 1 = o (< 1 10 6484
6.9.1 FUNCHON AEFINITIONS......cciiiiiiiiiiiiiiiiieeee ettt e e e e e e e e e e e e eeeseeeeeeeeeeeeeees 6484
6.10 PreproCesSiNg QIFECHIVES........coiuiieiiieeeiiieestie e see ettt e e e e e snae e snneeenneeas 6685
6.10.1 ConditioNal INCIUSION.........coiiiiiiiiiiiiiiiiieeeeeeeeee ettt e e e e e e e e e e e e e e e e eeeeeeeees 6686
6.10.2 SOUrCE fIlE INCIUSION......ciiiiiiiiiiiiiieeeeeeeeeeeeee ettt e e e e e e e e e e e e e e e eeeeeeeees 6786

SR LRSI (VI F=ot do X = o F=orc 0 1= o | PR 6888

ST 02 S I o 1< o0 11 o) 7493

(ST O T = ¢ (o o (1= ox 1A/ 7493
6.10.6 PragmadireCliVe......ccccuviiieiiiiiee et 7493

(ST L A N[0 1 o [= o1 A 7494
6.10.8 Predefined MAaCro NAIMES..........ovviiiiiiiiiiieieeeeeeeee ettt et e e e e e e e e e e e e e e e eeeeeeeeeeeeeees 7494
6.10.9 Pragma OPEIELONcooueeieeeeiieeee ettt e e et e et e e e e s iee e e e ane e e e e e ennne e e e e snnneeeeaannes 7594
6.11 Future |anguage dir@CHIONS.oiiiiieiiie ettt enneas 7594
6.11.5 StOrage-Class SPECITIEIScoiuiie i 7595
6.11.6 FUNCLON ECIAIraLONS.ceveiiiieiiiiieeeeeeeeeeeee ettt e e e e e e e e e e e e e e eeeeeeeeeeees 7595

A I | o = VPP 196
4% T g 0 [T oo 196
7.1.1 DefiNitions Of tEIMS.......cooiiiiiiie 398
7.1.2 Standard hEadErS.........coooiiiiiii 398
7.1.3 Reserved identifierS.......cooooiiiii, 499
7.1.4 Useof library fUNCHONS...........veiiiiiiee e 499
7.2 DiagnostiCS <ASSEI T . N> 5100

CONTENTS

7.21 Program QiagNOSHICS......ccveeeiiieeeiiiieesieeeesitee e siee et e e st bee e s sae e e snae e e nnae e e snneeeenes [ox1e's)
7.3 Complex arithmetic <conpl eX. h> e 6101
7.3.9 Manipulation fUNCHIONS.........ccviiii i 7402101
7.4 Character Handling <Ct ype. N> ..o 7102
7.4.1 Character classification fuNCLioNS ..o 7402
7.4.2 Character case mapping fUNCHIONSccoiuiiiiiiieiiiie e 8103
AT = 0 =Y 4 TR 1 8103
7.6 Floating-point environment <f env. h> ... 9104103
7.6.1 The FENV_ACCESS PIragMal........ccerueearuererreeasieesssesssseessseeessseessssesssnes 11166105
7.6.2 Fl0ating-poiNt EXCEPLIONS.uueeiiiieeiiieestieesiee et eestee e tee e saee e snre e e saneeesnnee e 11106
400 T = {0 TH o (] oo SRS 11106
7.6.4 ENVIFONMENT ..o 11106
7.7 Characteristics of floating types<fl oat . h> ..., 12167106
7.8 Format conversion of integer types<i nttypes. h> ..., 13107
7.9 Alternate SpallingS <i SO646. N> ..o 13108
7.10 Sizesof integer types<l i M tS. N> 13108
7.11 Locaization <l 0cal €. N> .o 13108
7111 LOCAl@ CONEIOL ... 15110
7.11.2 Numeric formatting CONVENtION INQUITYccvererueeerieeeeieeessieeeeseeeesseeesseeens 15110
7.12 MahematicS <KIMAL N. N>t 16311
7.12.1 Treatment of error CONAITIONS..........coooviiiiiiiii, 16311
7.12.2 The FP_CONTRACT PragMal.......ccoiueeeiiieeaieeeaieeesseeeanseeessssesssssessssessssseeens 17132
7.12.3 ClassifiCation MACIOS.........ccooviiiiiiiiiieeeeeeeee, 17432
7.12.4 TrigonOMELIiC fUNCLIONS........cceiiiiiiie et 17432
7.12.6 Exponential and logarithmic funCtionS............ccooceeiiiiiiiiiee e 18113
7.12.7 Power and absolute-value functions.............cccccooe 19114
7.12.8 Error and gamma funCliONS..........cocueriiiiiniiie e 20115114
7.12.9 Nearest integer FUNCLIONS.........coooiiiiee e 21115
7.12.10 Remainder fUNCLIONS..........coooiiiiiiii 22116
7.12.11 Manipulation fUNCHIONS.........cooiiiiiiec e 22417
7.12.12 Maximum, minimum, and positive difference functions..............ccccoccvveeeennee. 23118
7.12.13 Floating MUItiply-a0dcooiiiiiieieeee e 23118
7.13 Nonloca JumPS <Set J MP. N> 23118
7.13.1 Savecaling enVIFONMENL...........ccciiiee i s e e 24118
7.13.2 Restore caling enVIrONMENTeviiiiiiiie e 24119
7.14 Signal handling <si gnal . N> . 25119
7.14.1 Specify Signal Nandling..........coooiiiiiii e 25120
7142 SN SIONAL......ciiiee e e e 25120
7.15 Variablearguments<st dar g. > 26120
7.15.1 Variable argument list aCCESS MACTOS.......cceeiiiiiiieeeiiiiee et 26121
7.16 Booleantype and values<st dbool . h> ..., 27422
7.17 Common definitions<st ddef . N> 27422
7.18 Integer types<st di Nt . N> ... 28123
0 R R 1 011 o = 1 == F SRS TRORPPPPT 29123
7.19 Input/output <St di 0. N> oo 29124123
45 LS 5 R 1 11 o (8 Tox £ o | SR 30125124
B S B S 1 (=72 TR 30125

CONTENTS

T.09.3 FlES. 32127
7.19.4 OperaioNS ON FIlES.......uiiiiiiiiee e e e 32427
7.195 FleaccesSTUNCLONS...........oooviiiiiiie 33128
7.19.6 Formatted input/OUtpUt TUNCHIONS........coiuiiiiiiieciee e 37431
7.19.7 Character input/OutPUt FUNCLIONS.........cocuiiiiiiieeiie e 41134
7.19.8 Direct INpUt/OULPUL FUNCLIONSooiiiieiiiie et 44136
7.19.9 File positioning fFUNCHIONScoouiiiiiie et 44136
7.19.10 Error-handling fUNCLIONScoociiiei e 45137
7.20 Genera UtiIlties<st dl i D. N> 45137
7.20.1 Numeric conversion fUNCLIONS...........ooooviiiiiii 45138
7.20.2 Pseudo-random sequence generation funCtions............coocveeiiieeinieeescieeesieeenns 46139
7.20.3 Memory management FUNCLIONS..........cooiviriiiieeiiie e 47139
7.20.4 Communication withthe environmentccceiiii, 48141
7.20.5 Searching and SOrting ULHTTIES..........cueeiiiieiiiie e 50142
7.20.6 Integer arithmetiC fUNCLIONS.........c.vviei i 50142
7.20.7 Multibyte/lwide character conversion functions...........cccocccveeeeeviieeeeccciieee e, 51143
7.20.8 Multibyte/wide string conversion fUNCLIONS............oovuieeiiieeiiiee e 51144
721 Stringhandling <St ri Ng. N> s 51144
7.21.1 String fuNCtion CONVENTIONS.........uviiee i e e e e e 51144
7.21.2 CopYING FUNCLIONS.ccoiiieiiiie ettt san e e nnee e 51144
7.21.3 Concatenation fUNCLIONS...........oooiiiiiiii, 52145
7.21.4 CompariSon fUNCHIONSc.vveeeiiiiie et e e e e 52145
7.21.5 Search fUuNCONS.........coooiiii 53145
7.21.6 Miscellaneous fUNCLIONSoooiiiiiiiii, 53146
7.22 Typegenericmath<t gmat h. >, 54146
7.23 Dateand time <t i MB. N> ...t 55147
7.23.1 Components Of TIM.......ccciiiiiiiiiiiiie e e 55147
7.23.2 Time manipulation fUNCLIONSoeiiiiiiie e 55148
7.23.3 TimeconversioN FUNCLIONSooooiiiiiiii 57449
7.26 Future library dir€ClIONS........cc.vviiiiiiiie et e 57450
T AN 01015 (=TT 1150
Annex F 1EC 60559 floating-point arithmetic (NOrmative)cccoevvveeeeiiiiee e, 1150
FLi2 TYPES e 1151
F.5 Binary-deCcimal CONVEISION.........cociiiiiiiieeiiiiiee et stee e e e st e e e e ssa e e e e nnanee e 3152
A 01V (0] 1111< | P 3152
F.7.4 CONSLANt EXPIESSIONSeeeeiiiiieeeeeitteee e e sttt e e e e st e e e s sste e e e e ssaeeeesssaeeeeassreeeeesnsnneas 3152
AT 111 (F= |- (1o o [3153
FO MahematicS<MBt N. N> e 3153
F.O.1 TrigonometriC fUNCHIONS.........coiiiiiiiie e e 6155
F.9.4 Power and absolute value fUNCLIONS..........ccoooeiiiiiiiiieeeeeeeeeee, 6155
F.9.9 Maximum, minimum, and positive difference functions..............cccccceevcieveeeinnen. 6156
Annex G 1EC 60559-compatible complex arithmetic (INformative)coocceeerieeenciieescieeenne 1156
L Y/ o= PSPPI 1156
(R = 0 V0] o= = (o TP 1156
G.51 MUIIPHCAIVE OPEIGIOIS.eeeieeeeeeieeeeteeeeiee e et e et e et e et e e e sane e e snneeeenes 1156

CONTENTS

G.6 Complex aithmetic <CONPl €X. N> ..o 2157
G.7 Typegenericmah <t gmat h. N>.... e s
Annex H Language independent arithmetic (informative)...........occeeieeeiiiee e 1158
Annex | Universal character names for identifiers (NOrmative)............ccceeeeeenieennciieesienene 1159
MSE. Multibyte Support EXtensions Rationale.............cooveriiiiieiiiie e 1160
MSE.1 MSE BaCKQrOUNG.......coeiiiiiiiee ittt e e e e et e e et e e e e snn e e e e e nnnaeeeeaa 1460
MSE.2 Programming model based on wide charaCters..........ooccvevieeineeeniie e et
MSE.3 Paralelism VersuS improvVeMENtc.eeveeiiiiiee et snnee e 3162
MSE.4 Support for invariant ISO/IEC 646...........cc.eeeeeeiiiieeiee e 7165
MSE.D HEAHES.. ..o 7166
YIS S T R .Y o a - 1 GO o D> TR 7166
MSE.D.2 <MLL Y P, N> 8167
MSE.6 Wide-character classification fUNCLIONSoooovviiiiiiiiiieee, 9168
MSE.6.1 Locale dependency of i SWXX FUNCHIONSoeeiiiieiiiiieiiie e 9168
MSE.6.2 Changed space character handling..........cccoveeeiiiiiiiieieee e 9168
MSE.7 Extensible classification and mapping fUNCLIONS............cccovviieiniiinniieenee e 9168
MSE.8 Generadlized multibyte CharaCters..........cuvveeeiiiiii i 10189
MSE.9 StreamSand fllES.....ccooiiieiiiiieeeeeeeee 10189
MSE. Q.1 CONVEISION SLABo 10189
MSE.Q.2 IMPIeMENTELION........ceeiiiiiiee et e e e e e eanes 11470
MSE.Q.3 Byte versus wide-character input/OULPULcccveeiiieeiiiieenie e 12171
MSE.9.4 Text versus binary INPUY/OULPUL...........ooruieeiiiiieeiee e 14174
MSE.10 Formatted input/Output fUNCLIONS..........cccvviiiiiieeiiie e 14174
MSE.10.1 Enhancing existing formatted input/output functions.............ccccceeereeennee. 14174
MSE.10.2 Formatted wide-character input/output funCtions.............ccccceeevieeeniennne. 15175
MSE.11 Addingthefw de funClioN............cccvveie i 15175
MSE.12 Single-byte wide-character conversion fuNCtions............occeeeiieeeniieesienesieeenns 15175
MSE.13 Extended conversion ULHTIESccoooeeeiiiiiiiiiieeeeeee e, 16176
MSE.13.1 CONVErSION SLALEcoeeeeeeeeeeeeeeeeeeeeeeeeeeee e 16176
MSE.13.2 ConVErSION ULHTTIESccoee e 17477
MSE.14 ColumnNWIGth.......coooiiiiiiieeeee e, 18178

0 L RS PR 1

10

15

20

25

30

35

40

45

CI9X RATIONALE WG14/Nxxx897 J11/99-xxx032

0. Introduction

This Rationale summarizes the ddiberations of NCITS J11 (formerly X3J11) and SC22 WG14,
respectively the ANSI Technicad Committee and ISO/IEC JTC 1 Working Group, charged with
revisng the International Standard for the C programming language; and it retains much of the text of
the Rationde for the origind ANSI Standard (ANSI X3.159-1989, the so-cdled “C89’). This
document has been published along with the draft Standard to assist the process of forma public
review.

There have been severa changes to the Standard dready. C89 was quickly adopted as an International
Standard (ISO/IEC 9899:1990, commonly cadled “C90”), with changes to clause and subclause
numbering to conform to 1SO practices. Since then, there have been two Technica Corrigenda and
one Amendment, AMD1; and those three documents, together with C90 itsalf, compose the current
International Standard, (“C95”). The draft Standard is often called “C€9x--* C99.”

J11 represents a cross-section of the C community in the United States: it congists of about twenty or
thirty members representing hardware manufacturers, vendors of compilers and other software
development tools, software designers, consultants, academics, authors, applications programmers, and
others. WG14' s participants are representatives of national standards bodies such as AFNOR, ANSI,
BSl, DIN and DS. In this Rationde, the unqualified “Committee” refers to J11 and WG14 working
together to create €9%X-C99.

Upon publication of the new Standard, the primary role of the Committee will be to offer
interpretations of the Standard. It will consider and respond to al correspondence it receives.

The Committee’ soveradl god wasto develop a clear, consstent, and unambiguous Standard for the C
programming language which codifies the common, existing definition of C and which promotes the
portability of user programs across C language environments.

The original X3J11 charter clearly mandated codifying common existing practice, and the C89
Committee held fast to precedent wherever that was clear and unambiguous. The vast mgority of the
language defined by C89 was precisdy the same as defined in Appendix A of the firgt edition of The C
Programming Language by Brian Kernighan and Dennis Ritchie, and as was implemented in dmogt all
C trandators of thetime. (This document is hereinafter referred to as K&R.)

K&R was not the only source of “existing practice” Much work had been done over the years to
improve the C language by addressng its wesknesses, and the C89 Committee formalized
enhancements of proven vaue which had become part of the various didects of C. This practice has
continued in the present Committee.

Existing practice, however, has not dways been consstent. Various didects of C have approached
problems in different and sometimes diametricaly opposed ways. This divergence has happened for
severd reasons. Fird, K&R, which once served as the language specification for amogt dl C
trandators, is imprecise in some areas (thereby dlowing divergent interpretations), and it does not

10

15

20

25

30

35

40

45

WG14/N897xxX J11/99-032XXX CIX
RATIONALE

address some issues (such as a complete specification of a library) important for code portability.
Second, as the language has matured over the years, various extensons have been added in different
didects to address limitations and weaknesses of the language; but these extensons have not been
consstent across dialects.

One of the C89 Committee’ s goals was to consder such areas of divergence and to establish a st of
clear, unambiguous rules consstent with the rest of the language. This effort included the
condderation of extensons made in various C diadects, the specification of a complete set of required
library functions, and the devel opment of a complete, correct syntax for C.

Much of the Committee's work has dways been in large part a bdancing act. The C89 Committee
tried to improve portability while retaining the definition of certain festures of C as machine-dependent,
it attempted to incorporate valuable new ideas without disrupting the basic structure and fabric of the
language, and it tried to develop a clear and consstent language without invaidating existing
programs. All of the goas were important and each decison was weighed in the light of sometimes
contradictory requirements in an attempt to reach a workable compromise.

In specifying a standard language, the C89 Committee used severd principles which continue to guide
our ddliberationstoday. The most important of these are:

Existing code is important, existing implementations are not. A large body of C code exists of
condderable commercid vaue. Every atempt has been made to ensure that the bulk of this code will
be acceptable to any implementation conforming to the Standard. The C89 Committee did not want to
force most programmers to modify their C programs just to have them accepted by a conforming
trandator.

On the other hand, no one implementation was held up as the exemplar by which to define C. It was
assumed that all existing implementations must change somewhat to conform to the Standard.

C code can be portable. Although the C language was origindly born with the UNIX operating
sysem on the DEC PDP-11, it has snce been implemented on a wide variety of computers and
operating systems. It has dso seen condgderable use in cross-compilation of code for embedded
systems to be executed in a free-standing environment. The C89 Committee attempted to specify the
language and the library to be as widely implementable as possble, while recognizing that a system
must meet certain minimum criteriato be consdered aviable host or target for the language.

C code can be non-portable. Although it strove to give programmers the opportunity to write truly
portable programs, the C89 Committee did not want to force programmers into writing portably, to
preclude the use of C as a“high-level assembler:” the ability to write machine-specific code is one of
the strengths of C. It is this principle which largely motivates drawing the distinction between strictly
conforming program and conforming program (84).

Avoid “quiet changes” Any change to widespread practice dtering the meaning of existing code
causes problems. Changes that cause code to be so ill-formed as to require diagnostic messages are at
least easy to detect. As much as seemed possible consstent with its other godss, the C89 Committee
avoided changes that quietly ater one vaid program to another with different semantics, that cause a

2

10

15

20

25

30

35

40

45

CI9X RATIONALE WG14/Nxxx897 J11/99-xxx032

working program to work differently without notice. In important places where this principle is
violated, both the C89 Rationae and this Rationae point out a QUIET CHANGE.

A gsandard isa treaty between implementor and programmer. Some numericd limits were added
to the Standard to give both implementors and programmers a better understanding of what must be
provided by an implementation, of what can be expected and depended upon to exist. These limits
were, and sill are, presented as minimum maxima (that is, lower limits placed on the values of upper
limits specified by an implementation) with the understanding that any implementor is a liberty to
provide higher limits than the Standard mandates. Any program that takes advantage of these more
tolerant limitsis not strictly conforming, however, since other implementations are at liberty to enforce
the mandated limits.

Keep the spirit of C. The C89 Committee kept as amajor god to preserve the traditional spirit of C.

There are many facets of the spirit of C, but the essence is a community sentiment of the underlying
principles upon which the C language isbased. Some of the facets of the pirit of C can be summarized
in phraseslike

. Trust the programmer.

. Don't prevent the programmer from doing what needs to be done.
. Keep the language small and simple.

. Provide only one way to do an operation.

. Makeit fast, even if it is not guaranteed to be portable.

The last proverb needs a little explanation. The potentid for efficient code generation is one of the
most important strengths of C. To help ensure that no code explosion occurs for what appears to be a
very smple operation, many operations are defined to be how the target machine' s hardware does it
rather than by a generd abstract rule. An example of this willingness to live with what the machine
does can be seen in the rules that govern the widening of char objectsfor usein expressons: whether
the values of char objects widen to signed or unsigned quantities typicaly depends on which byte
operation is more efficient on the target machine.

One of the goals of the C89 Committee was to avoid interfering with the ability of trandators to
generate compact, efficient code. In severd cases the C89 Committee introduced features to improve
the possible efficiency of the generated code; for instance, fleating-petntfloating-point operations may
be performed in single-precision if both operands aref | oat rather than doubl e.

At the WG14 meeting in Tokyo, Japan, in July 1994, the origina principles were re-endorsed and the
following new ones were added:

Support international programming. During the initid standardization process, support for
internationdization was something of an afterthought. Now that internationaization has become an
important topic, it should have equd vishility. Asaresult, dl revison proposas shdl be reviewed with
regard to their impact on internationalization aswell as for other technica merit.

Codify existing practice to address evident deficiencies. Only those concepts that have some prior
art should be accepted. (Prior art may come from implementations of languages other than C.) Unless

10

15

20

25

30

35

40

45

WG14/N897xxX J11/99-032XXX CIX
RATIONALE

some proposed new feature addresses an evident deficiency that is actudly fdt by more than afew C
programmers, no new inventions should be entertained.

Minimize incompatibilities with C90 (1SO/IEC 9899:1990). It should be possible for existing C
implementations to gradually migrate to future conformance, rather than requiring a replacement of the
environment. It should also be possible for the vast mgority of existing conforming programs to run
unchanged.

Minimize incompatibilitieswith C++. The Committee recognizes the need for aclear and defensble
plan for addressng the compatibility issue with C++. The Committee endorses the principle of
maintaining the largest common subset clearly and from the outset. Such a principle should satisfy the
requirement to maximize overlap of the languages while maintaining a distinction between them and
alowing them to evolve separately.

The Committee is content to let C++ be the big and ambitious language. While some features of C++
may well be embraced, it is not the Committee’ sintention that C become C++.

Maintain conceptual smplicity. The Committee prefers an economy of concepts that do the job.
Members should identify the issues and prescribe the minima amount of machinery that will solve the
problems. The Committee recognizes the importance of being able to describe and teach new concepts
in astraightforward and concise manner.
During the revision process, it was important to consider the following observations:
Regarding the 11 principles, there is a tradeoff between them—none is absolute. However, the
more the Committee deviates from them, the more rationale will be needed to explain the
deviation.

There had been a very podtive reception of the standard from both the user and vendor
communities.

The standard was not considered to be broken. Rather, the revison was needed to track emerging
and/or changing technologies and internationalization requirements.

Mogt users of C view it as a generd-purpose high-level language. While higher level congtructs
can be added, they should be done so only if they don't contradict the basic principles.

There are a good number of useful suggestions to be found from the public comments and defect
report processing.

Areas to which the Committee looked when revising the C Standard included:
Incorporate AMDL1.

Incorporate al Technica Corrigenda and records of response.

10

15

20

25

30

35

40

45

CI9X RATIONALE WG14/Nxxx897 J11/99-xxx032

Current defect reports.

Future directionsin current standard.

Features currently |abeled obsolescent.

Cross-language standards groups work.

Requirements resulting from JTC 1/SC 2 (character sets).

The evolution of C++.

The evolution of other languages, particularly with regard to interlanguage communication i ssues.

Other papers and proposals from member delegations, such as the numericad extensons Technica
Report which was proposed by J11.

Other comments from the public at large.
Other prior art.

This Rationae focuses primarily on additions, clarifications, and changes made to the C language. Itis
not a rationde for the C language as a whole: the C89 Committee was charged with codifying an
exiging language, not designing a new one. No attempt is made in this Rationde to defend the
pre-existing syntax of the language, such asthe syntax of declarations or the binding of operators. The
Standard is contrived as carefully as possible to permit a broad range of implementations, from direct
interpreters to highly optimizing compilers with separate linkers, from ROM-based embedded
microcomputers to multi-user multi-processing host systems. A certain amount of gspeciadized
terminology has therefore been chosen to minimize the bias toward compiler implementations shown in
K&R.

This Rationale discusses some language or library features which were not adopted into the Standard.
These are usudly features which are popular in some C implementations, so that a user of those
implementations might question why they do not appear in the Standard.

0.1 Organization of the document

This Rationde is organized to pardld the Standard as closdly as possible to facilitate finding relevant
discussons. Some subclauses of the Standard are absent from this Rationale: this indicates that the
Committee thought no specid comment was necessary. Where a given discussion touches on severd
aress, attempts have been made to include cross references within the text. Such references, unless
they specify the Standard or the Rationale, are deliberately ambiguous.

This document has one gppendix caled MSE which brings together information on the Multibyte
Support Extensons (MSE) that were added to C90 by AMD1. Thisis essentidly the Rationde for

5

10 |

WG14/N897xxX J11/99-032XXX CIX
RATIONALE

AMD1; and it was kept largely unchanged because it was thought that it would be clearer to have the
MSE rationale in one place, as opposed to scattered throughout the document.

Just as the Standard proper excludes dl examples, footnotes, references, and informative annexes, this
Rationale is not part of the Sandard. The C language is defined by the Standard done. If any part of

this Rationde is not in accord with that definition, the Committee would very much like to be so
informed.

1. Scope

2. Normative References

10

15

20

25

30

35

40

45

Index

3. Temsand definitions

The definitions of object, bit, byte, and alignment reflect a strong consensus, reached after considerable
discussion, about the fundamenta nature of the memory organization of a C environment:

. All objectsin C must be representable as a contiguous sequence of bytes, each of which
isa least 8 bitswide.

. A char whether sgned or unsgned, occupies exactly one byte.

(Thus, for instance, on a machine with 36-bit words, a byte can be defined to consst of 9, 12, 18, or 36
bits, these numbers being dl the exact divisors of 36 which are not less than 8.) These strictures codify
the widespread presumption that any object can be treated as an array of characters, the sze of whichis
given by thesi zeof operator with that object’ stype as its operand.

These definitions do not preclude “holes” in st r uct objects. Such holes are in fact often mandated
by aignment and packing requirements. The holes smply do not participate in representing the
composite value of an object.

The definition of object does not employ the notion of type. Thus an object has no typein and of itsdlf.

However, snce an object may only be designated by an Ivalue (see 86.3.2.1), the phrase “the type of
an object” is taken to mean, here and in the Standard, “the type of the lvaue designating this object,”
and “the value of an object” means “the contents of the object interpreted as a vaue of the type of the
Ivaue desgnating the object.”

The concepts of multibyte character, wide character, universal character, and extended character
have been added to C to support very large character sets (see 85.2.1 and SMSE.1).

The terms unspecified behavior, undefined behavior, and implementation-defined behavior are used
to categorize the result of writing programs whose properties the Standard does not, or cannot,
completely describe. The god of adopting this categorization is to dlow a certain variety among
implementations which permits quality of implementation to be an active force in the marketplace as
wel as to dlow certain popular extensions, without removing the cachet of conformance to the
Sandard. Informative Annex G of the Standard catal ogs those behaviors which fdl into one of these
three categories.

Unspecified behavior gives the implementor some latitude in trandating programs. This latitude does
not extend as far as faling to trandate the program, however, because al possble behaviors are
“correct” in the sense that they don’t cause undefined behavior in any implementation.

Undefined behavior gives the implementor license not to catch certain program errorsthat are difficult
to diagnose. It aso identifies areas of possible conforming language extension: the implementor may
augment the language by providing a definition of the officialy undefined behavior.

Implementation-defined behavior gives an implementor the freedom to choose the appropriate
approach, but requires that this choice be explained to the user. Behaviors designated as
implementation-defined are generdly those in which a user could make meaningful coding decisons

10

15

20

| Index

based on the implementation’s definition. Implementors should bear in mind this criterion when
deciding how extengve an implementation definition ought to be. Aswith unspecified behavior, smply
faling to trandate the source containing the implementation-defined behavior is not an adequate
response.

A new feature of €9X:C99: While responding to a Defect Report filed againgt C89, the Committee
came to redlize tha the term, “implementation-defined,” was sometimes being used in the sense of
“implementation must document” when dedling with locaes. The term, “locale-specific behavior,”
dready in C89, was then used extensively in C95 to distinguish those properties of locaes which can
appear in a grictly conforming program. Because the presence or absence of a specific locae is, with
two exceptions, implementation-defined, some users of the Standard were confused as to whether
locales could be used at dl in Strictly conforming programs.

A successful cdl to set | ocal e has sde effects, known informally as “setting the contents of the
current locale,” which can dter the subsequent output of the program. A program whose output is
dtered only by such sde effects—for example, because the decima point character has changed—is
gill rictly conforming.

A program whose output is affected by the vaue returned by a cdl to set | ocal e might not be
grictly conforming. If the only way in which the result affects the find output is by determining,
directly or indirectly, whether to make another call to set | ocal e, then the program remains gtrictly
conforming; but if the result affects the output in some other way, then it does not.

10

15

20

25

30

35

40

45

Index

4. Conformance

The three-fold definition of conformance is used to broaden the population of conforming programs
and digtinguish between conforming programs using a single implementation and portable conforming
programs.

A grictly conforming program is another term for a maximally portable program. The god isto give
the programmer a fighting chance to make powerful C programs that are aso highly portable, without
seeming to demean perfectly useful C programs that happen not to be portable, thus the adverb dtrictly.

By defining conforming implementations in terms of the programs they accept, the Standard leaves
open the door for a broad class of extensons as part of a conforming implementation. By defining
both conforming hosted and conforming freestanding implementations, the Standard recognizes the
use of C to write such programs as operating systems and ROM-based gpplications, as well as more
conventiona hosted applications. Beyond this two-level scheme, no additiona subsetting is defined for
C, since the C89 Committee felt strongly that too many levels dilutes the effectiveness of a standard.

Conforming program is thus the most tolerant of al categories, snce only one conforming
implementation need accept it. The primary limitation on thislicenseis 85.1.1.3.

Diverse parts of the Standard comprise the “treaty” between programmers and implementors regarding
various name spaces. if the programmer follows the rules of the Standard the implementation will not
impose any further restrictions or surprises:

. A drictly conforming program can use only a restricted subset of the identifiers that
begin with underscore (87.1.3). Identifiers and keywords are distinct (86.4.1).
Otherwise, programmers can use whatever interna names they wish; a conforming
implementation is guaranteed not to use conflicting names of the form reserved for the
programmer. (Note, however, the class of identifiers which are identified in §87.26 as
possible future library names.)

. The externd functions defined in, or cdled within, a portable program can be named
whatever the programmer wishes, as long as these names are distinct from the externa
names defined by the Standard library (87). Externd names in a maximdly portable
program must be distinct within the first 31 characters (in C95, the first 6 characters
mapped into one case) (see §5.2.4.1 and §6.4.2).

. A maximaly portable program cannot, of course, assume any language keywords other
than those defined in the Standard.

. Each function caled within amaximally portable program must elther be defined within
some source file of the program or ese be afunction in the Standard library.

One proposda long entertained by the C89 Committee was to mandate that each implementation have a
trandation-time switch for turning off extensons and making a pure Standard-conforming
implementation. It was pointed out, however, that virtuadly every trandation-time switch setting
effectively creates a different “implementation,” however close may be the effect of trandating with

| Index

10

two different switch settings. Whether an implementor chooses to offer a family of conforming
implementations, or to offer an assortment of non-conforming implementations along with one that
conforms, was not the business of the C89 Committee to mandate. The Standard therefore confines
itsdf to describing conformance, and merdly suggests areas where extensons will not compromise
conformance.

Other proposas regjected more quickly were to provide a validation suite, and to provide the source
code for an acceptable library. Both were recognized to be mgor undertakings, and both were seen to
compromise the integrity of the Standard by giving concrete examples that might bear more weight
than the Standard itsalf. The potential lega implications were a so a concern.

Standardization of such tools as program consistency checkers and symbolic debuggers lies outside the
mandate of the C89 Committee. However, the C89 Committee took pains to alow such programs to
work with conforming programs and implementations.

10

15

20

25

30

35

40

45

Index

5. Environment

Because C has seen widespread use as a cross-compiled cross-compilation language, aclear digtinction
must be made between trandation and execution environments. The C89 preprocessor, for instance, is
permitted to evaluate the expression in a#i f directive using the long integer or unsigned long integer
arithmetic native to the trandation environment: these integers must comprise a least 32 hits, but need
not match the number of bits in the execution environment. In €9X;C99, this arithmetic must be done
ini ntmax_t or ui nt max_t, which must comprise at least 64 bits and must match the execution
environment. Other trandation time aithmetic, however, such as type casting and fleating
petatfloating-point arithmetic, must more closely modd the execution environment regardless of
trandation environment.

5.1 Conceptual models

The as if principle is invoked repeatedly in this Rationde. The C89 Committee found that describing
various aspects of the C language, library, and environment in terms of concrete models best serves
discussion and presentation. Every attempt has been made to craft the models so that implementors
are condrained only insofar as they must bring about the same result, as if they had implemented the
presentation model; often enough the clearest mode would make for the worst implementation.

5.1.1 Trandation environment
5.1.11 Program structure

The terms source file, external linkage, linked, libraries, and executable program dl imply a
conventiona compiler/linker combination. All of these concepts have shaped the semantics of C,
however, and are inescapable even in an interpreted environment. Thus, while implementations are not
required to support separate compilation and linking with libraries, in some ways they must behave as
if they do.

5.1.1.2 Trandation phases

Perhaps the greatest undesirable diversty among pre-C89 implementations can be found in
preprocessing. Admittedly a distinct and primitive language superimposed upon C, the preprocessing
commands accreted over time, with little centra direction, and with even less precison in ther
documentation. This evolution has resulted in a variety of loca features, each with its ardent
adherents. K&R offerslittle clear bass for choosing one over the other.

The consensus of the C89 Commiittee is that preprocessing should be smple and overt, that it should
sacrifice power for clarity. For instance, the macro invocation f (a, b) should assuredly have two
actud arguments, even if b expands to ¢, d; and the formd definition of f must cdl for exactly two
arguments. Above dl, the preprocessing sub-language should be specified precisdly enough to
minimize or diminate dialect formation. To clarify the nature of preprocessing, the trandation from
source text to tokens is spelled out as a number of separate phases. The separate phases need not
actually be present in the trandator, but the net effect must be as if they were. The phases need not be
performed in a separate preprocessor, athough the definition certainly permits this common practice.

10

15

20

25

30

35

40

45

| Index

Since the preprocessor need not know anything about the specific properties of the target, a
meachine-independent implementation is permissible. The C89 Committee deemed that it was outsde
the scope of its mandate to require that the output of the preprocessing phases be avallable as a
Separate trandator output file.

The phases of trandation are spelled out to resolve questions raised about the precedence of different
parses. Can a#def i ne begin acomment? (No.) Is backdasVnew-line permitted within a trigraph?
(No.) Must a comment be contained within one #i ncl ude file? (Yes) And soon. The Rationde
on preprocessing (86.10) discusses the reasons for many of the decisions that shaped the specification
of the phases of trandation.

A backdash immediately before a newline has long been used to continue string literds, as well as
preprocessing command lines. In the interest of easing machine generation of C, and of transporting
code to machines with regtrictive physica line lengths, the C89 Committee generaized this mechanism
to permit any token to be continued by interposing a backdash/newline sequence.

In trandation phase 4, the syntactic category preprocessing-file gpplies to each included file separately
from thefileit isincluded into. Thus an included file cannot contain, for example, unbaanced #el se
or#el i f directives.

5.1.1.3 Diagnostics

By mandating some form of diagnostic message for any program containing a Syntax error or
congtraint violation, the Standard performs two important services. Firg, it gives teeth to the concept
of erroneous program, since a conforming implementation must distinguish such a program from a
vaid one. Second, it severdy condrains the nature of extensons permissble to a conforming
implementation.

The Standard says nothing about the nature of the diagnostic message, which could smply be “syntax
error”, with no hint of where the error occurs. (An implementation must, of course, describe what
trandator output constitutes a diagnostic message, so that the user can recognize it as such.) The C89
Committee ultimately decided that any diagnostic activity beyond this level is an issue of quality of
implementation, and that market forces would encourage more useful diagnostics. Nevertheless, the
C89 Committee felt that at least some significant class of errors must be diagnosed, and the class
specified should be recognizable by dl trandators.

The Standard does not forbid extensons provided that they do not invalidate strictly conforming
programs, and the trandator must dlow extensons to be disabled as discussed in Rationde 84.

Otherwise, extensons to a conforming implementation lie in such redms as defining semantics for
syntax to which no semanticsis ascribed by the Standard, or giving meaning to undefined behavior.

5.1.2 Execution environments

The definition of program startup in the Standard is designed to permit initidlization of static Storage
by executable code, aswell as by data trandated into the program image.

5.1.2.1 Freestanding environment

10

15

20

25

30

35

40

45

Index
Aslittle as possible is said about freestanding environments, since little is served by constraining them.

5.1.2.2 Hosted environment

The properties required of a hosted environment are spelled out in a fair amount of detail in order to
give programmers a reasonable chance of writing programs which are portable among such
environments.

5.1.2.21 Program startup

The behavior of the arguments to nmai n, and of the interaction of exi t, mai n and at exit (see
87.20.4.2) has been codified to curb some unwanted variety in the representation of ar gv strings, and
in the meaning of vaues returned by mai n.

The specification of ar gc and ar gv as arguments to mai n recognizes extensive prior practice.
ar gv[ar gc] isrequired to be anull pointer to provide aredundant check for the end of the list, aso
on the basis of common practice.

mai n is the only function that may portably be declared either with zero or two arguments. (The
number of other functions arguments must match exactly between invocation and definition.) This
specid case smply recognizes the widespread practice of leaving off the arguments to mai n when the
program does not access the program argument strings. While many implementations support more
than two arguments to mai n, such practice is neither blessed nor forbidden by the Standard; a
program that definesmai n with three argumentsis not strictly conforming (see 8K.5.1.).

Command line 1/O redirection is not mandated by the Standard, as this was deemed to be a feature of
the underlying operating system rather than the C language.

5.1.2.3 Program execution

Because C expressons can contain Sde effects, issues of sequencing are important in expression
evaluation (see 86.5 and Annexes C and D). Most operators impose no sequencing requirements, but
afew operators impose sequence points upon their evaluation: comma, logical-AND, logicd-OR, and
conditiond. Intheexpresson(i =1, a[i] =0), for example, the Sde effect (ateration to storage)
specified by i =1 must be completed before the expressona[i | = 0 isevauated.

Other sequence points are imposed by statement execution and completion of evauation of a full
expression (see 86.8). Thusin f n(++a) , the incrementation of a must be completed before f n is
cdled. Ini =1; a[i] =0;theddeeffect of i =1 must be complete beforea[i] = 0 isevauated.

The notion of agreement has to do with the relationship between the abstract machine defining the
semantics and an actud implementation. An agreement point for some object or class of objectsisa
sequence point a which the value of the object(s) in the red implementation must agree with the value
prescribed by the abstract semantics.

For example, compilers that hold variables in registers can sometimes drasticdly reduce execution
times. Inaloop like

10

15

20

25

30

35

40

45

Index

sum = O;
for (i =0; i <N ++i)
sum += a[i];

both sumandi might be profitably kept in registers during the execution of the loop. Thus, the actua
memory objects designated by sumand i would not change state during the loop.

Such behavior is, of course, too loose for hardware-oriented gpplications such as device drivers and
memory-mapped 1/0. The following loop looks dmost identical to the previous example, but the
specification of vol ati | e ensures that each assgnment to *tt yport takes place in the same
sequence, and with the same values, as the abstract machine would have done.

volatile short *ttyport;

[* .*

for (i =0; i <N ++i)
*ttyport = al[i];

Another common optimization isto pre-compute common subexpressions. In thisloop:

volatile short *ttyport;
short maskl, mask2;
[* ..*
for (i =0; i <N ++i)
*ttyport = af[i] & maskl & maskz2;

evauation of the subexpresson mask1l & mask?2 could be performed prior to the loop in the redl
implementation, assuming that neither mask1 nor mask?2 appear as an operand of the address-of (&)
operator anywhere in the function. In the abstract machine, of course, this subexpression is reevauated
at each loop iteration, but the red implementation is not required to mimic this repetitiveness, because
thevariablesmask1 and mask?2 arenot vol at i | e and the same results are obtained either way.

The previous example shows that a subexpression can be precomputed in the real implementation. A
question sometimes asked regarding optimization is, “Is the rearrangement ill conforming if the
precomputed expression might raise a Sgnd (such as divison by zero)?” Fortunately for optimizers,
the answer is “Yes” because any evauation that raises a computationd signa has fdlen into an
undefined behavior (86.5), for which any actionis alowable.

Behavior is described in terms of an abstract machine to underscore, once again, that the Standard
mandates results as if certain mechanisms are used, without requiring those actual mechanisms in the
implementation. The Standard specifies agreement points at which the value of an object or class of
objects in an implementation must agree with the value ascribed by the abstract semantics.

Annex C to the Standard lists the sequence points specified in the body of the Standard.

The class of interactive devices is intended to include at least asynchronous terminds, or paired display
screens and keyboards. An implementation may extend the definition to include other input and output
devices, or even network inter-program connections, provided they obey the Standard's
characterization of interactivity.

| v

10

15

20

25

30

35

40

45

Index

5.2 Environmental consider ations

5.2.1 Character sets

The C89 Committee ultimately came to remarkable unanimity on the subject of character set
requirements. There was strong sentiment that C should not be tied to ASCI|I, despite its heritage and
despite the precedent of Ada being defined in terms of ASCII. Rather, an implementation is required
to provide a unique character code for each of the printable graphics used by C, and for each of the
control codes representable by an escape sequence. (No particular graphic representation for any
character is prescribed; thus the common Japanese practice of using the glyph “¥’ for the C character

“\" is perfectly legitimate.) Trandation and execution environments may have different character sets,
but each must meet this requirement in its own way. The god is to ensure that a conforming
implementation can trandate a C trandator written in C.

For this reason, and for economy of description, source code is described as if it undergoes the same
trandation as text that is input by the standard library 1/O routines. each line is terminated by some
newline character regardless of its externd representation.

A new feature of €9X—C9XC99: C99 adds the concept of universal character name (UCN) (see
86.4.3) in order to dlow the use of any character in a C source, not just English characters. The
primary god of the Committee was to enable the use of any “native’ character in identifiers, string
literds and character congtants, while retaining the portability objective of C.

With the concept of multibyte characters, “native’” characters could be used in string literals and
character congtants, but this use was very dependent on the implementation and did not usualy work in
heterogenous environments. Also, thisdid not encompassidentifiers.

Both the C and C++ cCommittees sudied this stuation, and the adopted solution was to introduce a
new notation for UCNs. Its generad forms are \ unnnn and \ Unnnnnnnn, to designate a given
character according to its short name as described by ISO/IEC 10646. Thus, \ unnnn can be used to
designate a Unicode character. This way, programs that must be fully portable may use virtudly any
character from any script used in the world and till be portable, provided of course that if it prints the
character, the execution character set has representation for it.

Of course the notation \ unnnn, like trigraphs, is not very easy to use in everyday programming; sO
there is amapping that links UCN and multibyte characters to enable source programs to stay readable
by users while maintaining portability. Given the current state of multibyte encodings, this mapping is
gpecified to be implementation-defined; but an implementation can provide the users with utility
programs that do the converson from UCNs to “native’” multibytes or vice versa, thus providing away
to exchange source files between implementations using the UCN notation.

UCN models

Once this was adopted, there was still one problem, how to specify UCNs in the Standard. Both the C
and C++ cC€ommittees studied this Stuation and the available solutions, and drafted three models:

A. Convert everything to UCNSs in basic source characters as soon as possble, that is, in trandation
\Y

10

15

20

25

30

35

40

45

| Index

phase 1.
B. Use native encodings where possible, UCNs otherwise.

C. Convert everything to wide characters as soon as possble using an internal encoding that
encompasses the entire source character set and al UCNSs.

Furthermore, in any place where a program could tell which model was being used, the standard should
try to label those corner cases as undefined behavior.

The C++ ceommittee defined its Standard in terms of mode A, just because that was the clearest to
specify (used the fewest hypothetical constructs) because the basic source character set is a well-
defined finite set.

The dtuation is not the same for C given the dready exigting text for the standard, which alows
multibyte characters to appear dmost anywhere (the most notable exception being in identifiers), and
given the more low-leve (or “close to the metal”) nature of some uses of the language.

Therefore, the C Committee agreed in generd that modd B, keeping UCNSs and native characters until
as late as possble, is more in the “ spirit of C” and, while probably more difficult to specify, ismore able
to encompass the existing diversty. The advantage of model B is aso that it might encompass more
programs and users intents than the two others, particularly if shift states are sgnificant in the source
text asis often the casein East Asa

In any case, trandation phase 1 begins with an implementation-defined mapping; and such mapping can
choose to implement model A or C (but the implementation must document it). As a by-product, a
grictly conforming program cannot rely on the specifics handled differently by the three modeds.
examples of non-drict conformance include handling of shift staes ingde srings and cdls like
fopen("\\ubeda\\file.txt","r") and #i ncl ude "sys\udefaul t. h". Shift Sates
are guaranteed to be handled correctly, however, as long as the implementation performs no mapping
a the beginning of phase 1; and the two specific examples given above can be made much more
portable by rewriting these as f open("\\" "ubeda\\file.txt", "r") and #i ncl ude
"sys/udefaul t. h".

5.2.1.1 Trigraph sequences

Trigraph sequences were introduced in C89 as dternate spellings of some characters to dlow the
implementation of C in character sets which do not provide a sufficient number of non-aphabetic

graphics.

Implementations are required to support these dternate spellings, even if the character set in use is
ASCII, in order to alow transportation of code from systems which must use the trigraphs. AMDL1
aso added digraphs (see 86.4.6 and SMSE.4).

The C89 Committee faced a serious problem in trying to define a character set for C. Not dl of the
character sets in generd use have the right number of characters, nor do they support the graphical
symbols that C users expect to see. For instance, many character sets for languages other than English
resemble ASCII except that codes used for graphic charactersin ASCII are instead used for dphabetic

| wi

10

15

20

25

30

35

40

45

Index

characters or diacritical marks. C relies upon a richer set of graphic characters than most other
programming languages, so the representation of programs in character sets other than ASCII is a
greater problem than for most other programming languages.

ISO (the International Organization for Standardization) uses three technica terms to describe
character sets. repertoire, collating sequence, and codeset. The repertoire is the set of distinct
printable characters. The term abdracts the notion of printable character from any particular
representation; the glyphs R, R, R, R, R, R, and R, dl represent the same element of the repertoire,
“upper-case-R”, which is digtinct from “lower-case-r”. Having decided on the repertoire to be used (C
needs a repertoire of 91 characters plus whitespace), one can then pick a collating sequence which
corresponds to the interna representation in a computer. The repertoire and collating sequence
together form the codeset.

What is needed for C is to determine the necessary repertoire, ignore the collating sequence atogether
(it is of no importance to the language), and then find ways of expressing the repertoire in a way that
should give no problems with currently popular codesets.

C derived its repertoire from the ASCII codeset. Unfortunately, the ASCII repertoire is not a subset of
al other commonly used character sets; and widespread practice in Europe is not to implement al of
ASCII ether, but to use some parts of its collating sequence for special nationd characters.

The solution is an internationally agreed-upon repertoire in terms of which an internationa
representation of C can be defined. 1SO has defined such a standard, 1SO/IEC 646, which describes an
invariant subset of ASCII.

The charactersin the ASCII repertoire used by C and absent from the |SO/IEC 646 invariant repertoire
are

#LT{PN] -7

Given this repertoire, the C89 Committee faced the problem of defining representations for the absent
characters. The obvious idea of defining two-character escape sequences fails because C uses dl the
characters which are in the ISO/IEC 646 repertoire, S0 no single escape character is avalable. The
best that can be doneisto use atrigraph: an escape digraph followed by a distinguishing character.

?7? was selected as the escape digraph becauseit is not used anywhere elsein C except as noted below;
it suggests that something unusua is going on. The third character was chosen with an eye to
graphica smilarity to the character being represented.

The sequence ?? cannot occur in a vaid pre-C89 program except in strings, character constants,
comments, or header names. The character escape sequence ' \ ?' (see 86.4.4.4) was introduced to
alow two adjacent question marks in such contexts to be represented as ?\ ?, aform distinct from the
escape digraph. The Committee makes no clams that a program written using trigraphs looks
atractive. As a matter of style, it may be wise to surround trigraphs with white space, so that they
stand out better in program text. Some users may wish to define preprocessing macros for some or dl
of the trigraph sequences.

VIl

10

15

20

25

30

Index

QUIET CHANGE IN C89

Programs with character sequences such as??! in string constants, character constants,
or header names will produce different results in C89-conforming trandators.

5.2.1.2 Multibyte characters

The “a byte is a character” orientation of C works well for text in Western aphabets, where the
number of characters in the character set is under 256. The fit is rather uncomfortable for languages
such as Japanese and Chinese, where the repertoire of ideograms numbers in the thousands or tens of

thousands.

Interndly, such character sets can be represented as numeric codes, and it is merely

necessary to choose the appropriate integer type to hold any such character. Externdly, whether in the
files manipulated by a program, or in the text of the source files themsalves, a converson between
these large codes and the various byte-oriented mediais necessary.

The support in C of large character setsis based on these principles:

VI

Multibyte encodings of large character sets are necessary in 1/O operations, in source
text comments, in source text dring and character literals, and beginning with
€9C99, in native language identifiers.

No existing multibyte encoding is mandated in preference to any other; no widespread
existing encoding should be precluded.

The null character (' \ 0") may not be used as part of a multibyte encoding, except for
the one-byte null character itsdf. This dlows exigting functions which manipulate
strings to work transparently with multibyte sequences.

Shift encodings (which interpret byte sequences in part on the bass of some date
information) must start out in a known (default) shift state under certain circumstances
such asthe start of string literas.

10

15

20

25

30

35

40

45

Index
5.2.2 Character display semantics

The Standard defines a number of internal character codes for specifying “format-effecting actions on
display devices,” and provides printable escape sequences for each of them. These character codes are
clearly modeled after ASCII control codes, and the mnemonic letters used to specify their escape
sequences reflect this heritage. Nevertheess, they are internal codes for specifying the format of a
display in an environment-independent manner; they must be written to a text file to effect formatting
on adisplay device. The Standard states quite clearly that the external representation of atext file (or
data stream) may well differ from the internd form, both in character codes and number of characters
needed to represent asingle interna code.

The digtinction between internal and external codes most needs emphasis with respect to new-line.
NCITS L2, Codes and Character Sets (and now aso ISO/IEC JTC 1U/SC2/WG], 8 Bit Character
Sets), uses the term to refer to an externd code used for information interchange whose display
semantics specify a move to the next line. Although 1SO/IEC 646 deprecates the combination of the
motion to the next line with amotion to the initial position on the ling, the C Standard uses new-lineto
desgnate the end-of-line internd code represented by the escape sequence '\ n' . While this
ambiguity is perhagps unfortunate, use of the term in the latter sense is nearly universa within the C
community. But the knowledge that this internal code has numerous externa representations
depending upon operating system and medium is equaly widespread.

The dert sequence (' \ @') was added by popular demand to replace, for instance, the ASCIl BEL
code explicitly coded as' \ 007" .

Proposdstoadd’ \ e' for ASCII ESC (' \ 033") were not adopted because other popular character
sets have no obvious equivaent (see 86.4.4.4.)

The vertica tab sequence (' \ v') was added snce many existing implementations support it, and since
it is convenient to have a designation within the language for dl the defined white space characters.

The semantics of the motion control escape sequences carefully avoid the Western language
assumptions that printing advances | eft-to-right and top-to-bottom.

To avoid the issue of whether an implementation conformsiif it cannot properly effect vertical tabs (for
instance), the Standard emphasizes that the semantics merely describe intent.

5.2.3 Signalsand interrupts

Sgnals are difficult to specify in a sysem-independent way. The C89 Committee concluded that about
the only thing a srictly conforming program can do in a sgna handler is to assign a vaue to a
vol ati | e st ati c variable which can be written uninterruptedly and promptly return. (The header
<si gnal . h> gpecifiesatype si g_at om c_t which can be so written.) It is further guaranteed
that a sgnd handler will not corrupt the automatic storage of an ingtantiation of any executing
function, even if that function is called within the signa handler. No such guarantees can be extended
to library functions, with the explicit exceptions of | ongj np (87.13.2.1) and si gnal (§7.14.1.1),
gnce the library functions may be arbitrarily interrelated and since some of them have profound effect
on the environment.

10

15

20

25

30

35

40

45

| Index

Cdls to | ongj np are problematic, despite the assurances of 87.13.2.1. The signa could have
occurred during the execution of some library function which was in the process of updating externa
State and/or static variables.

A second signd for the same handler could occur before the first is processed, and the Standard makes
no guarantees as to what happens to the second signdl.

5.24 Environmental limits

The C89 Committee agreed that the Standard must say something about certain capacities and
limitations, but just how to enforce these treaty points was the topic of considerable debate.

5.24.1 Trandation limits

The Standard requires that an implementation be able to trandate and execute some program that
meets each of the stated limits. This criterion was felt to give a useful latitude to the implementor in
meeting these limits. While a deficient implementation could probably contrive a program that meets
this requirement, yet still succeed in being usdess, the C89 Commiittee felt that such ingenuity would
probably require more work than making something useful. The sense of both the C89 and €9XC99
Committees was that implementors should not construe the trandation limits as the vaues of hard-
wired parameters, but rather asaset of criteria by which an implementation will be judged.

Some of the limits chosen represent interesting compromises. The goa was to alow reasonably large
portable programs to be written, without placing excessve burdens on reasonably small
implementations, some of which might run on machines with only 64K of memory. In €9X,C99, the
minimum amount of memory for the target machine was raised to 512K. In addition, the Committee
recognized that smaller machines rarely serve as a host for a C compiler: programs for embedded
systems or smdl machines are dmost dways developed using a cross compiler running on a persona
computer or workstation. This allows for a great increase in some of the trandation limits.

C89's minimum maximum limit of 257 cases in a switch statement alows coding of lexica routines
which can branch on any character (one of a least 256 vaues) or on the value EQF. This has been
extended to 1023 casesin €9X-C99.

The requirement that a conforming implementation be able to trandate and execute at least one
program that reaches each of the stated limits is not meant to excuse the implementation from doing
the best it can to trandate and execute other programs. It was deemed infeasible to require successful
trandation and execution of all programs not exceeding those limits. Many of these limits require
resources such as memory that a reasonable implementation might allocate from a shared pool; so there
is no requirement that dl the limits be attained smultaneoudy. Requiring just one acceptable program
that attains each limit is Ssmply meant to ensure conformance with these requirements.

The €9XC99 Committee reviewed severd proposed changes to strengthen or clarify the wording on
conformance, especidly with respect to trandation limits. The belief was that it is Smply not practica
to provide a specification which is strong enough to be useful, but which till dlows for red-world
problems such as bugs. The Committee therefore chose to consder the matter a quaity-of-
implementation issue, and to leave trandation limits in the standard to give guidance.

| x

10

15

20

25

30

35

40

45

Index
5.2.4.2 Numerical limits

5.24.2.1 Sizesof integer types<limts. h>

Such alarge body of C code has been developed for 8-hbit byte machines that the integer Sizesin such
environments must be consdered normative. The prescribed limits are minima: an implementation on
a machine with 9-bit bytes can be conforming, as can an implementation that definesi nt to be the
same width as | ong. The negative limits have been chosen to accommodate one' s-complement or
sgn-magnitude implementations, as well as the more usua two’'s-complement. The limits for the
maxima and minima of unsigned types are specified as undgned congants (e.g., 65535u) to avoid
surprising widening of expressonsinvolving these extrema

The macro CHAR_BI T makes available the number of bitsin achar object. The C8 Committee
saw little utility in adding such macros for other data types.

The names associated with the short i nt types (SHRT_M N, etc,, rather than SHORT_M N, etc.)
reflect prior art rather than obsessive abbreviation on the C89 Committee’ s part.

5.24.2.2 Characteristicsof floating types<f| oat . h>

The characterization of fleatingpetatfloating-point follows, with minor changes, that of the Fortran
standardization committee. The C89 Committee chose to follow the Fortran mode in some part out of
a concern for Fortran-to-C trandation, and in large part out of deference to the Fortran committee’'s
greater experience with fine points of fleatihg—peintfloating-point usage. Note that the fleating
petntfloating-point mode adopted permits al common representations, including sgn-magnitude and
two’ s-complement, but precludes alogarithmic implementation.

The C89 Committee also endeavored to accommodate the |IEEE 754 fleating—perntfloating-point
standard by not adopting any condraints on fleating-perntfloating-point which were contrary to that
sandard. |EEE 754 is now an internationa standard, |EC 60559; and that is how it is referred to in
C9X-C99.

The term FLT_NMANT_DI G stands for “float mantissa digits” The Standard now uses the more
precise term significand rather than mantissa.

INn €9C99, dl vauesexcept FLT_ROUNDS in<f | oat . h> must be usable as Stic initidizers.

The overflow and/or underflow thresholds may not be the same for dl arithmetic operations. For
example, there is a least one machine where the overflow threshold for addition is twice as big as for
multiplication. Another implementation uses a pair of doubl es to represent al ong doubl e. In
that implementation, the next representable | ong doubl e vaue after 1. OL is1. OL + LDBL_M N,
yet, the difference between those two numbers (LDBL_M N) is not b™®, otherwise known as
LDBL_EPSI LON. Because of anomadies like these, there are few hard requirements on the
<fl oat.h> vaues. But, the vaues in <fl oat.h> should be in terms of the hardware
representation used to store fleating-petntfloating-point vaues in memory, not in terms of the effective
accuracy of operations, nor in terms of registers, and should apply to al operations. The representation
stored in memory may have padding bits and/or bytes that do not contribute to the vaue. The padding
should not beincluded inthe <f | oat . h> vaues.

Xl

10

15

20

25

30

35

40

45

| Index

Because of the practicd difficulty involved in defining a uniform metric that al vendors would be
willing to follow (just computing the accuracy reliably could be a sgnificant, and because the

importance of fleating—petntfloating-point accuracy differs greatly among usersusers) the standard
alows a great ded of latitude in how an implementation documents the accuracy of the red and

complex fleating-petntfl oating-point operations and functions.
Here are some ways that an implementation might address the need to define the accuracy:

digits correct

digitswrong
maximum Unitsin the Last Place (ULPs) error
maximum absol ute error
maximum relative error

For complex values, some methods are:
error in terms of both real and imaginary parts
error in terms of Euclidean norm, |ja + ib|| = Qa*a + b*b)

There are two usages of theterm ULP. Oneisin the context of differences between two numbers, that
is, f(x) differsfrom F(x) by 3 ULPs. The other is the vaue of the ULP of a number, that is, an ULP of
the value 1.0 is DBL_EPSI LON. For this discussion, we are interested in the former; the difference
between the computed vaue and the infinitely precise vaue.

The error between two floating-point numbers in ULPs depends on the radix and the precison used in
representing the number, but not the exponent. With a decima radix and 3 digits of precison, the
computed value 0. 314e+1 differsfrom thevaue 0. 31416e+1 by 0.16 ULPs. If both numbers are
scaed by the same power of the radix, for example, 0. 314e+49 and 0. 31416e+49, they ill differ
by 0.16 ULPs.

When the two numbers being compared span a power of the radix, the two possible ULP error
caculations differ by a factor of the radix. For a decimd radix and 3 digits of precison, consder the
two vaues 9. 99e2 and 1. 01e3. These are the two values adjacent to the vaue 1. 00e 3, a power
of the radix, in this number system. If 999 is the correct value and 1010 is the computed value, the
error is 11 ULPs; but, if 1010 is the correct vaue and 999 is the computed vaue, then the error is 1.1
ULPs.

Some math functions such as those that do argument reduction modulo an gpproximation of p have
good accuracy for smal arguments, but poor accuracy for large arguments. It is not unusua for an
implementation of the trigonometric functions to have zero bits correct in the computed result for large
arguments. For cases like this, an implementation might bresk the domain of the function into digoint
regions and specify the accuracy in each region.

If an implementation documents worst case error, there is no requirement that it be the minimum worst
cae eror. Thatis, if avendor beieves that the worst case error for afunction is around 5 ULPs, they
could document it as 7 ULPsto be sofe.

| xi

10

15

20

25

30

35

40

45

Index

The Committee could not agree on upper limits on accuracy that all conforming implementations must
meet, for example, “addition is no worse than 2 ULPs for dl implementations” This is a qudity of
implementation issue.

Implementations that conform to IEC 60559 have one haf ULP accuracy in round-to-nearest mode,
and one ULP accuracy in the other three rounding modes, for the basic arithmetic operations and
square root. For other fleatingpeintfloating-point arithmetics, it is a rare implementation that has
worse than one ULP accuracy for the basic arithmetic operations.

The accuracy of decima-to-binary conversions and format conversions are discussed elsewhere in the
Standard.

For the math library functions, fast, correctly rounded 0.5 ULP accuracy remains a research problem.
Some implementations provide two math libraries, one being faster but less accurate than the other.

The €9XC99 Committee discussed the idea of alowing the programmer to find out the accuracy of
fleating—peintfloating-point operations and math functions during compilation (say, via macros) or
during execution (with a function call), but neither got enough support to warrant the change to the
Standard. The use of macros would require over one hundred symbols to name every math function,
for example, ULP_SI NF, ULP_SI N, and ULP_SI NL just for the red-valued si n function. One
possible function implementation might be a function that takes the name of the operation or math
function as a string, ul p_err ("sin") for example, that would return a doubl e such as 3.5 to
indicate the worst case error, with —1.0 indicating unknown error. But such a smple scheme would
likely be of very limited use given that so many functions have accuracies that differ sgnificantly across
their domains. Constrained to worst case error across the entire domain, most implementations would
wind up reporting either unknown error or else a usdesdy large error for a very large percentage of
functions. This would be useless because most programs that care about accuracy are written in the
first place to try to compensate for accuracy problems that typicdly arise when pushing doman
boundaries, and implementing something more useful like the worst case error for a user-specified
partition of the domain would be excessively difficult.

NaNs

€9X.C99 does not define the behavior of signaling NaNs, nor does it specify the interpretation of
NaN significands.

The IEC 60559 floating-point standard specifies quiet and signaling NaNs, but these terms can be
applied for some non-IEC 60559 implementations as well. For example, the VAX reserved
operand and the CRAY indefinite qualify as signaling NaNs. In IEC 60559 standard arithmetic,
operations that trigger a signaling NaN argument generally return a quiet NaN result provided no
trap is taken. Full support for signaling NaNs implies restartable traps, such as the optional traps
specified in the IEC 60559 floating-point standard.

The primary utility of quiet NaNs, as stated in IEC 60559, “to handle otherwise intractable
situations, such as providing a default value for 0.0/0.0,” is supported by this specification.

Other applications of NaNs may prove useful. Available parts of NaNs have been used to encode

X111

10

15

20

| Index

auxiliary information, for example about the NaN’s origin. Signaling NaNs might be candidates
for filling uninitialized storage; and their available parts could distinguish uninitialized floating
objects. |EC 60559 signaling NaNs and trap handlers potentially provide hooks for maintaining
diagnostic information or for implementing special arithmetics.

However, C support for signaling NaNs, or for auxiliary information that could be encoded in
NaNs, is problematic. Trap handling varies widely among implementations. Implementation
mechanisms may trigger signaling NaNs, or fail to, in mysterious ways. The IEC 60559 floating-
point standard recommends that NaNs propagate; but it does not require this and not all
implementations do. And the floating-point standard fails to specify the contents of NaNs
through format conversion. Making signaling NaNs predictable imposes optimization restrictions
that anticipated benefits don’t justify. For these reasons this standard does not define the behavior
of signaling NaNs nor specify the interpretation of NaN significands.

A draft version of the NCEG floating-point specification included signaling NaNs. It could serve
as aguide for implementation extensions in support of signaling NaNs.

Signed Zeros

The committee has been made aware of at least one implementation (VAX, and Alpha in VAX
mode) whose floating-point format does not support signed zeros. The hardware representation
that one thinks would represent —0.0 is in fact treated as a nonnumeric value similar to a NalN.
Therefore, copysi gn(+0.0,-1.0) returns +0.0, not the expected —0.0, on this
implementation.

X1V

10

15

20

25

30

35

40

45

Index
6. Language

While more forma methods of language definition were explored, the C89 Committee decided early on
to employ the style of K&R: Backus-Naur Form for the syntax and prose for the congtraints and
semantics. Anything more ambitious was considered to be likely to delay the Standard, and to make it
less accessible to its audience.

6.2 Concepts

6.2.1 Scopesof identifiers

C89 separated from the overloaded keywords for storage classes the various concepts of scope,
linkage, name space, and storage duration (see 86.2.2, 86.2.3 and 86.2.4.). Thishastraditionaly been
amgor area of confuson.

One source of dispute was whether identifiers with externd linkage should have file scope even when
introduced within a block. K&R was vague on this point, and has been interpreted differently by
different pre-C89 implementations. For example, the following fragment would be vdid in the file
scope scheme, while invaid in the block scope scheme:

typedef struct data d_struct;

first()

{
extern d_struct func();
[* ..*

}

second()

{
d_struct n = func();

}

While it was generdly agreed that it is poor practice to take advantage of an externa declaration once
it had gone out of scope, some argued that a trandator had to remember the declaration for checking
anyway, S0 why not acknowledge this? The compromise adopted was to decree essentidly that block
scope rules apply, but that a conforming implementation need not diagnose a falure to redeclare an
externd identifier that had gone out of scope (undefined behavior).

QUIET CHANGE IN C89

A program relying on file scope rules may be vaid under block scope rules but behave
differently, for ingtance, if d_struct were defined as type fl oat rather than
st ruct dat a inthe example above.

Although the scope of an identifier in afunction prototype begins at its declaration and ends at the end
of that function’s declarator, this scope is ignored by the preprocessor. Thus an identifier in a

10

15

20

25

30

35

40

45

| Index

prototype having the same name as that of an existing macro is trested as an invocation of that macro.
For example:

#def i ne status 23
void exit(int status);

generates an error, since the prototype after preprocessing becomes
void exit(int 23);
Perhaps more surprising iswhat happensif st at us isdefined
#define status []
Then the resulting prototypeis
void exit(int []);
which is syntactically correct but semantically quite different from the intent.

To protect an implementation’s header prototypes from such misinterpretation, the implementor must
write them to avoid these surprises. Possible solutions include not using identifiers in prototypes, or
usng names(suchas__ st at us or _St at us) in the reserved name space.

6.2.2 Linkagesof identifiers

The first declaration of an identifier, including implicit declarations before €9X;C99, must specify by
the presence or absence of the keyword st at i ¢ whether the identifier hasinternd or externd linkage.
This requirement alows for one-pass compilation in an implementation which must treat interna
linkage items differently from externd linkage items. An example of such an implementation is one
which produces intermediate assembler code, and which therefore must construct names for interna
linkage items to circumvent identifier length and/or case restrictionsin the target assembler.

Pre-C89 practice in this area was inconsstent. Some implementations avoided the renaming problem
amply by redtricting internd linkage names by the same rules as the ones used for externd linkage.
Others have disdlowed a dtatic declaration followed later by a defining instance, even though such
congtructs are necessary to declare mutudly-recursive static functions. The requirements adopted in
C89 called for changesin some existing programs, but alowed for maximum flexibility.

The definition model to be used for objects with external linkage was a mgor C89 standardization
issue. The basic problem was to decide which declarations of an object define storage for the object,
and which merdly reference an existing object. A related problem was whether multiple definitions of
storage are dlowed, or only one is acceptable. Pre-C89 implementations exhibit at least four different
modedls, listed herein order of increasing redtrictiveness:

Common Every object declaration with externa linkage, regardless of whether the keyword ext er n
appears in the declaration, creates a definition of storage. When al of the modules are combined
together, each definition with the same name is located a the same address in memory. (The nameis

10

15

20

25

30

Index
derived from common storage in Fortran.) This mode was the intent of the origina designer of C,
Dennis Ritchie.

Relaxed Ref/Def The gppearance of the keyword ext er n in adeclaration, regardiess of whether it is
used insde or outside of the scope of afunction, indicates a pure reference (ref), which does not define
sorage. Somewhere in dl of the trandation units, at least one definition (def) of the object must exis.
An externd definition is indicated by an object declaration in file scope containing no storage class
indication. A reference without a corresponding definition is an error. Some implementations also will
not generate a reference for items which are declared with the ext er n keyword but are never used in
the code. The UNIX operating sysem C compiler and linker implement this modd, which is
recognized as a common extension to the C language (see 8K.5.11). UNIX C programs which take
advantage of this model are standard conforming in their environment, but are not maximally portable
(not gtrictly conforming).

Strict Ref/Def Thisis the same as the relaxed ref/def model, save that only one definition is alowed.
Again, some implementations may decide not to put out references to items that are not used. Thisis
the modd specified in K&R.

Initialization Thismodel requires an explicit initidization to define storage. All other declarations are
references.

Figure 6.1 demondtrates the differences between the models. The intent is that Figure 6.1 shows
working programsin which the symbol i is neither undefined nor multiply defined.

The Standard modd is a combination of features of the strict ref/def model and the initialization model.
As in the grict ref/def modd, only a single trandation unit contains the definition of a given object
because many environments cannot effectively or efficiently support the “distributed definition”
inherent in the common or relaxed ref/def approaches. However, ether an initidization, or an
appropriate declaration without storage class specifier (see 86.9), serves asthe externd definition. This
composite approach was chosen to accommodate as wide a range of environments and existing
implementations as possible.

10

15 |

Index

Figure 6.1: Comparison of identifier linkage models

Mode Flel Fle2
Common extern int i X extern int i :
int main() voi d second()
{ {
i = 1; third(i);
second(); }
}
Relaxed Ref/Def int i int i;
int main() voi d second()
{ {
i = 1; third(i);
second(); }
}
Strict Ref/Def int i; externint i;
int main() voi d second()
{ {
i = 1; third(i);
second(); }
}
Initializer int i =0; int i
int main() voi d second()
{ {
i = 1; third(i);
second(); }
}

6.2.3 Name spaces of identifiers

Pre-C89 implementations varied considerably in the number of separate name spaces maintained. The
position adopted in the Standard is to permit as many separate name spaces as can be
distinguished by context, except that dl tags (st r uct , uni on, and enun) comprise a single name

Space.
6.2.4 Storage durations of objects

It was necessary to clarify the effect on automatic storage of jumping into a block that declares loca
storage (see 86.8.2.). While many implementations could traditiondly alocate the maximum depth of
automatic storage upon entry to a function, the addition to €9xC99 of the variable length array feature
(86.7.5.2) forces the implementation to alocate some objects when the declaration is encountered.

A new feature of €9X:C99: C89 requires al declarations in a block to occur before any statements.
On the other hand, many languages smilar to C (such as Algol 68 and C++) permit declarations and
gatements to be mixed in an arbitrary manner. This feature has been found to be useful and has been
added to €9%-C99.

Declarations that initidize variables can contain complex expressons and have arbitrary sde-effects,
and it is necessary to define when these take place, particularly when the flow of control involves

\Y

10

15

20

25

30

35

40

45

50

Index |
arbitrary jumps. There is a smple rule of thumb: the variable declared is created with an unspecified
vaue when the block is entered, but the initidizer is evaluated and the value placed in the variable when
the declaration is reached in the norma course of execution. Thus a jump forward past a declaration
leaves it uninitidized, while a jump backwards will cause it to be initialized more than once. If the
declaration does not initidize the variable, it sets it to an unspecified vaue even if this is not the first
time the declaration has been reached.

The scope of a variable starts at its declaration. Therefore, dthough the variable exists as soon as the
block is entered, it cannot be referred to by name until its declaration is reached.

Example:
int | = 42;
{
int i =0;
| oop:
printf("l = 9%d, ", i);
printf("J1 = %d, ", ++);
int j =1i;
printf("J2 = %d, ", ++);
int k;
printf("KL = %d, ", k);
k =1 * 10;
printf("K2 = %d, ", k);
if (i %2 == 0) goto skip;
int m=1i * b5
ski p:
printf("M= %ld\n", m;
if (++i < 5) goto |oop;
}
will outpuit:
| = 0, J1 = 43, J2 = 1, KL = 7?27?22, K2 = 0, M= 72?2?27
| = 1, J1 = 44, J2 = 2, KL =7????, K = 10, M= 5
| = 2, J1 = 45, J2 = 3, KL =7????, K = 20, M= 5
| = 3, J1 = 46, J2 = 4, KL = ????, K = 30, M= 15
| = 4, J1 = 47, J2 = 5 KL =2?2???, K = 40, M= 15

where “????” indicates an indeterminate value (and any use of an indeterminate value is undefined
behavior).

These rules have to be modified dightly for variable length arrays. The implementation will not know
how much space is required for the array until its declaration is reached, and so cannot create it until
then. Thishastwo implications for jumps.

A jump to a point after the declaration of a VLA is forbidden, because it would be possible to refer to
the VLA without creating it. Such ajump requires a diagnostic.

v |

10

15

20

25

30

35

40

45

| Index

A jump to a point before the declaration of aVLA destroysthe VLA.

A number of other approaches were consdered, but there were problems with al of them. In
particular, this choice of rules ensures that VLAS can dways be destroyed in the reverse order of their
creation, which is essentid if they are placed on the stack.

To effect true reentrancy for functions in the presence of signals raised asynchronoudy (see §85.2.3), an
implementation must assure that the storage for function return vaues has automatic duration. For
example, the caller could allocate automatic storage for the return value and communicate its location
to the called function. (The typica case of return registers for smal-sized types conforms to this
requirement: the calling convention of the implementation implicitly communicates the return location
to the cdled function.)

6.2.5 Types

Severd new types were added in C89:

voi d

voi d*

si gned char
unsi gned char
unsi gned short
unsi gned | ong
| ong doubl e

And new designations for existing types were added:

si gned short for short

signed int for i nt

si gned | ong for | ong
| ©9%(C99 adso adds new types:

_Bool

| ong | ong

unsi gned | ong | ong
float _Imaginary

fl oat _Conpl ex

doubl e _Imagi nary
doubl e _Conpl ex

| ong dobule _Inmaginary
| ong doubl e _Conpl ex

| CO9XC99 aso dlows extended integer types (see 87.8, <i nt t ypes. h>, and §7.18, <st di nt . h>)

and aboolean type (see §7.16, <st dbool . h>).

voi d isused primarily asthe typemark for afunction that returns no result. 1t may also be used asthe
cast (voi d) toindicate explicitly that the value of an expresson is to be discarded while retaining the
expresson's dde effects. Finally, a function prototype list that has no arguments is written as

| wi

10

15

20

25

30

35

40

45

Index
f(voi d), becausef () retainsits old meaning that nothing is said about the arguments. Note that
thereis no such thing asa“void object.”

A “pointer to voi d,” voi d*, is a generic pointer capable of pointing to any object (except for bit-
fields and objects declared with the r egi st er storage class) without loss of information. A pointer
to voi d must have the same representation and adignment as a pointer to char ; the intent of thisrule
is to alow exigting programs that cal library functions such as nentpy and f r ee to continue to
work. A pointer to voi d cannot be dereferenced, athough such a pointer can be converted to a
norma pointer type which can be dereferenced. Pointers to other types coerce slently to and from
voi d* in assgnments, function prototypes, comparisons, and conditional expressions, whereas other
pointer type clashes are invdid. It is undefined what will happen if a pointer of some type is converted
to voi d*, and then the voi d* pointer is converted to a type with a stricter alignment requirement.
Three types of char ae specified: si gned, plan, and unsi gned. A plan char may be
represented as either sgned or unsigned depending upon the implementation, asin prior practice. The
type si gned char wasintroduced in C89 to make available a one-byte signed integer type on those
systems which implement plain char asunsi gned char . For reasons of symmetry, the keyword
si gned isalowed as part of the type name of other integer types. Two varieties of the integer types
are specified: si gned and unsi gned. If neither specifier isused, si gned isassumed. The only
unsgned typein K&Risunsi gned i nt .

The keyword unsi gned is something of amisnomer, suggesting asit doesin arithmetic that it is non-
negative but capable of overflow. The semantics of the C type unsi gned is that of modulus, or
wrap-around, arithmetic for which overflow has no meaning. The result of an unsi gned arithmetic
operation is thus adways defined, whereas the result of a signed operation may be undefined. In
practice, on two's-complement machines, both types often give the same result for all operators except
divison, modulus, right shift, and comparisons. Hence there has been a lack of sengtivity in the C
community to the differences between signed and unsigned arithmetic.

A new floating type, | ong doubl e, was added in C89. The | ong doubl e type must offer at least
as much precison as the doubl e type. Severd architectures support more than two fleating
petatfloating-point types and thus can map a distinct machine type onto this additiond C type. Severd
architectures which support only two fleating-petntfl oating-point types can also take advantage of the
three C types by mapping the less precise type onto both f | oat and doubl e, and designating the
more precise type | ong doubl e. Architectures in which this mapping might be desirable include
those in which single-precision types offer a least as much precision as most other machines double-
precison, or those on which single-precison arithmetic is consderably more efficient than double-
precison. Thus the common C floating types would map onto an efficient implementation type, but
the more precise type would still be available to those programmers who require itsuse. See Annex F
for adiscusson of IEC 60559 floating-point types.

Toavoid confusion, | ong f | oat asasynonym for doubl e wasretired in C89.
Floating types of different widths (doubl e wider than f | oat and | ong doubl e wider than
doubl e) facilitate porting code that, intentionally or not, depends on differences in type widths.

Many results are exact or correctly rounded when computed with twice the number of digits of
precison asthe data. For example, the calculation

VIl

10

15

20

25

30

35

| Index

float d, x, vy, z, w
[* ..*
d = (double) x * y - (double) z * w

yields a correctly rounded determinant if doubl e has twice the precision of f| oat and the
individual operations are correctly rounded. (The casts to doubl e are unnecessary if the
minimum evaluation format isdoubl e or | ong doubl e.)

A new feature of €9X:C99: Complex types were added to C as part of the effort to make C
suitable and attractive for general numerical programming. Complex arithmetic is used heavily in
certain important application areas.

The underlying implementation of the complex types is Cartesian, rather than polar, for overall
efficiency and consistency with other programming languages. The implementation is explicitly
stated so that characteristics and behaviors can be defined smply and unambiguously.
Enumerations permit the declaration of named constants in a more convenient and structured fashion
than does #def i ne. Both enumeration congtants and variables behave like integer types for the sake
of type checking, however.

The C89 Committee considered severd dternatives for enumeration typesin C:

1. leavethem out;

2. include them as definitions of integer congtants,

3. include them in the weakly typed form of the UNIX C compiler;

4. include them with strong typing asin Pascal.

The C89 Committee adopted the second aternative on the grounds that this approach most clearly
reflects common practice. Doing away with enumerations atogether would invalidate afair amount of

exising code; stronger typing than integer creates problems, for example, with arrays indexed by
enumerations.

VI

10

15

20

25

30

35

40

45

Index
6.2.6 Representations of types

6.26.2 Integer types

The C89 Committee explicitly required binary representation of integers on the grounds that this
gricture was implicit in any case:

. Bit-fiddBit-fiddds are specified by a number of bits, with no mention of “invaid
integer” representation. The only reasonable encoding for such bit-fidddhit-fields is
binary.

. The integer formats for pri nt f suggest no provison for “invalid integer” vaues,
implying that any result of bitwise manipulation produces an integer result which can be
printed by pri nt f .

. All methods of specifying integer constants—decima, hex, and octa—specify an
integer value. No method independent of integers is defined for specifying “bit-string
congants.” Only a binary encoding provides a complete one-to-one mapping between
bit strings and integer values.

The redtriction to binary numeration systems rules out such curiogities as Gray code and makes
possible arithmetic definitions of the bitwise operators on unsigned types.

Padding hits are user-accessible in an unsgned integer type. For example, suppose a machine uses a
par of 16-hit short s (each with its own sign hit) to make up a 32-bit i nt and the sgn hit of the
lower short isignored when used in this 32-hit i nt . Then, as a 32-bit si gned i nt, thereisa
padding bit (in the middle of the 32 bits) that isignored in determining the value of the 32-bit si gned
i nt. But, if this 32-bit item is treated as a 32-bit unsi gned i nt , then that padding bit isvisble to
the user’s program. The C committee was told that there is a machine that works this way, and that is
one reason that padding bits were added to C99.

Footnotes 44 and 45 mention that parity bits might be padding bits. The committee does not know of
any machines with user-accessible parity bits within an integer. Therefore, the committee is not aware
of any machinesthat treat parity bits as padding bits.

6.2.7 Compatibletype and composite type

The concepts of compatible type and composite type were introduced to allow C89 to discuss those
dtuations in which type declarations need not be identical. These terms are especidly useful in
explaining the relationship between an incomplete type and a completed type. With the addition of
variable length arrays (86.7.5.2) in €9X,C99, array type compatibility was extended so that variable |
length arrays are compatible with both an array of known constant Size and an array with an incomplete

type.

Structure, union, or enumeration type declarations in two different trandation units do not formally
declare the same type, even if the text of these declarations come from the same header file, snce the
trandation units are themselves digoint. The Standard thus specifies additional compatibility rules for
such types so that two such declarations are compatible if they are sufficiently smilar.

IX

10

15

20

25

30

35

40

45

| Index

6.3 Conversions

6.3.1 Arithmetic operands
6.3.1.1 Booleans, charactersand integers

Between the publication of K&R and the development of C89, a serious divergence had occurred
among implementations in the evolution of integer promotion rules. Implementations fell into two
magor camps which may be characterized as unsigned preserving and value preserving. The difference
between these approaches centered on the treatment of unsi gned char and unsi gned short

when widened by the integer promotions, but the decision had an impact on the typing of constants as
well (see 86.4.4.1).

The unsigned preserving approach calls for promoting the two smaller unsigned typesto unsi gned
i nt. Thisisasmplerule, and yields atype which isindependent of execution environmen.

The value preserving approach cdls for promoting those types to si gned i nt if that type can
properly represent dl the vaues of the origind type, and otherwise for promoting those types to
unsi gned i nt. Thus, if the execution environment represents short as something smdler than
i nt,unsi gned short becomesi nt ; otherwiseit becomesunsi gned i nt .

Both schemes give the same answer in the vast mgjority of cases, and both give the same effective
result in even more cases in implementations with two’ s-complement arithmetic and quiet wraparound
on signed overflowv—that is, in most current implementations. In such implementations, differences
between the two only appear when these two conditions are both true:

1 An expresson involving an unsi gned char or unsi gned short produces an
I nt -wide result in which the Sgn bit is s, thet is, either a unary operation on such a
type, or abinary operation in which the other operand isani nt or “narrower” type.

2. The result of the preceding expression is used in a context in which its Sgnedness is
ggnificant:
. si zeof (int) <sizeof (1 ong) anditisin acontext where it must be

widenedtoal ong type, or

. it is the left operand of the right-shift operator in an implementation where this
shift is defined as arithmetic, or

. itisether operandof /, % <, <=, >, or >=.

In such circumstances a genuine ambiguity of interpretation arises. The result must be dubbed
guestionably signed, since a case can be made for either the sgned or unsigned interpretation. Exactly
the same ambiguity arises whenever an unsi gned i nt confronts a si gned i nt across an
operator, and the si gned i nt has anegative vadue. Nether scheme does any better, or any worse,
in resolving the ambiguity of this confrontation. Suddenly, the negative si gned i nt becomes avery

| x

10

15

20

25

30

35

40

45

Index
large unsi gned i nt, which may be surpriang, or it may be exactly what is desred by a
knowledgeable programmer. Of course, all of these ambiguities can be avoided by a judicious use of
cagis.

One of the important outcomes of exploring this problem is the understanding that high-quality
compilers might do well to look for such questionable code and offer (optiona) diagnostics, and that
conscientious instructors might do wel to warn programmers of the problems of implicit type
conversons.

The unsgned preserving rules greetly increase the number of Stuations where unsi gned i nt

confronts si gned i nt to yied a questionably signed result, whereas the vaue preserving rules
minimize such confrontations. Thus, the value preserving rules were considered to be safer for the
novice, or unwary, programmer. After much discusson, the C89 Committee decided in favor of vaue
preserving rules, despite the fact that the UNIX C compilers had evolved in the direction of unsigned
preserving.

QUIET CHANGE IN C89

A program that depends upon unsigned preserving arithmetic conversions will behave
differently, probably without complaint. This was conddered the most serious
semantic change made by the C89 Committee to awidespread current practice.

The Standard clarifies that the integer promotion rules aso apply to bit-fiddshit-fidds.
6.3.1.2 Boolean type

Note that, although _Bool istechnically an integer type, conversonto _Bool does not always work
the same as converson to other integer types. Consder, for example, that the expresson
(_Bool) 0.5 evaduates to 1, whereas (i nt) 0. 5 evauates to 0. The first result is correct: it
amply says that 0.5 is non-zero; but it may be somewhat counter-intuitive unlessa _Bool is thought
of asa“truth value’ rather than as a one-bit integer.

6.3.1.3 Signed and unsigned integers

Precise rules are now provided for converting to and from unsigned integers. On a two’s-complement
machine, the operation is ill virtual (no change of representation is required), but the rules are now
stated independent of representation.

6.3.1.4 Real floating and integer

There was strong agreement in the C89 Committee that floating values should truncate toward zero
when converted to an integer type, the specification adopted in the Standard. Although K&R
permitted negative floating values to truncate away from zero, no C89 Committee member knew of an
implementation that functioned in such amanner.*

1
The Committee has since learned of one such implementation.

X1

15

20

25

30

35

40

Index
Note that conversion from integer to floating may indeed require rounding if the integer is too
wide to represent exactly in the floating-point format.

6.3.1.5 Real floating types

C89, unlike K&R, did not require rounding in the doubl e to f | oat converson. Somewidey used
|EC 60559 fleatingpeintfloating-point processor chips control floating to integer conversion with the
same mode bits as for double-precison to single-precision converson. Since truncation-toward-zero is
the appropriate setting for C in the former case, it would be expensive to require such implementations
toround to f | oat . In €9X,C99, 8F.7.3 requires round-to-nearest for conversions between floating
formats as required by |EC 60559.

6.3.1.8 Usual arithmetic conversions

The rules in the Standard for these conversons are dight modifications of those in K&R: the
modifications accommodate the added types and the vaue preserving rules. Explicit license was added
to perform caculations in a “wider” type than absolutely necessary, since this can sometimes produce
smdler and faster code, not to mention the correct answer more often. Calculations can aso be
performed in a“narrower” type by the as if rule so long as the same end result is obtained. Explicit
casting can always be used to obtain a value in a desired type.

The €9XC99 Committee relaxed the requirement that f | oat operands be converted to doubl e. An
implementation may still choose to convert.

QUIET CHANGE IN C89

Expressons with f | oat operands may be computed at lower than double precison. K&R
gpecified that dl Heating-peintfloating-point operations be donein doubl e.

Real and imaginary operands are not converted to complex because doing so would require extra
computation, while producing undesirable results in certain cases involving infinities, NaNs and
signed zeros. For example, with automatic conversion to complex,

20" (30+i¥)P (20+i0.0)" (3.0+i¥)Pp
(207 3.0-00" ¥)+i(20° ¥ +0.0° 3.0) b NaN +i¥

rather than the desired result, 6.0 + i¥. Optimizers for implementations with infinities, including

all 1EC 60559 ones, would not be able to eliminate the operations with the zero imaginary part of
the converted operand.

X1l

10

15

20

25

30

35

40

45

Index
The following example illustrates the problem with signed zeros. With automatic conversion to
complex,

20" (3.0-i0.0)P (20+i0.0)" (3.0-i0.0) b
(20° 3.0+0.0° 00)+i(-2.0" 0.0+0.0" 3.0)P 6.0+i0.0

rather than the desired result, 6.0 —i0.0.

The problems illustrated in the examples above have counterparts for imaginary operands. The
mathematical product i2.0~ (¥ +i3.0) should yield —6.0 + i¥, but with automatic conversion to
complex,

i20° (¥ +i3.0)P (0.0+i2.0)" (¥ +i3.0) b
(0.0° ¥ —2.0" 3.0)+i(0.0" 3.0+20 " ¥)b NaN +i¥

This also demonstrates the need for imaginary types specified in Annex G. Without them, i2.0
would have to be represented as 0.0 + i2.0, implying that NaN + i¥ would be the semantically
correct result regardless of conversion rules; and optimizers for implementations with infinities
would not be able to eliminate the operations with the zero real part.

6.3.2 Other operands
6.3.2.1 Lvalues, arraysand function designators

A difference of opinion within the C community centered around the meaning of Ivalue, one group
conddering an lvaue to be any kind of object locator, another group holding that an Ivaue is
meaningful on the left Sde of an assigning operator. The C89 Committee adopted the definition of
Ivalue as an object locator. The term modifiable Ivalue is used for the second of the above concepts.

The role of array objects has been a classic source of confusion in C, in large part because of the
numerous contexts in which an array reference is converted to a pointer to itsfirst eement. While this
conversion nestly handles the semantics of subscripting, thefact that a[i | isamodifiable lvaue while
a is not has puzzled many students of the language. A more precise description was incorporated in
C89 in the hope of combatting this confusion.

6.3.22 void

The description of operators and expressons is smplified by saying that voi d yields avaue, with the
understanding that the value has no representation, and hence requires no storage.

6.3.2.3 Pointers

C has now been implemented on a wide range of architectures. While some of these architectures
feature uniform pointers which are the size of some integer type, maximaly portable code cannot
assume any necessary correspondence between different pointer types and the integer types. On some
implementations, pointers can even be wider than any integer type.

The use of voi d* (“pointer to voi d”) as a generic object pointer type is an invention of the C89
X1

10

15

20

25

30

35

40

45

| Index

Committee. Adoption of this type was stimulated by the desire to specify function prototype
arguments that either quietly convert arbitrary pointers (asin f r ead) or complain if the argument type
does not exactly match (asin st rcnp). Nothing is said about pointers to functions, which may be
incommensurate with object pointers and/or integers.

Since pointers and integers are now considered incommensurate, the only integer value that can be
safely converted to a pointer is a constant expression with the value 0. The result of converting any
other integer value, including a non-constant expresson with the value O, to a pointer is
implementation-defined.
Consequences of the treatment of pointer typesin the Standard include:

. A pointer to voi d may be converted to a pointer to an object of any type.

. A pointer to any object of any type may be converted to apointer to voi d.

. If a pointer to an object is converted to a pointer to voi d and back again to the
origina pointer type, the result compares equa to original pointer.

. It isinvalid to convert a pointer to an object of any type to a pointer to an object of a
different type without an explicit cast.

. Even with an explicit cad, it isinvaid to convert afunction pointer to an object pointer
or apointer to void, or vice versa.

. Itisinvalid to convert apointer to afunction of one type to a pointer to afunction of a
different type without a cast.
. Pointers to functions that have different parameter-type information (including the

“old-gtyle” absence of parameter-type information) are different types.

Implicit in the Standard is the notion of invalid pointers. In discussing pointers, the Standard typically
refers to “a pointer to an object” or “a pointer to a function” or “a null pointer.” A specid case in
address arithmetic dlows for a pointer to just past the end of an array. Any other pointer isinvaid.

Aninvdid pointer might be created in severd ways. An arbitrary value can be assigned (viaacast) to a
pointer variable. (This could even create a vaid pointer, depending on the value) A pointer to an
object becomes invdid if the memory containing the object is deallocated or moved by r eal | oc.
Pointer arithmetic can produce pointers outside the range of an array.

Regardless how an invdid pointer is created, any use of it yieds undefined behavior. Even assgnment,
comparison with a null pointer constant, or comparison with itself, might on some systems result in an
exception.

Congder a hypothetical segmented architecture on which pointers comprise a segment descriptor and
an offset. Suppose that segments are relatively smal so that large arrays are dlocated in multiple
segments. While the segments are vaid (dlocated, mapped to red memory), the hardware, operating
sysem, or C implementation can make these multiple segments behave like a single object: pointer

| xiv

10

15

20

25

30

35

40

45

Index

arithmetic and relationa operators use the defined mapping to impose the proper order on the elements
of thearray. Once the memory is dedlocated, the mapping is no longer guaranteed to exist. Use of the
segment descriptor might now cause an exception, or the hardware addressng logic might return
meaningless data.

6.4 Lexical Elements

The Standard endeavors to bring preprocessng more closely into line with the token orientation of the
language proper. To do so requires that a least some information about white space be retained
through the early phases of trandation (see 85.1.1.2). It aso requires that an inverse mapping be
defined from tokens back to source characters (see §6.10.3).

6.4.1 Keywords

Severa keywords were added in C89: const, enum si gned, voi d and vol ati |l e. New in
COXC9 arethekeywordsi nl i ne, restrict, Bool, _Conplex and_I| magi nary.

Where possible, however, new features have been added by overloading existing keywords, as, for
example, | ong doubl e ingead of ext ended. It is recognized that each added keyword will
require some existing code that used it as an identifier to be rewritten. No meaningful programs are
known to be quietly changed by adding the new keywords.

The keywordsent ry, f or t r an, and asmhave not been included since they were either never used,
or are not portable. Usesof f or t r an and as mas keywords are noted as common extensions.

_Conpl ex and _|I magi nary, not conpl ex and i magi nary, are keywords in order that
freestanding implementations are not required to support complex. Old code using the names
conpl ex or i magi nary will sill work (assuming <conpl ex. h> is not included), and
combined C/C++ implementations will not have to finesse C-only public keywords.

6.4.2 ldentifiers
6.4.2.1 General

Because of the linkers available a the time, the C89 Committee made the decison to restrict
ggnificance of identifiers with externa linkage to Sx case-insengtive characters. Thislimit isincressed
in C9X.C99 to 31 case-sendtive characters.

While an implementation is not obliged to remember more than the first 63 characters of an identifier
with internal linkage, or the first 31 characters of an identifier with externa linkage, the programmer is
effectively prohibited from intentiondly creating two different identifiers that are the same within the
appropriate length. Implementations may therefore store the full identifier; they are not obliged to
truncate to 63 or 31.

QUIET CHANGE

A program that depends on identifiers matching only in the first few characters

XV

5 |

10

15

20

25

30

35

40

45

Index
may change to one with distinct objects for each variant spelling of the identifier.

6.4.2.2 Predefined identifiers

A new feature of €9X:—C9XC99: C99 introduces predefined identifiers, which have block scope (as
diginct from predefined macros which have file scope), and one such predefined identifier,
__func_ _, whichdlowsthe function name to be used at execution time.

6.4.3 Universal character names

A new feature of €9X:C99: Note that, to alow for Universal Character Names (UCNS), a new
production has been added to the grammar that encompasses al forms of identifier eements (basic
letter, UCN, or extended character). There was some discussion about the need to require an
implementation to handle dl digits, Arabic or otherwise, in asmilar way. The generd feding was that
detecting the “extended digits’ might be an undesirable burden for many implementations and should
be avoided if possible.

Note that a grictly conforming program may use in identifiers only the extended characters listed in
Annex |, and may not begin an identifier with an extended digit.

6.44 Constants

In folding and converting congstants, an implementation must use at least as much precison as is
provided by the target environment. However, it is not required to use exactly the same precison as
the target, since thiswould require a cross compiler to smulate target arithmetic at trandation time.

The C89 Committee consdered the introduction of structure constants. Although it agreed that
gructure literals would occasionally be useful, its policy was not to invent new features unless a strong
need exists. Since then, such structure constants have been shown to be quite useful, so €9XC99
introduces compound literals (see 86.5.2.5).

6.4.4.1 Integer constants

The C90 rule that the default type of a decima integer constant is either i nt , | ong, or unsi gned
| ong, depending on which type is large enough to hold the vaue without overflow, smplifies the use
of congtants. The choicesin €9XC99 arei nt, |1 ong and| ong | ong.

C89 added the suffixes U and u to specify unsigned numbers. €9XC99 adds LL to specify | ong
| ong.

Unlike decima congants, octal and hexadecimd congtants too large to be i nt's are typed as
unsi gned i nt if within range of that type, since it is more likely that they represent bit patterns or
masks, which are generadly best treated as unsigned, rather than “real” numbers.

Little support was expressed for the old practice of permitting the digits 8 and 9 in an octal constant, so
it was dropped in C89.

| xwvi

10

15

20

25

30

35

40

45

Index
A proposal to add binary congtants was rejected due to lack of precedent and insufficient utility.

Despite a concern that a “lower-case-I” could be taken for the numera one at the end of a numeric
literd, the C89 Committee regected proposas to remove this usage, primarily on the grounds of
sanctioning existing practice.

The rules given for typing integer constants were carefully worked out in accordance with the C89
Committee’ s ddliberations on integer promotion rules. In €9X,C99, thisis clarified and extended with |
the notion of “rank” (see 86.3.1.1).

QUIET CHANGE IN C89

Unsuffixed integer congtants may have different types. In K&R, unsuffixed decimd
constants greater than | NT_MAX, and unsuffixed octd or hexadecimal congtants
greater than Ul NT_MAX are of typel ong.

QUIET CHANGE IN €9XC99

Unsuffixed integer congtants may have different types in €9XC99 than. Such
congtants greater than LONG_MAX are of type unsi gned | ong in C89, but are of
typel ong | ong in €9X-C99.

6.4.4.2 Floating constants

Conggtent with existing practice, a feating—peintfloating-point constant is defined to have type |
doubl e. Since C89 dlows expressons that contain only f| oat operands to be performed in
f | oat arithmetic rather than doubl e, amethod of expressng explicit f | oat constantsis desirable.
Thel ong doubl e typeraisesSmilar issues.

The F and L suffixes have been added to convey type information with floating constants, much like
the L suffix does for long integers. The default type of floating constants remains doubl e for
compatibility with prior practice. Lower-casef and| are dso alowed as suffixes.

Note that the run-time sdection of the decima point character by set | ocal e (87.11.1.1) has no
effect on the syntax of C sourcetext: the decimal point character is aways period.

Since floating constants are converted to appropriate internal representations at tranglation time,
default rounding direction and precision will be in effect and execution-time exceptions will not be
raised, even under the effect of an enabling FENV_ACCESS pragma. Library functions such as
st rt od provide execution-time conversion of decimal strings.

A new feature of €9%—C9XC99: (C99 adds hexadecima notation because it more clearly
expresses the significance of floating constants. The binary-exponent part is required, instead of
optional asit isfor decimal notation, to avoid ambiguity resulting from an f suffix being mistaken
as a hexadecimd digit.

Constants of | ong doubl e type are not generally portable, even among IEC 60559
XVII

10

15

20

25

30

35

40

45

| Index

implementations.

Unlike integers, floating values cannot all be represented directly by hexadecimal constant syntax.
A sign can be prefixed for negative numbers and —0. Constant NaNs and infinities are provided
through macros in <mat h. h>. Note that Ox1. FFFFFEp128f , which might appear to be an
|EC 60559 single-format NaN, in fact overflows to an infinity in that format.

An aternate approach might have been to represent bit patterns. For example

#define FLT_MAX Ox.7F7FFFFF

This would have allowed representation of NaNs and infinities, however numerical values would
have been more obscure owing to bias in the exponent and the implicit significand bit, and NaN
representations would still not have been portable: even the determination of IEC 60559 quiet
NaN vs. signaling NaN is implementation-defined.

The straightforward approach of denoting octal constants by a O prefix would have been
inconsistent with allowing a leading O digit, a moot point as the need for octal floating constants
was deemed insufficient.

6.4.4.3 Enumeration constants

Whereas an enumeration variable may have any integer type that correctly represents al its values
when widened to i nt , an enumeration congtant is only usable as the value of an expression. Hence its

typeissmply i nt .

6.4.4.4 Character constants

C89 removed the digits 8 and 9 from octal escape sequences (see §6.4.4.1).
The dert escape sequence was added in C89 (see §85.2.2).

Hexadecimal escape sequences beginning with \ x were adopted in C89, with precedent in severa
exiging implementations. There was little sentiment for providing \ X as well. The escape sequence
extends to the first non-hex-digit character, thus providing the capability of expressng any character
constant no matter how large thetypechar is

The C89 Committee chose to reserve dl lower-case letters not currently used for future escape
sequences (undefined behavior). €9XC99 adds \ U from Java. All other characters with no current
meaning are left to the implementor for extensions (implementation-defined behavior). No portable
meaning is assgned to multi-character constants or ones containing other than the mandated source
character set (implementation-defined behavior).

The C89 Committee consdered proposals to add the character constant ' \ €' to represent the ASCI|
ESC (' \ 033") character. This proposal was based upon the use of ESC as the initial character of
most control sequences in common termina driving disciplines such as ANSI X3.64. However, this
usage has no obvious counterpart in other popular character codes such as EBCDIC.

| xvin

10

15

20

25

30

35

40

45

Index
A programmer merely wishing to avoid having to type "\ 033" to represent the ESC character in an
ANSI X3.64 (ISO/IEC 6429) environment, instead of

printf("\033[10; 10h%\ n", soneval ue);
may write

#define ESC "\033"
printf(ESC "[10; 10h%l\ n", soneval ue);

Notwithstanding the generd rule that literal constants are non-negaive’, a character constant
containing one character is effectively preceded with a (char) cast and hence may yield a negative
vaue if plan char isrepresented the same as si gned char . This amply reflects widespread past
practice and was deemed too dangerous to change.

QUIET CHANGE IN C89

A congtant of the form ' \ 078" is vdid, but now has different meaning. It now
denotes a character constant whose value is the (implementation-defined) combination
of the values of the two characters’ \ 07" and' 8' . In some implementations the old
meaning is the character whose codeis078 © 0100 °© 64.

QUIET CHANGE IN C89

A congtant of the form ' \a' or ' \ X' now may have different meaning. The old
meaning, if any, was implementation dependent.

QUIET CHANGE IN €9XC99

Character literds of theform “* \ unnnn’ and ‘ \ Unnnnnnnn’ now have different
meanings (see 86.4.3). Note that the escape sequence beginning with \ Uisreserved in
C9X%;C99, but was not reserved in C89.

An L prefix distinguishes wide character constants.

6.4.5 Stringliterals

String literals are not required to be modifiable. This specification adlows implementations to share
copies of strings with identical text, to place string literas in read-only memory, and to perform certain
optimizations. However, string literals do not have the type array of const char in order to avoid the
problems of pointer type checking, particularly with library functions, snce assigning a pointer to const
char to a plain pointer to char isnot valid. Those members of the C89 Committee who inssted that
gring literds should be modifiable were content to have this practice designated a common extension
(see 8K .5.5).

2
Notethat -4 isan expression: unary minus with operand 4.

XIX

10

15

20

25

30

35

40

45

| Index

Existing code which modifies gtring literds can be made grictly conforming by replacing the string
literd with an initidized satic character array. For ingtance,

char *p, *make _tenp(char *str);
[* ..
p = make_ tenp("tenmpXXX');
/1 make_t enp overwrites literal with unique name

can be changed to:

char *p, *make_tenp(char *str);

[* ..

{
static char tenplate]] = "tenpXXX";
p = nmake tenp(tenplate);

}

A dtring can be continued across multiple lines by using the backdash-newline line continuation, but
this requires that the continuation of the string start in the first position of the next line. To permit
more flexible layout, and to solve some preprocessing problems (see §86.10.3), the C89 Committee
introduced string literal concatenation. Two string literals in a row are pasted together, with no null
character in the middle, to make one combined string literd. This addition to the C language dlows a
programmer to extend a string litera beyond the end of a physical line without having to use the
backdad+newline mechanism and thereby destroying the indentation scheme of the program. An
explicit concatenation operator was not introduced because the concatenation is a lexical construct
rather than a run-time operation.

A new feature of €9:C99: In C89, attempting to concatenate a character string literal and a wide
gring litera resulted in undefined behavior, primarily because the C89 Committee saw little need to do
0. However, there are a number of macros defined by the standard as expanding into character string
literdls which are frequently needed as wide dgrings instead (the format gSpecifier macros in
<i nttypes. h> ae paticularly notable examples, as are the predefined macros = _FILE
__DATE__,and _ _TIME__). Rather than specifying two forms of each macro, one character
gtring literal and one wide string literd, the Committee decided to go ahead and define concatenating a
character dring literd and a wide gtring literd as resulting in a wide string literdl. This solves the
problem not only for the library and predefined macros, but for smilar user-defined macros aswell.

Without concatenation:
[/l say the colum is this w de
al pha = "abcdef ghij kl m

nopqgr st uvwxyz" ;

With concatenation:
/1l say the colum is this w de

al pha = "abcdef ghi j kl nf¥
"nopgr st uvwxyz";

XX

10

15

20

25

30

35

40

45

Index
String concatenation can be used to specify a hex-digit character following a hexadecima escape
sequence;

"\ xff"roUfr o
{"\xtf*, "f', "\0'"};

char a[]
char Db[]

Thesetwo initidizations give a and b the same string vaue.

QUIET CHANGE IN C89
A gring of theform ™\ 078" isvalid, but now has different meaning.

QUIET CHANGE IN C89
A gring of theform ™\ a" or "\ x" now has different meaning.

QUIET CHANGE IN €9XC99

Strings containing the character sequence \ unnnn or \ Unnnnnnnn now have
different meanings (see §86.4.3). Note that the escape sequence beginning with \ Uis
reserved in €9X;C99, but was not reserved in C89.

QUIET CHANGE IN C89

It is neither required nor forbidden that identical string literals be represented by a single copy
of the string in memory; a program depending upon either scheme may behave differently.

An L prefix distinguisheswide dring literdls. A prefix rather than a suffix notation was adopted so that
atrandator can know at the start of the processing of a string literal whether it is dealing with ordinary
or wide characters.

6.4.6 Punctuators

C89 added the punctuator . . . (ellipss) to denote avariable number of trailling argumentsin afunction
prototype (see 86.7.5.3); and €9XC99 extends this to function-like macros (see 86.10.3).

6.4.7 Header names

Header names in #i ncl ude directives obey distinct tokenization rules, hence they are identified as
distinct tokens. Attempting to treat quote-enclosed header names as string literals creates a contorted
description of preprocessing, and the problems of treating angle bracket-enclosed header names as a
sequence of C tokensis even more severe.

6.4.8 Preprocessing numbers

The notion of preprocessing numbers was introduced to smplify the description of preprocessing. It
provides a means of taking about the tokenization of srings that look like numbers, or initid

XXI

10

15

20

25

30

35

40

45

| Index

substrings of numbers, prior to their semantic interpretation. 1n the interests of keeping the description
sample, occasiond spurious forms are scanned as preprocessing numbers. For example, OX123E+1 is
a gngle token under the rules. The C89 Committee felt that it was better to tolerate such anomalies
than burden the preprocessor with a more exact, and exacting, lexical specification. It felt that this
anomaly was no worse than the principle under which the characters a+++++b are tokenized asa ++
++ + b (an invaid expresson), even though the tokenization a ++ + ++ b would yidd asyntacticaly
correct expression. In both cases, exercise of reasonable precaution in coding style avoids surprises.

A new feature of €9¢—C9XC99: C99 replaces nondigit with identifier-nondigit in the grammar to
allow the token pasting operator, ##, to work as expected. Given the code

#define nkident(s) s ## 1m
[* .o*
int nkident(int) = O;

if anidentifier is passed to the nki dent macro, then 1 mis parsed as asingle pp-number, avaid sngle
identifier is produced by the ## operator, and nothing harmful happens. But consder a smilar
construction that might appear using Greek script:

#define nk(p) p ## 1m
[* .o
int nk(int) = 0;

For this code to work, 1mmust be parsed as only one pp-token. Restricting pp-numbers to only the
basic |etters would break this.

6.4.9 Comments

The C89 Committee consdered proposals to alow commentsto nest. The main argument for nesting
comments is that it would alow programmers to “comment out” code. The C89 Committee rejected
this proposa on the grounds that comments should be used for adding documentation to a program,
and that preferable mechanisms aready exist for source code excluson. For example,

#f O

[/ * codeto beexcluded */
#endi f

Preprocessing directives such as this prevent the enclosed code from being scanned by later trandation
phases. Bracketed materid can include comments and other nested regions of bracketed code.

Another way of accomplishing these godsiswithani f statement:

if (0) {
[/ * codeto beexcluded */
}

Many modern compilerswill generate no code for thisi f statement.

| xxii

10

15

20

25

30

35

40

45

Index
/1 comments were added for €9XC99 due to their utility and widespread existing practice,
especially in dual C/C++ trandators.

QUIET CHANGE IN €9xC99

In certain unusua Situations, code could have different semantics for C90 and
€9XC99, for example

= b [/*divisor:*/ c

Q

In C90 this was equivaent to
=b/ c + d
but in €9XC99 it is equivalent to

= b + d;

6.5 Expressions

Severd closdy reated topics are involved in the precise specification of expresson evauation:
precedence, associativity, grouping, sequence points, agreement points, order of evaluation, and
interleaving.

The rules of precedence are encoded into the syntactic rules for each operator. For example, the
gyntax for additive-expression includestherule

additive-expresson + multiplicative-expresson

which implies that a+b* ¢ parsesasa+(b*c) . The rules of associativity are smilarly encoded into
the syntactic rules. For example, the syntax for assignment-expression includesthe rule

unary-expression assignment-operator assignment-expression
which impliesthat a=b=c parsesasa=(b=c) .

With rules of precedence and associativity thus embodied in the syntax rules, the Standard specifies, in
generd, the grouping (association of operands with operators) in an expression.

K&R describes C as a language in which the operands of successve identicd commutative associative
operators can be regrouped. The C89 Committee decided to remove this license from the Standard,
thus bringing C into accord with most other mgjor high-leve languages.

This change was motivated primarily by the desire to make C more suitable for fleatingpeiatfloating-

point programming. HeatingperrtH oating-point arithmetic does not obey many of the mathematical
rules that red arithmetic does. For instance, the two expressions (a+b) +c and a+(b+c) may wel

yield different results. Suppose that b is greater than 0, a equals - b, and ¢ ispostive but subgtantialy

XXI111

10

15

20

25

30

35

40

45

Index
sndler than b. (That is, suppose ¢/ b islessthan DBL_EPSI LON.) Then (a+b) +c isO+c, or c,

while a+(b+c) equds a+b, or 0. That is to say, fleatihg—peintfloaing-point addition and
multiplication are not associative.

K&R'sruleimposes a high cost on trandation of numerical codeto C. Much numerical code iswritten
in Fortran, which does provide a no-regrouping guarantee; indeed, this is the norma semantic
interpretation in most high-level languages other than C. K&R's advice, “rewrite usng explicit
temporaries,” is burdensome to those with tens or hundreds of thousands of lines of code to convert, a
conversion which in most other respects could be done automaticaly.

Loss of the regrouping rule does not in fact prohibit much regrouping of integer expressions. The
bitwise logical operators can be arbitrarily regrouped since any regrouping gives the same result as if
the expression had not been regrouped. This is aso true of integer addition and multiplication in
implementations with two’' s-complement arithmetic and silent wraparound on overflow. Indeed, in any
implementation, regroupings which do not introduce overflows behave as if no regrouping had
occurred. (Results may aso differ in such an implementation if the expression as written results in
overflows; but in such a case the behavior is undefined, so any regrouping couldn’t be any worse.)

The types of Ivalues that may be used to access an object have been restricted so that an optimizer is
not required to make worst-case aliasing assumptions (see dso §86.7.3.1)

In practice, diasing arises with the use of pointers. A contrived exampleto illustrate the issuesis
int a;

void f(int * b)

{
a =1,
*b = 2;
g(a);
}

It is tempting to generate the call to g asif the source expresson were g(1) , but b might point to a,
so this optimization is not safe. On the other hand, consider

int a;
void f(double * b))
{
a =1,
*h = 2.0;
g(a);
}

Again the optimization isincorrect only if b pointsto a. However, thiswould only have come about if
the address of a were somewhere cast to doubl e*. The C89 Committee has decided that such
dubious possibilities need not be allowed for.

In principle, then, diasng only need be alowed for when the Ivalues dl have the same type. In
practice, the C89 Committee recognized certain prevaent exceptions:

| xxiv

10

15

20

25

30

35

40

45

Index

. The lvaue types may differ in Sgnedness. In the common range, a Signed integer type
and its undgned variant have the same representation; and it was fet that an
appreciable body of existing code isnot “gtrictly typed” in thisarea

. Character pointer types are often used in the bytewise manipulation of objects, a byte
stored through such a character pointer may well end up in an object of any type.

. A qudified verson of the object’s type, though formaly a different type, provides the
same interpretation of the value of the object.

Structure and union types aso have problematic diasing properties:
struct fi{ float f; int i;};

void f(struct fi * fip, int * ip)

{
static struct fi a = {2.0F, 1};

*Ip = 2;
*fip = a;
g(*ip);

*fip = a;

*ip = 2

g(fip->i);
}

It is not safe to optimize the first call tog asg(2) , or the second asg(1) , Sncethecdl tof could
quite legitimately have been

struct fi x;
f(&, &.i);

These observations explain the other exception to the same-type principle,

An implementation that is able to multiply two doubl e operands and produce af | oat resultin
just one machine instruction might contract the multiplication and assignment in

float f;
doubl e d1, d2;
[* ... */

f =dl1 * d2;

Other examples of potential contraction operators include compound assignments (+=, - =, etc.),
ternary add (x + y + 2), and multiply-add (xy + 2).

Contractions can lead to subtle anomalies even while increasing accuracy. The vaue of C
expressionslikea * b + ¢ * d will depend on how the trandator uses a contracted multiply-add.

XXV

10

15

20

25

30

35

40

45

| Index

The Intel i860's multiply-add is dightly more problematic: since it keeps a wide but partial
product, a * b + z may differ fromc * d + z even though the exact mathematical productsa” b
and ¢’ d are equal; the result depends not just on the mathematical result and the format, as
ordinarily expected for error analysis, but also on the particular values of the operands.

The programmer can control the use of fused multiply-adds by disabling use of contractions with
an FP_CONTRACT pragma and using the f ma function where desired. The extra accuracy of a
fused multiply-add, which produces a result with just one rounding, can be exploited for ssimpler
and faster code.

6.5.1 Primary expressions

A primary expresson may be voi d (parenthesized cal to a function returning voi d), a function
designator (identifier or parenthesized function designator), an Ivalue (identifier or parenthesized
Ivaue), or amply avaue expresson. Congraints ensure that avoi d primary expresson isno part of
a further expression, except that a void expresson may be cast to voi d, may be the second or third
operand of a conditiona operator, or may be an operand of acomma operator.

6.5.2 Postfix operators
6.5.2.1 Array subscripting

The C89 Committee found no reason to disdlow the symmetry that permits a[i | to be written as
i[a].

The syntax and semantics of multidimensiond arrays follow logicdly from the definition of arrays and
the subscripting operation. The materid in the Standard on multidimensiond arrays introduces no new
language fegtures, but clarifies the C treatment of thisimportant abstract data type.

6.5.2.2 Function calls

Pointers to functions may be used ether as (*pf) () or as pf (). The later construct, not
sanctioned in K&R, appears in some present versons of C, is unambiguous, invalidates no old code,
and can be an important shorthand. The shorthand is useful for packages that present only one external
name, which designates a structure full of pointers to objects and functions. member functions can be
cdledasgr aphi cs. open(fil e) insead of (*gr aphi cs. open) (file).

The trestment of function designators can lead to some curious, but valid, syntactic forms. Given the
declarations

int £(), (*pf)();
then dl of the following expressons are vaid function calls:

(&) (); £O; ()0 (*H) Q)5 (***f)();
pt () (*pf)) (**pf)(); (***pf)();

XXVI

10

15

20

25

30

35

40

45

Index

The first expresson on each line was discussed in the previous paragraph. The second is conventiona
usage. All subsequent expressions take advantage of the implicit conversion of afunction designator to
a pointer vaue, in nearly dl expresson contexts. The C89 Committee saw no red harm in alowing
these forms; outlawing forms like (*f) () , while sill permitting *a for a[| , Smply seemed more
trouble than it was worth.

A new feature of €9X:C99: The rule for implicit declaration of functions has been removed in
€9X-C99. The effect is to guarantee the production of a diagnostic that will catch an additional
category of programming errors. After issuing the diagnostic, an implementation may choose to
assume an implicit declaration and continue trandation in order to support existing programs that
exploited this feature.

For compatibility with past practice, dl argument promotions occur as described in K&R in the
absence of a prototype declaration, including the not dways desirable promotion of fl oat to
doubl e. A prototype givesthe implementor explicit licenseto passaf | oat asaf | oat rather than
adoubl e, or achar asachar rather than ani nt, or an argument in a specia register, etc. If the
definition of afunction in the presence of a prototype would cause the function to expect other than the
default promotion types, then clearly the cdls to this function must dso be made in the presence of a
compatible prototype.

To darify this and other reationships between function cals and function definitions, the Standard
describes the relationship between a function call or definition which does occur in the presence of a
prototype and one that does not.

Thus a prototyped function with no “narrow” types and no variable argument list must be cdlable in
the absence of a prototype, since the types actudly passed in a cdl are equivdent to those in the
explicit function definition prototype. This congtraint is necessary to retain compatibility with past
usage of library functions (see §7.1.4).

This provison congrains the latitude of an implementor because the parameter passing conventions of
prototype and non-prototype function cals must be the same for functions accepting a fixed number of
promoted arguments. Implementations in environments where efficient function caling mechanisms
are avallable mug, in effect, use the efficient caling sequence ether in al “fixed argument lig” cdls or
in none. Since efficient caling sequences often do not alow for variable argument functions, the fixed
part of avariable argument list may be passed in acompletdy different fashion than in afixed argument
list with the same number and types of arguments.

The exigting practice of omitting trailling parametersin acal if it is known that the parameters will not
be used has consgtently been discouraged. Since omission of such parameters creates a mismatch
between the cal and the declaration, the behavior in such cases is undefined, and a maximally portable
program will avoid this usage. Hence an implementation is free to implement a function caling
mechanism for fixed argument lists which would (perhaps fataly) fail if the wrong number or type of
arguments were to be provided.

Strictly speaking then, cdls to printf are obliged to be in the scope of a prototype (as by

#i ncl ude <st di 0. h>), but implementations are not obliged to fail on such alapse. (The behavior
isundefined.)

XXVII

10

15

20

25

30

35

40

45

Index
6.5.2.3 Structure and union members

Since the language now permits structure parameters, structure assgnment and functions returning
structures, the concept of a structure expression is now part of the C language. A structure vaue can
be produced by an assgnment, by a function cal, by a comma operator expresson, by a conditiona
operator expression, or by acompound literd:

sl = (s2 = s3)
sf (x)

(x, s1)

X ? sl : s2

Except for the case of the compound literd, the result is not an Ivaue; hence it cannot be assigned to
nor can its address be taken.

Smilaly, x. y is an lvaue only if x is an Ivadue. Thus none of the following valid expressons are
Ivalues.

sf(3).a
(sl1l=s2).a
((i1==6)7?sl:s2).a
(x,s1).a

Evenwhen x. y isan lvaue, it might not be modifiable:

const struct S s1;
sl.a = 3; // invalid

The Standard requires that an implementation diagnose a constraint error in the case that the member
of a dructure or union designated by the identifier following a member sdection operator (. or - >)
does not gppear in the type of the structure or union designated by the first operand. K&R is unclear
on this point.

6.5.2.4 Postfix increment and decrement operators

The C89 Committee did not endorse the practice in some implementations of consdering post-
increment and post-decrement operator expressionsto be Ivaues.

Increment and decrement operators are not defined for complex or imaginary types. Given the
regular definition, they would be surprising for imaginary types, as the operators would have no
effect. It is sometimes desirable to use the same source code with types being complex or
imaginary depending on the implementation. In this scenario, increment or decrement of the
complex O+iy would differ from increment or decrement of the imaginary iy. Allowing increment
and decrement of complex but not imaginary objects would not be helpful here either.

6.5.25 Compound literals

| A new feature of €9X:C99: Compound literds provide a mechaniam for specifying congtants of
| xxvii

10

15

20

25

30

35

40

45

Index
aggregate or union type. This eliminates the requirement for temporary variables when an aggregeate or
union vaue will only be needed once.

Compound literds integrate easly into the C grammar and do not impose any additiond run-time
overhead on a user’ s program. They aso combine well with designated initidizers (86.7.8) to form an
even more convenient aggregate or union constant notation. Thelr initial C implementation appeared
inacompiler by Ken Thompson at AT& T Bell Laboratories.

6.5.3 Unary operators

6.5.3.1 Prefix increment and decrement operators
See §86.5.2.4.

6.5.3.2 Addressand indirection operators

Some implementations have not dlowed the & operator to be applied to an array or a function. (The
congtruct was permitted in early versons of C, then later made optional.) The C89 Committee
endorsed the construct since it is unambiguous, and Since data abstraction is enhanced by alowing the
important & operator to apply uniformly to any addressable entity.

6.5.3.3 Unary arithmetic operators

Unay plus was adopted by the C89 Committee from several implementations, for symmetry with
unary minus.

The bitwise complement operator ~, and the other bitwise operators, have now been defined
arithmeticaly for unsgned operands. Such operations are well-defined because of the restriction of
integer representations to “binary numeration systems.”

6.5.3.4 Thesi zeof operator

It is fundamenta to the correct usage of functions such as nmalloc and fread that
si zeof (char) beexactly one. In practice, this means that a byte in C termsis the smallest unit of
storage, even if this unit is 36 bits wide; and al objects are composed of an integer number of these
smallest units.

C89, like K&R, defined the result of the si zeof operator to be a constant of an unsigned integer
type. Common implementations, and common usage, have often assumed that the resulting type is
i nt. Old code that depends on this behavior has never been portable to implementations that define
the result to be a type other than i nt . The C89 Committee did not fed it was proper to change the
language to protect incorrect code.

The type of si zeof , whatever it is, is published (in the library header <st ddef . h>) assi ze _t,
gnceit isuseful for the programmer to be ableto refer to thistype. This requirement implicitly restricts
si ze_t to be asynonym for an existing unsigned integer type. Note aso that, dthough si ze_t is
an undgned type, si zeof does not involve any arithmetic operations or conversions that would result

XXIX

15

20

25

30

35

40

45

Index

in modulus behavior if the Sizeistoo largeto represent asasi ze_t , thus quashing any notion that the
largest declarable object might be too big to span even with an unsi gned | ong in C89 or
ui nt max_t in€9X%-.C99. Thisaso redtricts the maximum number of eements that may be declared
inan aray, ancefor any array a of N dements,

N == sizeof(a)/sizeof (a[0])
Thussi ze_t isdso aconvenient type for array Szes, and isso used in severd library functions.
C89 specified that si zeof ’soperand can be any value except a bit-fied.bit-field, avoid expression, or

a function designator. This generdity dlows for interesting environmenta inquiries. Given the
declarations

int *p, *q;
these expressions determine the Sze of the type used for:

si zeof (F(x)) [l ... Fsreurnvalue
si zeof (p-Q) /1 ... pointer difference

(Thelast typeisavalableaspt rdi ff _t in<st ddef. h>))

With the addition of variable length arrays (86.7.5.2) in €9,C99, the si zeof operator is a constant
expression only if the type of the operand is not a variable length array type. However, the notion of
“dz€’ is congstently maintained for important operations such as pointer increment, subscripting, and
pointer difference. That is, it is till possble to determine the number of dements in a variable length
aray with

si zeof (vla) / sizeof(vla[0])
Findly, si zeof can ill be used in an argument to themal | oc function.
QUIET CHANGE IN €9XC99

With the introduction of the | ong | ong and extended integer types, the si zeof
operator may yield avaue that exceeds therange of al ong.

6.5.4 Cast operators
A (voi d) castisexplicitly permitted, more for documentation than for utility.

Nothing portable can be said about casting integers to pointers, or vice versa, since the two are now
incommensurate,

The definition of these conversons adopted in the Standard resembles that in K&R, but with severa
ggnificant differences. K&R required that a pointer successfully converted to an integer must be
guaranteed to be convertible back to the same pointer. This integer-to-pointer converson is now
gpecified as implementation-defined. While a high-qudity implementation would preserve the same
XXX

10

15

20

25

30

35

40

45

Index

address value whenever possible, it was consdered impraecticd to require that the identical
representation be preserved. The C89 Committee noted that, on some current machine
implementations, identica representations are required for efficient code generation for pointer
comparisons and arithmetic operations.

The conversion of an integer constant expression with the value O to a pointer is defined smilarly to
K&R. The resulting pointer must not address any object, must gppear to be equa to an integer value
of 0, and may be assigned to or compared for equaity with any other pointer. This definition does not
necessarily imply a representation by a bit pattern of al zeros. an implementation could, for instance,
use some address which causes a hardware trap when dereferenced.

The type char must have the least dtrict dignment of any type, so char * has often been used asa
portable type for representing arbitrary object pointers. This usage creates an unfortunate confusion
between the ideas of arbitrary pointer and character or string pointer. The new type voi d*, which
has the same representation aschar * , istherefore preferable for arbitrary pointers.

It is possible to cast a pointer of some qudified type (86.7.3) to an unqudlified verson of that type.
Since the qudifier defines some specid access or diasing property, however, any dereference of the
cast pointer results in undefined behavior.

Because of the requirements of 86.3.1.5, a cast of an expression with a floating-point type to a
smaller floating-point type (for example, doubl e to f | oat) cannot be optimized away.

6.5.5 Multiplicative operators

In C89, divison of integers involving negative operands could round upward or downward in an
implementation-defined manner; the intent was to avoid incurring overhead in run-time code to check
for specid cases and enforce specific behavior. In Fortran, however, the result will always truncate
toward zero, and the overhead seems to be acceptable to the numeric programming community.
Therefore, €9XC99 now requires smilar behavior, which should facilitate porting of code from
Fortranto C. Thetablein §7.10.6.287.20.6.2 of this document illustrates the required semantics.

The C89 Committee regjected extending the %ooperator to work on floating types as such usage would
duplicate the facility provided by f nod (see §7.12.10.1).

6.5.6 Additive operators

As with the si zeof operator (see 86.5.3.4), implementations have taken different gpproaches in
defining a type for the difference between two pointers. It isimportant that this type be signed in order
to obtain proper dgebraic ordering when dedling with pointers within the same array. However, the
magnitude of a pointer difference can be as large as the Sze of the largest object that can be declared;
and since that is an unsigned type, the difference between two pointers can cause an overflow on some
implementations.

XXXI

5

10

15

20

25

30

35

40

45

Index
QUIET CHANGE IN €9XC99

With the introduction of the | ong | ong and extended integer types, the subtraction
of pointers may return avaue that exceedstherange of al ong.

| The €9XC99 variable length array type (86.7.5.2) does not affect the semantics of pointer difference.

Similarly, incrementing a pointer to a variable length array increments according to the number of
eementsin the array just like afixed length array.

void ptr_to_ vla_ incr(int n)

{ int a[2][n];
int (*p)[n] = &
p++;, /] p == &a[1]
11

}

If the declarations of a and p used an integer constant instead of the parameter n, then the increment
of pointer p il resultsin p pointing to the second row of a. That is, p isincremented according to
the number of ementsin each row of a, and it doesn’t matter whether a isavariable length array or a
fixed length array. The expected behavior is preserved.

The type of pointer minus pointer is defined to be i nt in K&R. The Standard defines the result of
this operation to be a Sgned integer, the Sze of which isimplementation-defined. Thetypeis published
asptrdiff_t, in the sandard header <st ddef . h>. Old code recompiled by a conforming
compiler may no longer work if the implementation defines the result of such an operation to be atype
other than i nt and if the program depended on the result to be of type i nt. This behavior was
consdered by the C89 Committee to be correctable. Overflow was considered not to bresk old code
snce it was undefined by K&R. Mismatch of types between actual and formal argument declarationsis
correctable by including a properly defined function prototype in the scope of the function invocation.

An important endorsement of widespread practice is the requirement that a pointer can aways be
incremented to just past the end of an array, with no fear of overflow or wraparound:

SOMETYPE arr ay[SPAN ;
1. ..
for (p = &rray[0]; p < &array[SPAN; p++)

This dipulation merely requires that every object be followed by one byte whose address is
representable. That byte can be the first byte of the next object declared for dl but the last object
located in a contiguous segment of memory. (In the example, the address arr ay + SPAN must
address a byte following the highest element of ar r ay.) Since the pointer expresson p+1 need not,
and should not, be dereferenced, it is unnecessary to leave room for a complete object of sze
si zeof (*p).

In the case of p- 1, on the other hand, an entire object would have to be dlocated prior to the array of

| xxxii

10

15

20

25

30

35

40

45

Index

objects that p traverses, so decrement loops that run off the bottom of an array can fal. This
regriction adlows segmented architectures, for ingtance, to place objects a the start of a range of
addressable memory.

6.5.7 Bitwise shift operators

The description of shift operators in K& R suggests that shifting by al ong count should force the left
operand to be widened to | ong before being shifted. A more intuitive practice, endorsed by the C89
Committee, isthat the type of the shift count has no bearing on the type of the result.

QUIET CHANGE IN C89
Shifting by al ong count no longer coerces the shifted operandto | ong.

The C89 Committee affirmed the freedom in implementation granted by K&R in not requiring the
signed right shift operation to Sgn extend, since such a requirement might dow down fast code and
gnce the usefulness of Sgn extended shiftsis margind. (Shifting a negative two’ s-complement integer
arithmeticaly right one place is not the same as dividing by twol)

6.5.8 Relational operators

For an explanation of why the pointer comparison of the object pointer P with the pointer expresson
P+1 isadways safe, see Rationde §86.5.6.

Some mathematical practice would be supported by defining the relational operators for complex
operands so that z1 op z2 would be true if and only if both cr eal (z1) op creal (z2) and
cimag(zl) ==cimag(z2). Beieving such use to be uncommon, the €9XC99 Committee
voted against including this specification.

6.5.9 Equality operators

The C89 Committee consdered, on more than one occasion, permitting comparison of structures for
equdity. Such proposds foundered on the problem of holesin structures. A byte-wise comparison of
two structures would require that the holes assuredly be set to zero so that dl holes would compare
equal, a difficult task for automatic or dynamicaly dlocated variables. The possibility of union-type
elements in a structure raises insuperable problems with this approach. Without the assurance that all
holes were set to zero, the implementation would have to be prepared to break a structure comparison
into an arbitrary number of member comparisons, a seemingly smple expresson could thus expand
into asubstantia stretch of code, which is contrary to the spirit of C.

In pointer comparisons, one of the operands may be of type voi d*. In particular, this alows NULL,
which can be defined as (voi d*) 0, to be compared to any object pointer.

6.5.15 Conditional operator

The syntactic restrictions on the middle operand of the conditiona operator have been relaxed to

XXXI

10

15

20

25

30

35

40

45

| Index

include more than just logical-OR-expression: severd extant implementations have adopted this
practice.

The type of a conditional operator expresson can be voi d, a structure, or a union; most other
operators do not dedl with such types. The rules for balancing type between pointer and integer have,
however, been tightened, since now only the constant O can portably be coerced to a pointer.

The Standard allows one of the second or third operands to be of type voi d*, if the other is a pointer
type. Sincethe result of such aconditiond expressonisvoi d*, an appropriate cast must be used.

6.5.16 Assignment operators
Certain syntactic forms of assignment operators have been discontinued, and others tightened up.

The storage assgnment need not take place until the next sequence point. As a consequence, a
straightforward syntactic test for ambiguous expressons can be stated. Some definitions: A side effect
is a storage to any data object, or aread of avol ati | e object. An ambiguous expression is one
whose value depends upon the order in which sde effects are evaluated. A pure function is one with
no sSde effects, an impure function is any other. A sequenced expression is one whose magor operator
defines a sequence point: comma, &&, | | , or conditional operator; an unsequenced expression is any
other. We can then say that an unsequenced expression may be ambiguous if more than one operand
invokes any impure function, or if more than one operand contains an Ivaue referencing the same
object and one or more operands specify a Sde-effect to that object. Further, any expresson
containing an ambiguous sub-expression is ambiguous.

The optimization rules for factoring out assgnments can also be stated. Let X(i, S) bean expresson
which contains no impure functions or sequenced operators, and suppose that X contains a storage
S(i) toi whichsatsi toSnew(i) andreturnsSval (i) . The possble storage expressons are

S(i): Sval (i): Snew(i):
++i i +1 i +1

i ++ [i +1

- i-1 i-1

i-- [i-1
L=y y y

i op=y i opy i opy

Then X(i, S) can bereplaced by ether

(T =i, i = Snew(i), X(T,Sval))
or
(T

X(i,Sval), i = Snewi), T)
provided that neither i nor y have sde effects themselves.
6.5.16.1 Simple assignment

Structure assgnment was added: its use was foreshadowed even in K&R, and many exising

| xxxiv

10

15

20

25

30

35

40

45

Index
implementations aready support it.

The rules for type compatibility in assgnment dso gpply to argument compatibility between actud
argument expressions and their corresponding parameter typesin afunction prototype.

An implementation need not correctly perform an assgnment between overlapping operands.
Overlgpping operands occur most naturdly in a union, where assgning one field to another is often
desrable to effect a type converson in place. The assgnment may well work properly in dl smple
cases, but it is not maximally portable. Maximaly portable code should use atemporary variable as an
intermediate in such an assgnment.

6.5.16.2 Compound assignment
The importance of requiring that the left operand Ivalue be evauated only once is not a question of
efficiency, athough that is one compelling reason for usng the compound assgnment operaors.

Rather, it isto assure that any sde effects of evaluating the |eft operand are predictable.

Assgnment operators of the form =+, described as old fashioned even in K&R, were dropped in C89.
The form += is now defined to be a single token, not two, so no white space is permitted within it.
No compelling case could be made for permitting such white space.

QUIET CHANGE IN C89

Expressons of the form x=- 3 change meaning with the loss of the old-style
assignment operators.

6.5.17 Comma operator

The left operand of a comma operator may be voi d, since only the right hand operator is relevant to
the type of the expression.

6.6 Constant expressions
To clarify existing practice, severd varieties of constant expression have been identified.

The expresson following #i f (86.10.1) must expand to integer constants, character constants, the
specid operator def i ned, and operators with no side effects. Environmenta inquiries can be made
only using the macros defined in the standard headers, <l i m t s. h>, <st di nt . h>, etc.

Character congtants, when evauated in #i f expressons, may be interpreted in the source character
s, the execution character set, or some other implementation-defined character set. This latitude
reflects the diversity of existing practice, especidly in cross-compilers.

Aninteger constant expression must involve only numbers knowable at trandation time, and operators

with no sde effects. Casts and the si zeof operator whose operand does not have a variable length
array type (86.7.5.2) may be used to interrogate the execution environment.

XXXV

10

15

20

25

30

35

40

45

| Index

Satic initializers include integer constant expressions, aong with floating congtants and smple
addressing expressions. An implementation must accept arbitrary expressons involving floating and
integer numbers and sde effect-free operators in arithmetic initiadizers, but it is a liberty to turn such
initidizers into executable code which is invoked prior to program startup. This scheme might impose
some requirements on linkers or runtime library code in some implementations.

The trandation environment must not produce a less accurate vaue for a floating-point initidizer than
the execution environment, but it is a liberty to do better. Thus a gatic initidizer may well be dightly
different from the same expression computed at execution time. However, while implementations are
certanly permitted to produce exactly the same result in trandation and execution environments,
requiring this was deemed to be an intolerable burden on many cross-compilers.

QUIET CHANGE IN C89

A program that uses #i f expressons to determine properties of the execution
environment may now get different answers.

QUIET CHANGE IN €9XC99

Due to the introduction of new types, the preprocessor arithmetic must be performed
using the semantics of elther i nt max_t or ui nt max_t defined in<st di nt. h>.
This is a quiet change for cross-compilation implementations because C89 did not
mandate that trandation-time arithmetic have the properties of the execution
environment, but €9XC99 does.

6.7 Declarations

The C89 Committee decided that empty declarations are invaid, except for a specia case with tags
(see 86.7.2.3) and the case of enumerations such as enum{ zer o0, one}; (see 86.7.2.2). While
many seemingly silly congtructs are tolerated in other parts of the language in the interest of facilitating
the machine generation of C, empty declarations were consdered sufficiently easy to avoid.

6.7.1 Storage-class specifiers

Because the address of a register variable cannot be taken, objects of storage class r egi st er
effectively exist in a gpace digtinct from other objects. (Functions occupy yet a third address space.)
This makes them candidates for optima placement, the usua reason for declaring registers; but it aso
makes them candidates for more aggressive optimization.

The practice of representing register variables as wider types (ass when r egi st er char isquiely
changedtor egi st er i nt) isnolonger acceptable.

6.7.2 Type specifiers

Severd new type specifiers were added to C89: si gned, enum and voi d. | ong fl oat was
retired and | ong doubl e was added, dong with many integer types.

| xxxvi

10

15

20

25

30

35

40

45

Index

A new feature of €9X:C99: severd new type specifiers were added to €9%:C99: _Bool ,
_Conpl ex and _| magi nary, dong with the related types.

A new feature of €9X—C9XC99. C99 adds a new integer data type, | ong | ong, as
consolidation of prior art, whose impetus has been three hardware developments. First, disk
density and capacity used to double every 3 years, but after 1989 has quadrupled every 3 years,
yielding low-cost, physically small disks with large capacities. Although a fixed size for file
pointers and file system structures is necessary for efficiency, eventudly it is overtaken by disk
growth, and limits need to be expanded. In the 1970s, 16-bit C (for the Digital PDP-11) first
represented file information with 16-bit integers, which were rapidly obsoleted by disk progress.
People switched to a 32-bit file system, first using i nt [2] constructs which were not only
awkward, but also not efficiently portable to 32-bit hardware.

To solve the problem, the | ong type was added to the language, even though this required C on
the PDP-11 to generate multiple operations to smulate 32-bit arithmetic. Even as 32-bit
minicomputers became available aongside 16-bit systems, people still used i nt for efficiency,
reserving | ong for cases where larger integers were truly needed, since | ong was noticeably less
efficient on 16-bit systems. Both short and | ong were added to C, making shor t avallable
for 16 bits, | ong for 32 bits, and i nt as convenient for performance. There was no desire to
lock the numbers 16 or 32 into the language, as there existed C compilers for at least 24- and 36-
bit CPUSs, but rather to provide names that could be used for 32 bits as needed.

PDP-11 C might have been re-implemented with i nt as 32-hits, thus avoiding the need for
| ong; but that would have made people change most uses of i nt to short or suffer serious
performance degradation on PDP-11s. In addition to the potential impact on source code, the
impact on existing object code and data files would have been worse, even in 1976. By the
1990s, with an immense installed base of software, and with widespread use of dynamic linked
libraries, the impact of changing the size of a common data object in an existing environment is so
high that few people would tolerate it, although it might be acceptable when creating a new
environment. Hence, many vendors, to avoid namespace conflicts, have added a 64-bit integer to
their 32-bit C environments using a new name, of which | ong | ong has been the most widely
used.

€9XC99 has therefore adopted | ong | ong as the name of an integer type with at least 64 bits of
precision. People can and do argue about the particular choice of name, but it has been difficult
to pick a clearly better name early enough, and by now it is fairly common practice, and may be
viewed as one of the least bad choices.

To summarize this part: 32-bit CPUs are coming to need clean 64-hit integers, just as 16-bit
CPUs came to need 32-bit integers, and the need for wider integers happens irrespective of other
CPUs. Thus, 32-bit C has evolved from a common ILP32 model (i nt, | ong and pointers are
32 bits) to ILP32LL (ILP32 + 64-hit | ong | ong), and this till runs on 32-bit CPUs with
sequences to emul ate 64-bit arithmetic.

In the second and third interrelated trends, DRAM memories continue to quadruple in size every
3 years, and 64-bit microprocessors started to be widely used in 1992. By 1995, refrigerator-
Sized, microprocessor-based servers were being sold with 8GB to 16GB of memory, which
XXXVII

10

15

20

25

30

35

40

45

| Index

required more than 32 bits for straightforward addressing. However, many 64-bit
microprocessors are actually used in video games, X-Terminals, network routers, and other
applications where pointer sizeis less important than performance for larger integers.

The memory trend encourages a C programming model in which pointers are enlarged to 64 bits
(called *P64), of which the consensus choice seems to be LP64 (I ong, pointers and | ong
| ong are 64 bits; i nt is32 hits), with| ong | ong in some sense redundant, just as| ong was
on the 32-bit VAX. Itisfairly difficult to mix this object code with the ILP32 model, and so it is
a new environment to which people must port code, but for which they receive noticeable
benefits. they can address large memories, and file pointers automatically are enlarged to 64 bits.
There do exist, of course, 32-bit CPUs with more-than-32-bit addressing, athough C
environments become much more straightforward on 64-bit CPUs with smple, flat addressing. In
practice, people do not move from 1LP32LL to LP64 unless they have no choice or gain some
clear benefit.

If people only consider LP64 in isolation, | ong is 64 bits, and there seems no need for | ong
| ong, just as the VAX 32-bit environment really did not need | ong. However, this view
ignores the difficulty of getting compilers, linkers, debuggers, libraries, etc., to exist for LP64. In
practice, these programs need to deal with 64-bit integers long before an LP64 environment
exists, in order to bootstrap, and later support, al these tools. Put another way, people must:

1. Usingi nt[2], upgrade compilers and aminimal set of tools to compile and debug code that
uses| ong | ong.

2. Recode the compilers and al of the toolsto actually usel ong | ong.

This ends up with a set of tools that run as 1LP32LL, on existing 32-bit CPUs and new 64-bit
CPUs, and can compile code to either 1LP32LL or LP64. This is yet another reason where
| ong | ong isimportant, not for the LP64 model, but for the tools that support that model.

Most 64-bit micros can, and for commercial reasons must, continue to run existing | LP32LL
object programs, aongside any new LP64 programs. For example, database server processes
often desire LP64 to access large memory pools, but the implementers prefer to leave the client
code as | LP32 so that it can run on existing 32-bit CPUs as well, and where LP64 provides no
obvious vaue.

In mixed environments, it is of course very useful for programs to share data structures, and
specificaly for 32-bit programs to be able to cleanly describe aligned 64-bit integers, and in fact
for it to be easy to write structure definitions whose size and alignment are identical between
ILP32LL and LP64. This can be straightforwardly done using i nt and | ong | ong, just asit
was doable in the 1970sviashort and| ong.

Finally, one more important case occurs, in which people want performance benefits of 64-bit
CPUs, while wishing to maintain source compatibility, but not necessarily binary compatibility,
with related 32-bit CPUs. In embedded control and consumer products, people have little interest
in 64-bit pointers, but they often like 64-bit integer performance for bit manipulation, memory
copies, encryption, and other tasks. They like I1LP32LL, but with | ong | ong compiled to use
64-bit registers, rather than being simulated via 32-bit registers. While this is not binary-

| xxxvii

10

15

20

25

30

35

40

45

Index

compatible with existing I1LP32LL binaries, it is source-compatible; and it runs faster and uses
less space than LP64, both of which are important in these markets. It isworth noting that of the
many millions of 64-bit CPUs that exist, a very large mgority are actualy used in such
applications rather than traditional computer systems.

Thus, there are 3 choices, al of which have been done aready, and different customers choose
different combinations:

ILP32LL, compiled 32-hit only, runs on 32- and 64-bit CPUs
- Needs| ong | ong to express 64-bit integers without breaking existing source and
object code badly.

LP64, runs on 64-bit CPUs
- Doesnot need| ong | ong inisolation, but needed its earlier 1LP32LL toolsto have
| ong | ong for sensible bootstrapping and later support.

ILP32LL, compiled to 64-bit registers, runs on 64-bit CPUs
- Wants| ong | ong to express 64-bit integers and get better performance, and still
have source code that runs on related 32-bit CPUs.

A new integer data type is needed that can be used to express 64-bit integers efficiently and
portably among 32- and 64-bit systems. It must be a new name to avoid a disastrous set of
incompatibilities with existing 32-bit environments since one cannot safely change | ong to 64
bits and mix with existing object code. It isneeded to dea with disk file size increases, but also to
help bootstrap to 64-bit environments, and then wider, so that many programs can be compiled to
exactly one binary that runs on both 32- and 64-bit CPUs.

While there is more argument about the specific syntax, nobody has seemed able to provide a
compellingly better syntax than | ong | ong, which at least avoided gratuitous namespace
pollution. Proposalslikei nt 64_t seem very awkward for 36-bit CPUs, for example.

Given the various complex interactions, | ong | ong seems areasonable addition to C, as existing
practice has shown the need for a larger integer, and | ong | ong syntax seems one of the least
bad choices.

Implementation note: excluding the library, programs that do not use | ong | ong do not have
any overhead caused by the addition of | ong | ong to €9X;C99; however, certain standard
library functions that are useful when the program does not otherwise use | ong | ong do have
overhead that an implementation may wish to eliminate. The primary examples of such library
functionsarethepri ntf and scanf families.

The only use of | ong | ong in some programs might be the support in pri nt f to print | ong
| ong values even though the program never actualy prints such a value. On systems where
there is no hardware support for | ong | ong arithmetic, the | ong | ong support in pri nt f
might cause runtime functions to be loaded to emulate | ong | ong arithmetic. For embedded
systems, where memory is precious, the code to support printing | ong | ong vaues and for
doing | ong | ong arithmetic is a great burden if that code is never actually used by the program.

XXXIX

10

15

20

25

30

35

40

| Index
(In contrast, large systems with shared libraries may have no overhead supporting | ong | ong
all of thetime.)

The gsituation with | ong | ong is very simiularto-the situration-with-fleating-petnatsimilar to the
situation with floating-point in C for the PDP-11. Some models of the PDP-11 lacked fleating
peintfloating-point hardware and were limited to a 64K address space. (A similar situation exists
with MS-DOS-based implementations)) Many C programs did not use featigpeiatfloating-
point, but because of pri ntf and scanf, wasted a significant part of their address space on
floating-petntfloating-point emulation code. The PDP-11 C solution was simple and effective:
two versions of pri nt f and scanf were provided. One version supported printing or scanning
fleatingpetntfloating-point values; the other version did not. By linking with the proper version
of printf and scanf, the program could avoid the overhead of fleating-petntfloating-point
code. Thistechnique also works for avoiding any overhead from| ong | ong.

In the smplest form, this technique can be purely manual and require no changes to compilers or
linkers: the user explicitly links the program with the proper versionsof pri nt f and scanf .

—Automatic solutions are also possible by having the compiler inform the linker if the program
uses | ong | ong._For example, the compiler could emit an externa reference to a symbol like
| 64used, or some similar symbol that is private to the implementation, if and only if the source
code made use of a 64-hit integer type; and the C run-time library could contain two versions of
the Dopri nt or smilarly-named module that performs the actual work for the pri nt f family
of functions. The first version of the module would define | 64used and contain support for
formatting 64-bit integers, while the second version would do neither. If the two versions of the
Doprint and printf-family modules are ordered properly in the library (first the
| 64used Doprint,thenprintf,andthenthe Dopri nt without 64-bit support), then
the linker would automatically include the 64-bit verson of Dopri nt to satisfy the | 64used
reference. |If there were no referenceto | 64used, then the linker would skip the 64-bit version
of Doprint, link the needed pri nt f -family modules, then link the non-64-bit version of
Dopr i nt to satisfy that reference from the pr i nt f -family functions.

—A variety of sodlutions are possible, and like the PDP-11 implementation, many embedded
systems have already solved the overhead problem for featirg-perat;floating-point, and may find
it useful to adopt asimilar solution for | ong | ong.?

Since the technique discussed above allows an implementation to avoid the burden of linking in
| ong | ong support when it is not needed, the Ceommittee saw no reason to make | ong | ong

support fert+engt-eng-beoptional.
| QUIET CHANGE IN €9%C99

In some environments such as LP64 and | LP64, | ong | ong and | ong are
equivalent. In the others (I LP32LL and LLP64), | ong | ong is larger than
| ong. If the system environment also changes standard definitions such as

3 An implementation may be able to optimize more cases by inspecting the argument typesin calls to printf and scanf family functions, but should be
aware that vprintf and vscanf arguments types may not be available at compile time.

XL

10

15

20

25

30

35

40

Index
ptrdiff_t tobecomel ong | ong or si ze_t to becomeunsi gned | ong
| ong, then existing correct code can be broken. For example,

unsi gned | ong x;
size t v;
X = Y;

slently truncatesy .

A new feature of €9¢C99: In C89, dl type specifiers could be omitted from the declaration
specifiers in a declaration. In such a case i nt was implied. The Committee decided that the
inherent danger of this feature outweighed its convenience, and so it was removed. The effect is
to guarantee the production of a diagnostic that will catch an additional category of programming
errors. After issuing the diagnostic, an implementation may choose to assume an implicit i nt

and continue to tranglate the program in order to support existing source code that exploitsed this
feature.

6.7.2.1 Structure and union specifiers

Three types of bitfiddspit-fields are now defined: plan i nt cdls for implementation-defined
sgnedness (asin K&R), si gned i nt cdlsfor assuredly sgned fields, and unsi gned i nt cdlsfor
unsgned fields. The old congtraints on bit-fiddsbit-fiel ds crossing word boundaries have been relaxed,
snce so many properties of bit-fiedgit-fid ds are implementation dependent anyway.

Thelayout of structuresis determined only to alimited extent:

. no hole may occur at the beginning.
. members occupy increasing storage addresses.
. if necessary, a hole is placed on the end to make the structure big enough to pack

tightly into arrays and maintain proper dignmen.

Since some exiging implementations, in the interest of enhanced access time, leave internd holes
larger than absolutely necessary, it is not clear that a portable deterministic method can be given for
traverang a structure member by member.

To darify what is meant by the notion that “al the members of a union occupy the same storage,” the

Standard specifies that a pointer to a union, when suitably cast, points to each member (or, in the case
of ahit-field member, to the storage unit containing the bit-fidd)bit-field).

XLI

10

15

20

25

30

35

40

45

Index

A new feature of €9:C99:. There is a common idiom known as the “struct hack” for cregting a
structure containing a variable-size array:

struct s

{
int n_itens;
[* possbly other fidlds */
int itens[1];

1

struct s *p;

size t n, i;

/ * codethat setsn omitted */
p = malloc(sizeof(struct s) + (n - 1) * sizeof(int));
/ * codeto check for failure omitted */
p->n_itens = n;
[* exampleusage */
for (i =0; i <p->n_itens; i++)
p->itens[i] =1i;

The vdidity of this congtruct has dways been questionable. In the response to one Defect Report,
Fhethe Committee decided that it was undefined behavior because the array p- >i t ens contains
only oneitem, irrespective of whether the space exists. An aternative construct was suggested: make
the array Sze larger than the largest possible case (for example, usingi nt i tens[| NT_MAX] ;),
but this approach is aso undefined for other reasons.

The Committee felt that, although there was no way to implement the “struct hack” in C89, it was
nonetheless a useful facility. Therefore the new feature of “flexible array members’ was introduced.
Apart from the empty brackets, and the remova of the“- 1” inthenal | oc cdl, thisisused in the
same way asthe struct hack, but is now explicitly valid code.

There are afew regtrictions on flexible array members that ensure that code using them makes sense.
For example, there must be a least one other member, and the flexible array must occur last.
Similarly, structures containing flexible arrays can't occur inthe-mideleef other structures or in arrays.
Findly, si zeof applied to the structure ignores the array but counts any padding before it. This
makesthemal | oc cdl assmpleaspossble.

6.7.2.2 Enumeration specifiers

A new feature of €9X:C99: a common extenson in many implementations alows a trailling comma
after the lit of enumeration constants. The Committee decided to adopt this feature as an innocuous
extensgon that mirrorsthe trailing commas alowed in initidizers.

6.7.2.3 Tags

As with dl block-structured languages that dso permit forward references, C has a problem with

structure and union tags. If one wants to declare, within ablock, two mutually-referencing structures,
one must write something like

| xLn

10

15

20

25

30

35

40

45

Index

struct x { struct y *p; /*...* };
struct y { struct x *q; /*...*/ };

But if st ruct y isdready defined in a containing block, the first field of st r uct x will refer to the
older declaration.

Thus specid semantics were given to the form

struct vy;
which now hidesthe outer declaration of y, and “opens’ anew instance in the current block.
QUIET CHANGE IN C89

The empty declaration st r uct x; isnot innocuous.

6.7.3 Typequalifiers

The C89 Committee added to C two type qualifiers, const and vol ati | e; and €9XC99 adds a |
third, restri ct. Individudly and in combination they specify the assumptions a compiler can and
must make when accessing an object through an lvaue.

The syntax and semantics of const were adapted from C++; the concept itsalf has appeared in other
languages. vol atile and restrict ae invetions of the Committee; and both follow the
gyntactic model of const .

Type qudifiers were introduced in part to provide grester control over optimization. Severa
important optimization techniques are based on the principle of “cacheing’: under certain
circumstances the compiler can remember the last value accessed (read or written) from a location,
and use this retained vaue the next time that location isread. (The memory, or “cache’, istypicdly a
hardware register.) If this memory is a machine regigter, for instance, the code can be smaler and
faster using the register rather than accessing external memory.

The basic qudifiers can be characterized by the restrictions they impose on access and cacheing:

const No writes through this Ivalue. In the absence of this qudifier, writes may occur
through thisIvalue.

vol atil e No cacheing through this Ivalue: each operation in the abstract semantics must be
performed (that is, no cacheing assumptions may be made, since the location is not
guaranteed to contain any previous value). In the absence of this qudifier, the
contents of the designated location may be assumed to be unchanged except for
possible diasing.

restrict Objectsreferenced through ar est ri ct -qudified pointer have a specia association
with that pointer. All referencesto that object must directly or indirectly use the value
XLITI

10

15

20

25

30

35

40

45

| Index

of this pointer. In the absence of this qudifier, other pointers can dias this object.
Cacheing the vaue in an object designated through ar est ri ct -quaified pointer is
safe a the beginning of the block in which the pointer is declared, because no pre-
exigting diases may aso be used to reference that object. The cached value must be
restored to the object by the end of the block, where pre-existing diases again become
avalable. New aiases may be formed within the block, but these must al depend on
the vadue of the restri ct -quaified pointer, so that they can be identified and
adjusted to refer to the cached value. For arestri ct-qudified pointer a file
scope, the block isthe body of mai n.

A trandator desgn with no cacheing optimizations can effectively ignore the type qudifiers, except
insofar as they affect assgnment compatibility.

It would have been possible, of course, to specify nonconst ingead of const , etc. The senses of
these concepts in the Standard were chosen to assure that the default, unqualified, case is the most
common, and that it corresponds most clearly to traditiond practice in the use of lvalue expressions.

Severd combinations of the three qudifiers are possble and most define useful sets of Ivaue
properties. The next severd paragraphs describe typicd uses of the const and vol atil e
qudifiers. Ther estri ct qudifierisdiscussed in 86.7.3.1.

The trandator may assume, for an unqualified Ivalue, that it may read or write the referenced object,
that the value of this object cannot be changed except by explicitly programmed actions in the current
thread of control, but that other Ivalue expressions could reference the same object.

const is specified in such a way tha an implementation is a liberty to put const objects in
read-only storage, and is encouraged to diagnose obvious attempts to modify them, but is not required
to track down al the subtle ways that such checking can be subverted.

A static volatile obect is an gppropriate modd for a memory-mapped 1/0O register.
Implementors of C trandators should take into account relevant hardware detals on the target
systems when implementing accesses to vol at i | e objects. For instance, the hardware logic of a
system may require that a two-byte memory-mapped register not be accessed with byte operations;
and a compiler for such a system would have to assure that no such instructions were generated, even
if the source code only accesses one byte of the register. Whether read-modify-write instructions can
be used on such device registers must dso be consdered. Whatever decisons are adopted on such
issues must be documented, asvol at i | e access is implementation-defined. A vol at i | e object
isalso an appropriate model for a variable shared among multiple processes.

A static const vol ati | e object appropriately models a memory-mapped input port, such asa
red-time clock. Smilarly, a const vol ati | e object modds a variable which can be dtered by
another process but not by this one.

Although the type qudifiers are formaly treated as defining new types, they actudly serve as
modifiers of declarators. Thusthe declarations

const struct s {int a,b;} x;
struct s v;

XLIV

10

15

20

25

30

35

40

45

Index

declare x asaconst object, but noty. The const property can be associated with the aggregate
type by means of atype definition:

typedef const struct s {int a,b;} stype;
stype X;
stype vy;

In these declarations the const property is associated with the declarator stype, so x andy are both
const objects.

The C89 Committee consdered making const and vol at i | e storage classes, but thiswould have
ruled out any number of desrable congtructs, such as const members of structures and variable
pointersto const types.

A cast of avdue to a qudified type has no effect; the qudification (vol ati | e, say) can have no
effect on the access since it has occurred prior to the cast. If it is necessary to access a non-
vol ati | e object usng vol ati | e semantics, the technique is to cast the address of the object to
the gppropriate pointer-to-qualified type, then dereference that pointer.

6.7.3.1 Formal definitionof restri ct

A new feature of €9X:C99: Therestri ct type qudifier allows programs to be written so that
trandators can produce significantly faster executables. Anyone for whom this is not a concern can
safely ignore this feature of the language.

The problem that the restrict qudifier addresses is that potentiad diasng can inhibit
optimizations. Specificdly, if atrandator cannot determine that two different pointers are being used
to reference different objects, then it cannot gpply optimizations such as maintaining the vaues of the
objects in registers rather than in memory, or reordering loads and stores of these values. This
problem can have a dgnificant effect on a program that, for example, performs arithmetic calculations
on large arrays of numbers. The effect can be measured by comparing a program that uses pointers
with a smilar program that uses file scope arrays (or with a smilar Fortran program). The array
verson can run faster by a factor of ten or more on a system with vector processors. Where such
large performance gains are possible, implementations have of course offered their own solutions,
usudly in the form of compiler directives that specify particular optimizations. Differences in the
pelling, scope, and precise meaning of these directives have made them troublesome to use in a
program that must run on many different systems. Thiswas the motivation for a standard solution.

The restri ct qualifier was designed to express and extend two types of aliasng information
dready specified in the language.

Frgt, if asingle pointer is directly assgned the return value from an invocation of mal | oc, then that
pointer is the sole initiadl means of access to the dlocated object (that is, another pointer can gain
access to that object only by being assgned a vaue that is based on the vaue of the first pointer).
Declaring the pointer to be restrict-qualified expresses this information to atrandator. Furthermore,
the qudifier can be used to extend a trandator’s specid treatment of such a pointer to more generd
dtuations. For example, an invocation of mal | oc might be hidden from the trandator in another

XLV

10

15

20

25

30

35

40

45

Index
function, or asingle invocation of mal | oc might be used to alocate severa objects, each referenced
through its own pointer.

Second, the library specifies two versons of an object copying function, because on many systems a
faster copy ispossbleif it is known that the source and target arrays do not overlap. Ther estri ct
qudifier can be used to express the redtriction on overlap in a new prototype that is compatible with
the origind version:

void *mencpy(void * restrict sl, const void * restrict s2,
size t n);
voi d *nmemmove(void * sl1, const void * s2, size_ t n);

With the regtriction visible to atrandator, a straightforward implementation of nentpy in C can now
give alevd of performance that previoudy required assembly language or other non-standard means.
Thusther est ri ct qudifier provides a standard means with which to make, in the definition of any
function, an diasing assertion of atype that could previoudy be made only for library functions.

The complexity of the specification of ther est ri ct qudifier reflects the fact that C hasarich set of
types and a dynamic notion of the type of an object. Recdl, for example, that an object does not have
a fixed type, but acquires a type when referenced. Similarly, in some of the library functions, the
extent of an array object referenced through a pointer parameter is dynamicaly determined, either by
another parameter or by the contents of the array.

The full specification is necessary to determine the precise meaning of a qudifier in any context, and
S0 must be understood by compiler implementors. Fortunately, most others will need to understand
only afew ample patterns of usage explained in the following examples.

A trandator can assume that a file scope r est ri ct -qudified pointer is the sole initid means of
access to an object, much asiif it were the declared name of an array. Thisis useful for adynamicaly
dlocated array whose sze is not known until run time. Note in the example how a single block of
sorageis effectively subdivided into two digoint objects.

float * restrict al, * restrict a2;

void init(int n)

{
float * t = malloc(2 * n * sizeof(float));
al = t; /| alrefersto 1 half
a2 =t +n; [/ a2refesto2ndhalf

}

A trandator can assume that ar estri ct -qudified pointer that is a function parameter is, at the
beginning of each execution of the function, the sole means of access to an object. Note that this
assumption expires with the end of each execution. In the following example, parameters al and a2
can be assumed to refer to digoint array objects because both arer est ri ct -qudified. Thisimplies
that each iteration of the loop is independent of the others, and so the loop can be aggressively
optimized.

XLVI

10

15

20

25

30

35

40

45

Index

void f1(int n, float * restrict al,
const float * restrict a2)
{

int i;
for (1 =0; 1 <n; i++)
al[i] += az[i];
}

A trandator can assumethat ar est ri ct -qudified pointer declared with block scopeis, during each
execution of the block, the sole initid means of access to an object. An invocation of the macro
shown in the following example is equivaent to an inline verson of acal to the functionf 1 above.

define f2(N Al, A2)
{ int n=(N;

float * restrict al = (Al);
float * restrict a2 = (A2);
int i;

for (i =0; 1 <n; i++)

— o o e o o —

al[i] += a2[i]:
}

Therestrict qudifier can be used in the declaration of a structure member. A trandator can
assume, when an identifier is declared that provides a means of access to an object of that structure
type, that the member provides the sole initid means of access to an object of the type specified in the
member declaration. The duration of the assumption depends on the scope of the identifier, not on
the scope of the declaration of the structure. Thus a trandator can assumethat s1. al andsl. a2
below are used to refer to digoint objects for the duration of the whole program, but that s2. al and
s2. a2 ae usd to refer to digoint objects only for the duration of each invocation of the f 3
function.

struct t {
int n;
float * restrict al, * restrict a2;

b
struct t s1;

void f3(struct t s2) { /* ... */ }

The meaning of ther est ri ct qudifier for aunion member or in atype definition isandogous. Just
as an object with a declared name can be diased by an unqualified pointer, sO can the object
asociated with arestri ct -qudified pointer. The restri ct qudifier is therefore unlike the
regi st er storage class, which precludes such diasing.

This dlowsthe restri ct qudifier to be introduced more easily into existing programs, and adso
dlowsrestrict tobeused in new programs that cal functions from libraries that do not use the
qudifier. In particular, arestri ct -qualified pointer can be the actud argument for a function
parameter that is unqudified. On the other hand, it is easier for a trandator to find opportunities for

XLVII

10

15

20

25

30

35

40

45

Index
optimization if as many as possible of the pointersin aprogram arer est r i ct -qualified.

6.7.4 Function specifiers

A new feature of €9X:C99: Thei nl i ne keyword, adapted from C++, is a function-specifier that
can be used only in function declarations. It is useful for program optimizations that require the
definition of afunction to be visble at the sSte of acal. (Note that the Standard does not attempt to
gpecify the nature of these optimizations.)

Vighility is assured if the function hasinternd linkage, or if it has external linkage and the cdll isin the
same trandation unit as the externd definition. In these cases, the presence of thei nl i ne keyword
in a declaration or definition of the function has no effect beyond indicating a preference that cdls of
that function should be optimized in preference to cdls of other functions declared without the
i nl i ne keyword.

Vighility is a problem for a cdl of a function with externd linkage where the cdl is in a different
trandation unit from the function’s definition. In this case, the i nl i ne keyword dlows the
trandation unit containing the cal to aso contain alocd, or inline, definition of the function.

A program can contain a trandation unit with an externd definition, a trandation unit with an inline
definition, and a trandation unit with a declaration but no definition for afunction. Cdlsin the later
trandation unit will use the externa definition as usudl.

An inline definition of a function is consdered to be a different definition than the externa definition.
If acal to some function f unc with externa linkage occurs where an inline definition is visible, the
behavior is the same asiif the cal were made to another function, say _ _f unc, with internd linkage.
A conforming program must not depend on which function is called. This is the inline mode in the
Standard.

A conforming program must not rely on the implementation using the inline definition, nor may it rely
on the implementation using the externd definition. The address of a function is dways the address
corresponding to the externd definition, but when this address is used to cdl the function, the inline
definition might be used. Therefore, the following example might not behave as expected.

inline const char *saddr(void)

{
static const char nanme[] = "saddr";
return nane;
}
i nt conpare_nane(voi d)
{
return saddr() == saddr(); // unspecifiedbehavior
}

Since the implementation might use the inline definition for one of the calls to saddr and use the
external definition for the other, the equality operation is not guaranteed to evaluate to 1 (true). This
shows that static objects defined within the inline definition are distinct from their corresponding
XLVII

10

15

20

25

30

35

40

45

Index
object in the externa definition. This motivated the congtraint against even defining a non-const
object of thistype.

Inlining was added to the Standard in such a way that it can be implemented with existing linker
technology, and a subset of €9XC99 inlining is compatible with C++. Thiswas achieved by requiring
that exactly one trandation unit containing the definition of an inline function be specified as the one
that provides the externd definition for the function. Because that specification conssts smply of a
declaration that either lacks the i nl i ne keyword, or contains both i nl i ne and ext er n, it will
also be accepted by a C++ trandator.

Inlining in €9XC99 does extend the C++ specification in two ways. Firs, if a function is declared
i nl i ne in onetrandation unit, it need not be declared i nl i ne in every other trandation unit. This
dlows, for example, alibrary function that isto be inlined within the library but available only through
an externd definition elsewhere. The dternative of using a wrapper function for the externa function
requires an additional name; and it may also adversely impact performance if a trandator does not
actudly do inline subtitution.

Second, the requirement that dl definitions of an inline function be “exactly the same’ is replaced by
the requirement that the behavior of the program should not depend on whether a call isimplemented
with avigble inline definition, or the externa definition, of afunction. This dlows an inline definition
to be specidized for its use within a particular trandation unit. For example, the externd definition of
alibrary function might include some argument validation that is not needed for calls made from other
functionsin the same library. These extensons do offer some advantages; and programmers who are
concerned about compatibility can smply abide by the Stricter C++ rules.

Note that it is not appropriate for implementations to provide inline definitions of standard library
functions in the standard headers because this can bresk some legacy code that redeclares standard
library functions after including their headers. The i nl i ne keyword is intended only to provide
users with a portable way to suggest inlining of functions. Because the standard headers need not be
portable, implementations have other options aong the lines of:

#define abs(x) _ builtin_abs(x)

or other non-portable mechanisms for inlining slandard library functions.

6.7.5 Declarators
The function prototype syntax was adapted from C++ (see 86.5.2.2 and §6.7.5.3).

Some pre-C89 implementations had a limit of Sx type modifiers (function returning, array of, pointer
to), the limit used in Ritchie's original compiler. This limit was raised to twelve in C89 since the
origina limit has proven insufficient in some cases; in paticular, it did not dlow for Fortran-to-C
trandation, snce Fortran alows for seven subscripts. (Some users have reported using nine or ten
leves, particularly in machine-generated C code.)

6.7.5.1 Pointer declarators

A pointer declarator may have its own type qudifiers to specify the attributes of the pointer itsef, as
XLIX

10

15

20

25

30

35

40

45

| Index

opposed to those of the reference type. The congtruct is adapted from C++.

const i nt * means(variable) pointer to constanti nt , andi nt * const means constant pointer
to (variable) i nt , just asin C++. (And mutatis mutandis for the other type quaifiers) Aswith other
aspects of C type declarators, judicioususe of t ypedef saements can clarify the code.

6.7.5.2 Array declarators

The concept of composite types (86.2.7) was introduced to provide for the accretion of information
from incomplete declarations, such as array declarations with missing size, and function declarations
with missing prototype (argument declarations). Type declarators are therefore said to specify
compatible types if they agree except for the fact that one provides less information of this sort than
the other.

€9XC99 adds a new aray type cdled a varidble length array type. The inability to declare arrays
whose sze is known only a execution time was often cited as a primary deterrent to using C as a
numerical computing language. Adoption of some standard notion of execution time arrays was
consdered crucid for C's acceptance in the numerical computing world.

The number of dements specified in the declaration of a variable length array type is a runtime
expression. Before €9X;,C99, this Size expresson was required to be an integer constant expression.

C9XC99 makes a digtinction between variable length array types and variably modified types, for
example, a pointer to a variable length array. Variable length array types are a subset of al possble
variably modified types.

All variably modified types must be declared at ether block scope or function prototype scope. File
scope identifiers cannot be declared with a variably modified type. Furthermore, array objects
declared with ether the st ati c or ext er n sorage class specifiers cannot be declared with a
variable length array type, dthough block scope pointers declared with the st at i ¢ storage class
specifier can be declared as pointersto variable length array types. Findly, if theidentifier that is being
declared has a variable length array type (as opposed to being a pointer to a variable length array),
then it must be an ordinary identifier. Thisdiminates structure and union members.

Redtricting variable length array declarators to identifiers with automatic storage duration is natural
gnce “variableness’ at file scope requires some notion of parameterized typing. There was sentiment
for dlowing structure members to be variably modified; however dlowing structure members to have
a variable length array type introduces a host of problems such as the treatment when passing these
objects, or even pointers to these objects, as parameters. In addition, the semantics of the
of f set of macro would need to be extended and runtime semantics added. Findly, there was
disagreement whether the size of avariable length array member could be determined using one of the
other members. The Committee decided to limit variable length array types to declarations outside
structures and unions.

Side effects in variable length array Sze expressions are guaranteed to be produced, except in one
context. If a 9ze expresson is part of the operand of a si zeof operator, and the result of that
si zeof operator does not depend on the value of the size expression, then it is unspecified whether
sde effects are produced. In the following example:

| L

10

15

20

25

30

35

40

45

Index

{

int n=5;

int m=7;

size t sz = sizeof(int (*)[n++]);
}
the value of the result of the sizeof operator isthe same asin:
{

int n=5;

int m=7;

size t sz = sizeof (int (*)[m+]);
}

Since the vaue stored in sz does not depend on the Size expression, the side effect in n++ is not
guaranteed to occur. Requiring the side effrect introduced a burden on some implementations. Since
dde effects in this context seemed to have limited utility and are not percelved to be a desired coding
dyle, the Committee decided to make it unspecified whether these sze expressons are actudly
evaluated.

A new feature of €9X:C99: The st at i ¢ Sorage class specifier and any of the type-qudifiers,
restrict,const orvol atil e, can gppear inddethe[and] that are used to declare an array
type, but only in the outermost array type derivation of afunction parameter.

The static keyword provides useful information about the intent of function parameters.
Congder:

voi d fadd(doubl e *a, const double *hb)

r
int i;
for (i =0; i <10; i++) {
if (a[i] < 0.0
return;
a[i] += b[i];
}
return;
}

It would be a significant advantage on some systems for the trandator to initiate, a the beginning of
the function, prefetches or loads of the arrays that will be referenced through the parameters. Thereis
no way in C89 for the user to provide information to the trandator about how many elements are
guaranteed to be available.

LI

10

15

20

25

30

35

40

45

50

Index
In €9C99, theuse of thest at i ¢ keyword in:

voi d fadd(double a[static 10], const double b[static 10])
{
int i;
for (i =0; i < 10; i++) {
if (a[i] < 0.0
return;

afi] += b[i];
}

return;

}

guarantees that both the pointers a and b provide accessto the first ement of an array containing at
least ten elements. The st at i ¢ keyword aso guarantees that the pointer is not NULL and points to
an object of the appropriate effective type. It does not, however, guarantee that a and b point to
unique, non-overlapping objects. Ther est ri ct keyword isused for that purpose asin:

voi d fadd(double a[static restrict 10],
const double b[static restrict 10])

r
int i;
for (i =0; i <10; i++) {
if (a[i] < 0.0
return;
a[i] += b[i];
}
return;
}

This function definition specifies that the parameters a and b are redricted pointers. This is
information that an optimizer can use, for example, to unroll the loop and reorder the loads and stores
of the elements referenced through a and b.

The const keyword can be used to indicate that the pointer will aways point to the same array
object. The function declaration:

voi d f(double x[const], const double y[const]);

is another way of declaring:

void f(double * const x, const double * const vy);

| Ln

10

15

20

25

30

35

40

45

Index
There does not gppear to be much valueinusing vol at i | e to qualify an array function parameter.

6.7.5.3 Function declarators (including prototypes)

The function prototype mechanism is one of the most useful additions to the C language. The fegture,
of course, has precedent in many of the Algol-derived languages of the past 25 years. The particular
form adopted in the Standard is based in large part upon C++.

Function prototypes provide a powerful trandation-time error detection capability. In traditional C
practice without prototypes, it is extremely difficult for the trandator to detect errors (wrong number
or type of arguments) in cals to functions declared in another source file. Detection of such errors
has occurred either at runtime or through the use of auxiliary software tools.

In function cdls not in the scope of a function prototype, integer arguments have the integer
promotions gpplied and f | oat arguments are widened to doubl e. It isnot possblein such acal
to pass an unconverted char or fl oat argument. Function prototypes give the programmer
explicit control over the function argument type conversions, so that the often inappropriate and
sometimes inefficient default widening rules for arguments can be suppressed by the implementation.

Modifications of function interfaces are eader in cases where the actud arguments are still assgnment
compatible with the new forma parameter type: only the function definition and its prototype need to
be rewritten in this case; no function calls need be rewritten. Allowing an optiond identifier to appear
in afunction prototype serves two purposes.

. the programmer can associate a meaningful name with each argument position for
documentation purposes.

. a function declarator and a function prototype can use the same syntax. The
consstent syntax makesit easer for new users of C to learn the language. Automatic
generation of function prototype declarators from function definitions is adso
facilitated.

The Standard requires that cdls to functions taking a variable number of arguments must occur in the
presence of a prototype using the trailing dlipss notation , (. . .). An implementation may thus
assume that dl other functions are cdled with a fixed argument list, and may therefore use possbly
more efficient calling sequences. Programs using old-style headers in which the number of arguments
in the calls and the definition differ may not work in implementations which take advantage of such
optimizations. Thisisnot aquiet change, strictly speaking, since the program does not conform to the
Standard. A word of warning isin order, however, snce the style is not uncommon in existing code,
and since a conforming trandator is not required to diagnose such mismatches when they occur in
separate trandation units. Such trouble spots can be made manifest (assuming an implementation
provides reasonable diagnogtics) by providing new-style function declarations in the trandation units
with the non-matching cdls. Programmerswho currently rely on being able to omit trailing arguments
are advised to recode using the <st dar g. h> paradigm.

LI

10

15

20

25

30

35

40

45

Index

Function prototypes may be used to define function types aswdll:
typedef double (*d_binop) (double A, double B);
struct d_funct {
d_binop f1;

int (*f2)(double, double);
b

struct d_funct hastwo members, both of which hold pointers to functions taking two doubl e
arguments, the function types differ in ther return type.

A function prototype can have parameters that have variable length array types (86.7.5.2) usng a
gpecid syntax asin

int mnimun(int, int [*][*]);
Thisis consstent with other C prototypes where the name of the parameter need not be specified.

There was consderable debate about whether to maintain the current lexical ordering rules for
vaiadle length array parameters in function definitions. For example, the following old-style
declaration

void f(double a[*][*], int n);
void f(a, n)

int n;

double a[n][n];

{
}

Il

cannot be expressed with a definition that has a parameter typelist asin

void f(double a[n][n], int n) [/ eror

{
}

[* %

Previoudy, programmers did not need to concern themselves with the order in which forma
parameters are specified, and one common programming style is to declare the most important
parameters first. With Standard C's lexica ordering rules, the declaration of a would force n to be
undefined or captured by an outside declaration. The possbility of alowing the scope of parameter n
to extend to the beginning of the parameter-type-list was explored (relaxed lexicd ordering), which
would alow the size of parameter a to be defined in terms of parameter n, and could help convert a
Fortran library routine into a C function. Such a change to the lexical ordering rulesis not considered
to beinthe” Spirit of C,” however. Thisisan unforeseen sde effect of Standard C prototype syntax.

| Liv

10

15

20

25

30

35

40

45

Index
The following example demonstrates how to declare parameters in any order and avoid lexicdl
ordering issues.

voi d g(double *ap, int n)
double (*a)[n] = (double (*)[n]) ap;

[* % a[1][2] 1* .. */
}

In this case, the parameter ap is assgned to a loca pointer that is declared to be a pointer to a
variable length array. The function g can becdled asin

{
doubl e x[10][10];

g(&[0][0], 10);

which dlows the array address to be passed as the first argument. The gtrict lexica ordering rules
remainin place.

6.7.6 Typenames

Empty parentheses within a type name are dways taken as meaning function with unspecified
arguments and never as unnecessary parentheses around the dided identifier. This specification
avoids an ambiguity by fiat.

6.7.7 Typedefinitions

At ypedef may only be redeclared in an inner block with a declaration that explicitly contains atype
name. This rule avoids the ambiguity about whether to take thet ypedef as the type name or the
candidate for redeclaration.

Some pre-C89 implementations dlowed type specifiers to be added to a type defined using
t ypedef . Thus

t ypedef short int snall;
unsi gned snmal | x;

would give x the type unsi gned short int. The C8 Committee decided that since this
interpretation may be difficult to provide in many implementations, and since it defests much of the
utility of t ypedef as a data abstraction mechanism, such type modifications are invdid. This
decision isincorporated in the rules of §6.7.2.

A proposedt ypeof operator was rejected on the grounds of insufficient utility.

In C89, at ypedef could be redeclared in an inner block with a declaration that explicitly contained
atype name. Thisrule avoided the ambiguity about whether to teke thet ypedef asthe type name

LV

10

15

20

25

30

35

40

45

Index
or a candidate for redeclaration. In €9X,C99, implicit i nt declarations are not alowed, so this
anbiguity is not possible and the rule is no longer necessary.

Usdng at ypedef to declare a variable length array object (see 86.7.5.2) could have two possible
meanings. Either the size could be eagerly computed when the t ypedef is declared, or the size
could be lazily computed when the object isdeclared. For example

{
t ypedef VLA N];
n++;
VLA obj ect;
I
}

The question arises whether n should be evauated at the time the type definition itsalf is encountered
or each time the type definition is used for some object declaration. The Committee decided that if
the evauation were to take place each time the t ypedef name is used, then a single type definition
could yidd varidble length array types involving many different dimenson sizes. This possbility
seemed to violate the spirit of type definitions. The decison was made to force evaduation of the
expression a the time the type definition itsalf is encountered.

6.7.8 Initialization

An implementation might conceivably have codes for floating zero and/or null pointer other than all
bits zero. In such a case, the implementation must fill out an incomplete initidizer with the various
appropriate representations of zero; it may not just fill the areawith zero bytes.

The C89 Committee considered proposals for permitting automatic aggregate initiaizers to consst of
a brace-enclosed series of arbitrary execution-time expressions, instead of just those usable for a
trandation-time gtatic initidizer. However, cases like this were troubling:

int x[2] ={ f(x[1]), 9(x[0]) };
Rather than determine a set of rules which would avoid pathological cases and yet not seem too
arbitrary, the C89 Committee dected to permit only datic initidizers. Consequently, an
implementation may choose to build a hidden static aggregate, using the same machinery as for other
aggregate initializers, then copy that aggregate to the automatic variable upon block entry.

A dructure expression, such as a cal to a function returning the appropriate structure type, is
permitted as an automatic structure initiaizer, Snce the usage seems unproblematic.

For programmer convenience, even though it isaminor irregularity in initidizer ssmantics, the trailing
null character in astring literd need not initidize an array eement, asin

char mesg[5] = "help!'";

Some widdly used implementations provide precedent.

| Lvi

10

15

20

25

30

35

40

45

Index

K&R dlows a tralling comma in an initidizer a the end of an initidizer-lis. The Standard has
retained this syntax, snce it provides flexibility in adding or deleting members from an initidizer lig,
and smplifies machine generation of such ligts.

Various implementations have parsed aggregate initidizers with partidly eided braces differently.

The Standard has reaffirmed the top-down parse described in K&R. Although the congtruct is
alowed, and its parse well defined, the C89 Committee urges programmers to avoid partialy elided
initializers because such initidizations can be quite confusing to read.

QUIET CHANGE IN C89

Code which relies on a bottom-up parse of aggregate initidizers with partiadly dided
braceswill not yield the expected initidized object.

The C89 Committee has adopted the rule (aready used successfully in some implementations) that the
first member of the union isthe candidate for initidization. Other notations for union initidization were
consdered, but none seemed of sufficient merit to outweigh the lack of prior art.

Thisrule has a pardld with the initidization of sructures. Members of structures are initidized in the
sequence in which they are declared. The same could be said of C89 unions, with the significant
difference that only one union member, the first, can be initidized.

A new feature of €9X:C99. Designated initializers provide a mechanism for initidizing sparse arrays,
a practice common in numerica programming. They add useful functiondity that dready exigts in
Fortran so that programmers migrating to C need not suffer the loss of a program-text-saving
notationa feature.

This feature dso dlows initidization of sparse structures, common in systems progranming, and
dlowsinitidization of unions viaany member, regardless of whether or not it isthe first member.

Designated initiaizers integrate easly into the C grammar and do not impaose any additiond run-time
overhead on a user’s program. Ther initid C implementation appeared in a compiler by Ken
Thompson at AT& T Bell Laboratories.

6.8 Statementsand blocks

The C89 Committee considered proposas for forbidding agot o into a block from outside, since such
a redtriction would make possible much easier flow optimization and would avoid the whole issue of
initidizing auto storage; but it rgjected such a ban out of fear of invaidating working code, however
undisciplined, and out of concern for those producing machine-generated C.

A new feature of €9%X:C99. A common coding practice is dways to use compound statements for
every selection and iteration statement because this guards against inadvertent problems when changes
are made in the future. Because this can lead to surprising behavior in connection with certain uses of
compound literals (86.5.2.5), the concept of ablock has been expanded in €9X-C99.

LVII

LVIII

10

15

20

25

30

35

40

Index
Given the following example involving three different compound literds:

extern void fn(int*, int*);

int exanp(int i, int j)
{
int *p, *q;
it (g =(int[2]){i, j}))
fn(p = (int[5]){9, 8, 7, 6, 5}, Q);
el se
fn(p = (int[5]){4, 3, 2, 1, 0}, q + 1);
return *p;
}

it seemed surprising that just introducing compound statements a so introduced undefined behavior:

extern void fn(int*, int*);

int exanp(int i, int j)
{
int *p, *q;
it (g =(int[2]){i, j})) {
fn(p =(int[5]){9, 8, 7, 6, 5}, Q);
} else {
fn(p = (int[5]){4, 3, 2, 1, 0}, g + 1);
}
return *p; // undefined—no guarantee * p designates an object
}

Therefore, the substatements associated with all selection and iteration statements are now
defined to be blocks, even if they are not also compound statements. A compound statement
remains a block, but is no longer the only kind of block. Furthermore, all selection and iteration
statements themselves are aso blocks, implying no guarantee that * g in the previous example
designates an object, since the above example behaves as if written:

LIX

10

15

20

25

30

35

40

45

| Index

extern void fn(int*, int*);

int exanp(int i, int j)
{
int *p, *q;

{
if (*(g=(int[2]){i, j})) {
I/l * q is guaranteed to designate an object
fn(p = (int[5]){9, 8 7, 6, 5}, 0q);
} else {
I/l * q is guaranteed to designate an object
fn(p = (int[5]){4, 3, 2, 1, 0}, g + 1);

}
I/l * q isnot guaranteed to designate an object

return *p; //*pisnot guaranteed to designate an object
}

If compound literals are defined in selection or iteration statements, their lifetimes are limited to
the implied enclosing block; therefore the definition of “block” has been moved to this section.
This change is compatible with similar C++ rules.

QUIET CHANGE IN €9XC99

There are some pathological cases where program behavior changes quietly as demonstrated by
the following example.

enum {a, b};

int different(void)

{
if (sizeof (enum{b, a}) != sizeof(int))
return a;, // a ==
return b; // whichb?
}

In C89, the declaration enum {b, a} pesists after the i f statement terminates, but in
€9X;C99, the implied block that encloses the entire i f statement limits the scope of that
declaration; therefore the di f f er ent function returns different values in C89 and €9X%-C99.
The Committee views such cases as unintended artifacts of alowing declarations as operands of
cast and si zeof operators; and this change is not viewed as a serious problem.

6.8.1 Labeed statements

Since labd definition and labd reference are syntacticaly distinctive contexts, labels are established asa

| Lx

10

15

20

25

30

35

40

45

Index
Separate name space.

6.8.2 Compound statement

A new feature of €9X%:C99: declarations and statements may be mixed in an arbitrary manner (see |
86.2.4).

6.8.3 Expression and null statements

Thevoi d cast is not needed in an expresson statement, Since any value is aways discarded. Some
compilers prefer this reassurance, however, for functions that return objects of types other than voi d.

6.8.4 Sdection statements

A new feature of €9%:C99: Unlikein C89, dl saection statements and their associated substatements
are blocks. See 86.8.2.

6.84.1 Thei f statement
See 86.8.
6.8.4.2 Thesw t ch statement

The controlling expresson of aswi t ch statement may now have any integer type, even unsi gned
| ong | ong. Foating types were rgected for swi t ch statements since exact equdity in fleating
petatfloating-point is not portable.

case labesarefirst converted to the type of the controlling expression of the swi t ch, then checked
for equality with other labels. No two may match after conversion.

Case ranges of the form, lo . . hi, were serioudy considered, but ultimately not adopted in the
Standard on the grounds that it added no new capability, just a problematic coding convenience. The
construct seems to promise more than it could be mandated to deliver:

. A great dedl of code or jump table space might be generated for an innocent-looking
caserangesuchas0 .. 65535.

. Therange' A .. ' Z' would specify dl the integers between the character code for
“upper-case-A” and that for “upper-case-Z”. In some common character sets this
range would include non-aphabetic characters, and in others it might not include dl the
aphabetic characters, epecidly in non-English character sets.

No serious consderation was given to making swi t ch more structured, as in Pascd, out of fear of
invalidating working code.

LXI

10

15

20

25

30

35

40

45

Index
QUIET CHANGE IN C89

| ong expressons and congtantsin swi t ch statements are no longer truncated to i nt .

6.8.5 Iteration statements

A new feature of €9X:C99: Unlikein C89, dl iteration statements and their associated substatements
areblocks. See 86.8.

6.8.5.3 Thef or statement

A new feature of €9X:C99: It is common for af or loop to involve one or more counter varigbles
which are initidized at the sart of the loop and never used again. In C89 it was necessary to declare
those variables at the start of the enclosing block with a subsequent risk of accidentaly reusing them
for some other purpose. It is now permitted to declare these variables as part of the f or statement
itself. Such aloop variable is in a new scope, so it does not affect any other variable with the same
name and is destroyed at the end of the loop, which can lead to possible optimizations.

To amplify the syntax, each loop is limited to a single declaration (though this can declare severd
variables), and these must have aut o or r egi st er storageclass.

Example:

int i = 42

for (int i =5,] =15; i < 10; i++ j--)
printf("Loop % %\n", i, j);

printf("l =%l\n", i); // thereisnoj inscope

will outpuit:

Loop 5 15
Loop 6 14
Loop 7 13
Loop 8 12
Loop 9 11
| = 42

Note that the syntax alows loopslike:

for (struct s *p =1list, **q; p != NULL; p = *q)
g = &(p->next);

A new feature of €9X:C99: In C89, for loops were defined in terms of a syntactic rewrite into while
loops. This introduced problems for the definition of the continue statement; and it also introduced
problems when the operands of cast and Sizeof operators contain declarations asin:

| Lxn

10

15

20

25

30

35

40

45

Index

enum {a, b};

{
int i, j = Db;
for (i =a;, i <j; 1 +=sizeof(enum{b, a}))
j +=b;
}
not being equivaent to:

enum {a, b};

{
int i, j = Db;
I = a;
while (i <j) {
] += b; /1 whichb?
i += sizeof (enum{b, a}); // declarationofb moves
}
}

because a different b is used to increment i in each case. For this reason, the syntactic rewrite
has been replaced by words that describe the behavior.

6.8.6. Jump statements
6.8.6.1 Thegot o statement

With the combination of variable length arrays (see 86.7.5.2) and mixed code and declarations,
dtuations can arise where a variable length array definition is skipped. In the following example

o
int n=1;
got o | abel;

int a[n];
| abel :

I
}

it is problematic to dlocate the array a because the got 0 statement cauises ajump past the declaration.

Therefore, it is forbidden to branch from outside the scope of avariably modified declaration to a point
that is ingde the scope, dthough it is permitted to jump from inside the scope to a point outside the
scope. In the latter case the trandator is expected to dedlocate the memory associated with the
variablelength array. In the following example

LXI111

10

15

20

25

30

35

40

45

Index

{

int n=1;
| abel :

int a[n];

...

if (nt+ < 10) goto | abel;
}

the got o statement causes the array a to be dedllocated. It is redlocated with a new size that is the
vaue of n each time the declaration is encountered. Other automatic objects are not dedlocated if a
got o causes them to go out of scope.

Seeds0 86.8.

6.8.6.2 Theconti nue statement

The C89 Committee rejected proposed enhancements to cont i nue and br eak which would alow
gpecification of an iteration statement other than the immediately enclosng one on grounds of
insufficient prior art.

6.8.6.3 Thebr eak statement

See §6.8.6.2.
6.9 External definitions

6.9.1 Function definitions

A function definition may have its old form and say nothing about arguments on calls, or it may be
introduced by a prototype which affects argument checking and coercion on subsequent calls.

To avoid a nasty ambiguity, the Standard bans the use of t ypedef namesasforma parameters. For
instance, in trandating the text

int f(size_t, a_t, bt, ct, dt, et, f_t, g_t,
ht, i t, j_t, kt, | _t, mt, nt, ot,
p_t, q.t, r_t, s_t)

the trandator determines that the construct can only be a prototype declaration as soon as it scans the
firsg si ze_t and following comma. In the absence of thisrule, it might be necessary to see the token
following the right parenthesis that closes the parameter list, which would require a sizable |ook-aheed,
before deciding whether the text under scrutiny is a prototype declaration or an old-style function
header definition.

An argument list must be explicitly present in the declarator; it cannot be inherited from at ypedef
(see 86.7.5.3). That isto say, given the definition:

| Lxiv

10

15

20

25

30

35

40

45

| ndex
typedef int p(int g, int r);

the following fragment isinvaid:

p funk /1 weird
{ returnq +r ; }

Some current implementations rewrite the type of, for instance, a char parameter as if it were
declared i nt , Since the argument is known to be passed asani nt in the absence of a prototype. The
Standard requires, however, that the received argument be converted as if by assgnment upon function
entry. Type rewriting isthus no longer permissible.

QUIET CHANGE IN C89

Functions that depend on char or short parameter types being widened toi nt , or
f 1 oat widened to doubl e, may behave differently.

Notes for implementors. the assgnment conversion for argument passing often requires no executable
code. In most two’'s-complement machines, a short or char is a contiguous subset of the bytes
comprising the i nt actually passed for even the most unusua byte orderings, so that assgnment
converson can be effected by adjusting the address of the argument if necessary.

For an argument declared f | oat , however, an explicit converson must usudly be performed from the
doubl e actudly passed to the f | oat desired. Not many implementations can subset the bytes of a
doubl e toget afl oat. Even those that apparently permit smple truncation often get the wrong
answer on certain negative numbers.

Some current implementations permit an argument to be masked by a declaration of the same identifier
in the outermost block of afunction. This usage is dmost dways an erroneous attempt by a novice C
programmer to declare the argument; it is rarely the result of a ddiberate attempt to render the
argument unreachable. The C89 Committee decided, therefore, that arguments are effectively declared
in the outermost block, and hence cannot be quietly redeclared in that block.

The C89 Committee considered it important that a function taking a variable number of arguments,
printf for example, be expressible portably in C. Hence, the C89 Committee devoted much time to
exploring methods of traversing variable argument lists. One proposa was to require arguments to be
passed as a “brick,” that is, a contiguous area of memory, the layout of which would be sufficiently
well specified that a portable method of traversing the brick could be determined.

Severd diverse implementations, however, can implement argument passing more efficiently if the
arguments are not required to be contiguous. Thus, the C89 Committee decided to hide the
implementation details of determining the location of successive eements of an argument list behind a
standard set of macros (see §7.15).

The rule which caused undeclared parameters in an old-style function definition to be implicitly
declared i nt has been removed: undeclared parameters are now a constraint violation. The
effect is to guarantee production of a diagnostic that will catch an additional category of
programming errors. After issuing the diagnostic, an implementation may choose to assume an

LXV

10

15

20

25

30

35

40

45

| Index

implicit i nt declaration and continue trandation in order to support existing programs that
exploited this feature.

6.10 Preprocessing directives

Different implementations have had different notions about whether white space is permissible before
and/or after the # signdling a preprocessor line. The C89 Committee decided to dlow any white space
before the #, and horizontal white space (spaces or tabs) between the # and the directive, snce the
white space introduces no ambiguity, causes no particular processing problems, and alows maximum
flexibility in coding style. Note that smilar considerations gpply for comments, which are reduced to
white space early in the phases of trandation (85.1.1.2):

/* here a comment */ #if BLAH
#/* there a comment */ if BLAH
#if /* every-

where a comment */ BLAH

The linesdl illustrate legitimate placement of comments.

6.10.1 Conditional inclusion
For adiscusson of evaluation of expressonsfollowing #i f , see 86.6.

The operator def i ned was added to C89 to make possible writing boolean combinations of defined
flags with one another and with other incluson conditions. If the identifier def i ned were to be
defined asamacro, def i ned(X) would mean the macro expansion in C text proper and the operator
expression in a preprocessing directive (or else that the operator would no longer be avallable). To
avoid this problem, such adefinition is not permitted (86.10.8).

#el i f wasadded to minimize the stacking of #endi f directivesin multi-way conditionals.

Processing of skipped materia is defined such that an implementation need only examine alogicd line
for the# and then for adirective name. Thus, assuming that xxx isundefined, in this example:

i fndef xxx
define xxx "abc"
#elif xxx >0
Il ...
endi f

an implementation is not required to diagnose an error for the#el i f directive, even though if it were
processed, a syntax error would be detected.

Various proposals were consdered for permitting text other than comments at the end of directives,
paticularly #endi f and #el se, presumably to labe them for more easly matching ther
corresponding #i f directives. The C89 Committee rejected al such proposas because of the
difficulty of specifying exactly what would be permitted and how the trandator would have to process
it.

| Lxvi

10

15

20

25

30

35

40

45

Index

Various proposas were consdered for permitting additional unary expressions to be used for the
purpose of testing for the system type, testing for the presence of afile before #i ncl ude, and other
extensons to the preprocessng language. These proposals were al rgected on the grounds of
insufficient prior art and/or insufficient utility.

6.10.2 Sourcefileinclusion

Specification of the#i ncl ude directive raises digtinctive grammatica problems because the file name
is conventiondly parsed quite differently from an “ordinary” token sequence:

. The angle brackets are not operators, but delimiters.

. The double quotes do not ddimit a string literd with dl its defined escape sequences
(in some systems, backdash is a legitimate character in a filename); the congtruct just
lookslike a string literd.

. White space or characters not in the C repertoire may be permissble and sgnificant
within either or both forms.

These points in the description of phases of trandation are of particular relevance to the parse of the
#i ncl ude directive:

. Any character otherwise unrecognized during tokenization is an instance of an “invaid
token.” As with valid tokens, the spelling is retained so that later phases can map a
token sequence back into a sequence of charactersif necessary.

. Preprocessing phases must maintain the spelling of preprocessing tokens; the filename
is based on the originad spelling of the tokens, not on any interpretation of escape
sequences.

. The filename on the #i ncl ude and #l i ne directives, if it does not begin with " or

<, is macro-expanded prior to execution of the directive. Allowing macros in the
#i ncl ude directive facilitates the parameterization of include file names, an
important issue in transportability.

The file search rules used for the filename in the #i ncl ude directive were left as implementation-
defined. The Standard intends that the rules which are eventudly provided by the implementor
correspond as closaly as possible to the origind K&R rules. The primary reason that explicit rules
were not included in the Standard is the infeasibility of describing a portable file system dructure. It
was considered unacceptable to include UNIX-like directory rules due to significant differences
between this structure and other popular commercid file system structures.

Nested include files raise an issue of interpreting the file search rules. In UNIX C a #i ncl ude
directive found within an included file entails a search for the named file rdative to the file system
directory that holds the outer #i ncl ude. Other implementations, including the earlier UNIX C
described in K&R, dways search relative to the same current directory. The C89 Committee decided
in principle in favor of K&R approach, but was unable to provide explicit search rules as explained
LXVII

10

15

20

25

30

35

40

45

| Index

above.

The Standard specifies a set of include file names which must map onto distinct host file names. In the
absence of such arequirement, it would be impossible to write portable programs using included files.

Subclause 85.2.4.1 on trandation limits contains the required number of nesting levels for included
files. The limits chosen were intended to reflect reasonable needs for users congtrained by reasonable
System resources available to implementors.

By defining afailure to read an included file as a syntax error, the Standard requires that the failure be
diagnosed. More than one proposal was presented for some form of conditiona include, or a directive
suchas#i fi ncl udabl e, but none were accepted by the Committee due to lack of prior art.

In €9X,C99, the number of significant characters in header and source file names was raised from Sx

to eight, and digits were alowed, in the belief that dl implementations could support this, and because
it could be of help to users.

6.10.3 Macro replacement

The specification of macro definition and replacement in the Standard was based on these principles:

. Interfere with existing code as little as possible.

. Keep the preprocessng mode smple and uniform.

. Allow macros to be used wherever functions can be.

. Define macro expansion such that it produces the same token sequence whether the

macro calls appear in open text, in macro arguments, or in macro definitions.

Preprocessing is specified in such a way that it can be implemented either as a separate text-to-text
prepass or as a token-oriented portion of the compiler itsdf. Thus, the preprocessng grammar is
gpecified in terms of tokens.

However the newline character must be a token during preprocessing because the preprocessng
grammar is line-oriented. The presence or absence of white space is aso important in severa contexts,
such as between the macro name and a following parenthess in a #def i ne directive. To avoid
overly congtraining the implementation, the Standard alows both the preservation of each white space

character (which is easy for atext-to-text prepass) and the mapping of white space into asingle “white
space’ token (which is easer for token-oriented trandators).

The Committee desired to disalow “pernicious redefinitions’ such as

(in headerL.h)

#def i ne NBUFS 10

(in header2.h)

| Lxvin

10

15

20

25

30

35

40

45

Index

#defi ne NBUFS 12

which are clearly invitations to serious bugs in a program. There remained, however, the question of
“benign redefinitions,” such as

(in headerL.h)

#define NULL_ DEV /* the first time */ O

(in header2.h)

#define NULL_DEV /* the second tine */ O

The C89 Committee concluded that safe programming practice is better served by alowing benign
redefinition where the definitions are the same. This dlows independent headers to specify their
understanding of the proper vaue for a symbol of interest to each, with diagnostics generated only if
the definitions differ.

The definitions are congdered “the same’ if the identifier-lists, token sequences, and occurrences of
white space (ignoring the spelling of white space) in the two definitions are identical.

Pre-C89 implementations differed on whether keywords could be redefined by macro definitions. The
C89 Committee decided to dlow this usage; it saw such redefinition as useful during the transition
from existing to conforming trandators.

These definitionsillugtrate possible uses:

define char si gned char
define sizeof (int) sizeof
define const

The first case might be useful in moving extant code from an implementation in which plain char is
sgned to onein whichitisunsigned. The second case might be useful in adapting code which assumes
that the si zeof operator yieds an i nt vaue. The redefinition of const could be useful in
retrofitting more modern C code to an older implementation.

As with any other powerful language feature, keyword redefinition is subject to abuse. Users cannot
expect any meaningful behavior to come about from source files starting with

#define int double
#i ncl ude <stdi o. h>

or Smilar subversons of common sense.
A new feature of €9>:C99: C89 introduced a standard mechanism for defining functions with variable

numbers of arguments, but did not alow any way of writing macros with the same property. For
example, there is no way to write amacro that lookslikeacal topri nt f .

LXIX

10

15

20

25

30

35

40

45

| Index

This facility is now available. The macro definition uses an dlipss in the same way to indicate a
variable argument list. However, snce macro subgtitution is textua rather than run-time, a different
mechanism is used to indicate where to subgtitute the arguments. the identifier VA ARGS

Thisisreplaced by al the arguments that match the lips's, including the commas between them.

For example, the following macro givesa“debugging pri nt f ”:

#i f def DEBUG
#define dfprintf(stream ...) \

fprintf(stream "DEBUG " _ VA ARGS)
#el se
#define dfprintf(stream ...) ((stream _ VA ARGS , 0))
#endi f

#define dprintf(...) dfprintf(stderr, _ VA ARGS)
For example,

dprintf("X = %l\n", x);
expandsto

dfprintf(stderr, "X = %l\n", x);

and thus to one of

fprintf(stderr, "DEBUG " "X = %\n", Xx);

or
((stderr, "X =9%\n", x, 0));

If DEBUG is true, this calls f pri nt f, but first catenating " DEBUG " to the format (which must
therefore be a smple string). Otherwise it creates a comma expression (so that the arguments are il
evaluated) with the vaue zero.

There must be at least one argument to match the dlipsis. This requirement avoids the problems that
occur when the trailing arguments are included in alist of arguments to another macro or function. For
example, if dpr i nt f had been defined as

#define dprintf(format,...) \
dfprintf(stderr, format, _ VA ARGS)

and it were adlowed for there to be only one argument, then there would be a tralling comma in the
expanded form. While some implementations have used various notations or conventions to work
around this problem, the Committee felt it better to avoid the problem atogether. Similarly, the
_ VA ARGS _ notation was preferred to other proposasfor this syntax.

| Lxx

10

15

20

25

30

Index

A new feature of €9X:C99: Function-like macro invocations may aso now have empty arguments,
that is, an argument may consist of no preprocessing tokens. In C89, any argument that consisted of
no preprocessing tokens had undefined behavior, but was noted as a common extension.

A function-like macro invocation f () hasthe form of either acall with no arguments or acal with one
empty argument. Which form it actualy takes is determined by the definition of f , which indicates the
expected number of arguments.

The sequence
#define TENTH 0. 1
#define F f
#define D /'] expandsinto no preprocessing tokens

#define LD L
#define glue(a, b) a # b
#define xglue(a, b) glue(a, b)

fl oat f = xglue(TENTH, F) ;

doubl e d = xgl ue(TENTH, D ;

| ong double Id = xgl ue(TENTH, LD);
resultsin

fl oat f =0.1f ;

doubl e d =0.1:

| ong double Id = 0. 1L;

The expansion of xgl ue(TENTH, D) firs expandsinto gl ue(0. 1,) which isamacro invocation
with an empty second argument, which then expandsinto 0. 1.

LXXI

10

15

20

25

30

35

40

45

| Index

6.10.3.2 The# operator

Some pre-C89 implementations decided to replace identifiers found within a string literd if they
matched a macro argument name. The replacement text is a “stringized” form of the actua argument
token sequence. This practice appears to be contrary to K& R’ s definition of preprocessing in terms of
token sequences. The C89 Committee declined to elaborate the syntax of string literals to the point
where this practice could be condoned; however, since the facility provided by this mechanism seems
to be widdy used, the C89 Committee introduced a more tractable mechanism of comparable power.

The # operator, which may be used only in a#def i ne expanson, was introduced for stringizing. It
causes the forma parameter name following to be replaced by a string literd formed by stringizing the
actual argument token sequence. In conjunction with string literal concatenation (see 86.4.5), use of
this operator permits the construction of strings as effectively as by identifier replacement within a
gring. An examplein the Standard illustrates this feature.

One problem with defining the effect of stringizing is the treatment of white space occurring in macro
definitions. Where this could be discarded in the past, now upwards of one logicd line may have to be
retained. As a compromise between token-based and character-based preprocessing disciplines, the
C89 Committee decided to permit white space to be retained as one bit of information: none or one.
Arhitrary white space is replaced in the string by one space character.

The remaining problem with stringizing was to associate a “pelling” with each token. The problem
arises in token-based preprocessors that might, for instance, convert a numeric literd to a canonica or
internal representation, losing information about base, leading zeros, etc. In the interest of amplicity,
the C89 Committee decided that each token should expand to just those characters used to specify it in
the origina source text.

QUIET CHANGE IN C89

A macro that relies on forma parameter substitution within a string literd will produce
different results.

6.10.3.3 The## operator

Another facility relied on in much current practice but not specified in K&R is “token pasting,” or
building a new token by macro argument subgtitution. One pre-C89 implementation replaced a
comment within a macro expanson by no characters instead of the single space cdled for in K&R.
The C89 Committee considered this practice unacceptable.

As with “gtringizing,” the facility was consdered desirable, but not the extant implementation of this
facility, so the C89 Committee invented another preprocessing operator. The ## operator within a
macro expanson causes concatenation of the tokens on elther side of it into anew composite token.
The specification of this pasting operator is based on these principles:

. Paste operations are explicit in the source.

. The ## operator is associative.

LXXII

10

15

20

25

30

35

40

45

Index

. A forma parameter as an operand for ## is not expanded before pasting.
The actual parameter is substituted for the formal parameter; but the
actua parameter isnot expanded. Given, for example

#define a(n) aaa ## n
#define b 2

the expanson of a(b) isaaab, not aaa2 or aaan.
. A norma operand for ## is not expanded before pasting.
. Pasting does not cross macro replacement boundaries.
. The token resulting from a paste operation is subject to further macro expansion.

These principles codify the essentia features of prior art and are consistent with the specification of the
stringizing operator.

6.10.3.4 Rescanning and further replacement

A problem faced by many pre-C89 preprocessors is how to use a macro name in its expansion without
auffering “recursive death.” The C89 Committee agreed Smply to turn off the definition of a macro for
the duration of the expansion of that macro. An example of thisfeature isincluded in the Standard.

The rescanning rulesincorporate an ambiguity. Given the definitions

#define f(a) a*g
#define ¢ f

it is clear (or a least unambiguous) that the expansion of f (2) (9) is2*f(9), thef inthe result
being introduced during the expansion of the original f , and so is not further expanded.

However, given the definitions

#define f(a) a*g
#define g(a) f(a)

the expansion will to be either 2*f (9) or 2*9* g: there are no clear grounds for making a decision
whether thef (9) token string resulting from the initial expangion of f and the examination of the rest
of the source file should be consdered as nested within the expanson of f or not. The C89
Committee intentiondly left this behavior ambiguous as it saw no useful purpose in specifying al the
quirks of preprocessing for such questionably useful constructs.

6.10.3.5 Scope of macro definitions

Some pre-C89 implementations maintained a stack of #def i ne ingtances for each identifier, and
#undef samply popped the stack. The C89 Committee agreed that more than one level of #def i ne

LXXII1

10

15

20

25

30

35

40

45

| Index

was more prone to error than utility.

It isexplicitly permitted to #undef amacro that has no current definition. This capability is exploited
in conjunction with the standard library (see §7.1.4).

6.10.4 Linecontrol

Adde from giving valuesto _ _LINE__ and _ _FILE_ _ (see 86.10.8), the effect of #l i ne is
ungpecified. A good implementation will presumably provide line and file information in conjunction
with most diagnogtics.

A new proposal for €9XC99 to dlow the #l i ne directive to appear within macro invocations was
congdered. The Committe decided to not alow any preprocessor directives to be recognized as such
ingde of macros.

6.10.5 Error directive

The#er r or directive was introduced in C89 to provide an explicit mechanism for forcing trandation
to fal under certain conditions. Formaly, the Standard can require only that a diagnostic be issued
when the #er r or directive is processed. It is the intent of the Committee, however, that trandation
cease immediately upon encountering this directive if this is feasble in the implementation. Further
diagnostics on text beyond the directive are apt to be of little value.

6.10.6 Pragmadirective

The #pr agma directive was added in C89 as the universal method for extending the space of
directives.

A new feature of €9X:C99. Some #pr agna directives have been standardized; and directives whose
first preprocessing token is STDC are reserved for standardized directives.

6.10.7 Null directive

The existing practice of using empty # linesfor spacing is supported in the Standard.

6.10.8 Predefined macro names

The rule that these macros may not be redefined or undefined reduces the complexity of the name
gpace that the programmer and implementor must understand; and it recogni zes that these macros have

gpecid built-in properties.

The macros _ _DATE__ and _ _TIME__ were added in C89 to make available the time of
trandation. A particular format for the expanson of these macros was specified to ad in parang
gringsinitidized by them.

Themacros _ LINE__and __FILE _ were added in C89 to give programmers access to the

| Lxxiv

10

15

20

25

30

35

40

45

Index
source line number and file name.

The macro _ _STDC__ dlows for conditiona trandation on whether the trandator clams to be
standard-conforming. It is defined as having the value 1. Future versions of the Standard could define
it as 2, 3, €c., to dlow for conditiond compilation on which verson of the Standard a trandator
conforms to. The C89 Committee fet that this macro would be of use in moving to a conforming
implementation.

Themacro __STDC VERSI ON__ wasadded in C95.

A new feature of E€9——C9XC9: C99 adds two additiond predefined macros:
__STDC IEC 559 _and__STDC | EC 559 COWPLEX _

6.10.9 Pragma operator

A new feature of €9X:C99. As an dternative syntax for a #pr agnma directive, the _Pragnma
operator has the advantage that it can be used in a macro replacement list. If atrandator is directed to
produce a preprocessed verson of the source file, then expressons involving the unary _Pr agna
operator and #pr agma directives should be treated consistently in whether they are preserved and in
whether macro invocations within them are expanded.

6.11 Futurelanguagedirections

This subclause includes specific mention of the future direction in which the Committee intends to
extend and/or restrict the language. The contents of this subclause should be considered as quite likely
to become a part of the next verson of the Standard. Implementors are advised that failure to take
heed of the points mentioned herein is consdered undesirable for a conforming implementation. Users
are advised that failure to take heed of the points mentioned herein is considered undesirable for a
conforming program.

6.11.5 Storage-class specifiers

The practice of placing the storage class specifier other than first in a declaration was branded as
obsolescent. The Committee felt it desirable to rule out such constructs as

enum { aaa, aab,
[* ec. */
zzy, zzz } typedef a2z;

in some future standard.

6.11.6 Function declarators

The characterization as obsolescent of the use of the “old styl€’ function declarations and definitions,
that is, the traditiona style not using prototypes, signals the Committee' s intent that the new prototype
style should eventualy replace the old style.

LXXV

10

| Index
The case for the prototype style is presented in 86.5.2.2 and 86.7.5.3. The gist of this case is that the
new syntax addresses some of the most glaring weaknesses of the language defined in K&R, that the
new styleis superior to the old style on every count.

It was obvioudly out of the question to remove syntax used in the overwhelming mgority of extant C
code, so the Standard specifies two ways of writing function declarations and function definitions.
Characterizing the old style as obsolescent is meant to discourage its use and to serve as a strong
endorsement by the Committee of the new style. It confidently expects that approva and adoption of
the prototype style will makeit feasible for some future C Standard to remove the old style syntax.

LXXVI

LXXVII

10

15

20

25

30

35

40

45

Index

7. Library

7.1 Introduction

The base document for this part of the Standard was the 1984 /usr/group Sandard. The /usr/group
document contains definitions of some facilities which were specific to the UNIX operating system and
not relevant to other operating environments, such as pipes, i oct |, file access permissons and
process control facilities. Those definitions were dropped from C89. Other functions were excluded
as well because they were non-portable or were ill-defined.

Other facilities not in the /usr/group library but present in many UNIX implementations, such as the
curses (termind-independent screen handling) library were consdered to be more complex and less
essentid than the facilities of /usr/group; these functions were not added to the Standard.

The prototypes for severa library routines were changed in €9XC99 and they now contain the new
keyword rest ri ct as part of some parameter declarations. Therestri ct keyword alows the
prototype to express what was previoudy expressed by words.

The definition of certain C library routines such as nmenctpy contain the words:
If copying takes place between objects that overlap, the behavior is undefined.

These words are present because copying between overlapping objects is quite rare, and this alowed
vendors to provide efficient implementations of these library routines. Now that restri ct dlows
users to express these same non-overlgpping semantics, it is used in prototype declarations to
demongtrate the utility of the keyword, and to act as guidance to those wishing to understand how to
useit correctly.

In the case of mentpy above, the prototypeis now declared as:

void *mencpy(void * restrict sl, const void * restrict s2,
size t n);

andtherestri ct keywordstell the trandator that the first two parameters, s1 and s2, are pointers
that point to digoint data objects. Essentidly, this keyword provides the same information as the
words that indicate copying between overlapping objectsis not alowed.

Besdes the library functions whose specifications state that copying between overlapping objects is not
alowed, severa others have adso had their prototype adorned with the restri ct keyword. For
example

int printf(const char * restrict format, ...);

A critica question that one asks when deciding if a pointer parameter should ber est ri ct -qudified
or not is, if copying takes place between overlgpping objects, will the function behave as expected. In
the case of the pri nt f function, unexpected behavior occursin acall such as.

10

15

20

25

30

35

40

45

| Index

{
int *p = malloc(n * sizeof(int));
char *cp = (char *) p;
strcpy(cp, "% % 9%\n");
printf(cp, "stringl", p, "string2");
}

The unexpected behavior occurs because:

1. character pointers can dias other pointersto objects.
3:2.p and cp arediasesfor the same dynamic object dlocated by the call to therral | oc function.
5.3.the % specifier causes an integer vaue to overwrite the string pointed to by cp through p.

Remember that the const qudifier in the pri ntf prototype only guarantees that the parameter
pointing a the format string is read-only. Another dias, p, is dlowed to modify the same format
string.

Since the implementation costs are high if vendors are forced to cater to this extremely rare case, the
restrict keywordisused to explicitly forbid Stuations like these.

Another library routinethat usesr est ri ct is

char *fgets(char * restrict s, int n,
FILE * restrict stream;

Again, since a character pointer can be a potential dias with other pointers, restri ct isused to
make it clear to the trandator that parameter s is never an dias with parameter st r eamwhen the
f get s functioniscdled in agtrictly conforming program.

Findly, the prototypes of certain library functions are adorned with r est ri ct only if the pointer is
used to access data. For example:

wchar t *wcstok(wchar _t * restrict sl,
const wchar_t * restrict s2,
wchar _t ** restrict ptr);

The parameter ptr only hasarestri ct qudifier on the top-level pointer type. The reason the
parameter declaration is not

wchar _t * restrict * restrict ptr

is that only the top-level pointer type is used to access an object. The lower-leve pointer typeis only
used to track the location in the wide character string where the search terminated. Thus there is no
possibility of copying taking place between overlapping objects through the lower-level pointer.

In generd, arestri ct -quaified pointer provides useful information in the prototype of a library
routine if more than one parameter with pointer type can dias each other. Sometimes the diasing rules

10

15

20

25

30

35

40

45

Index

prevent this from happening (for example, a pointer to an integer type cannot dias a pointer to a
floating-point type). When the aiasing rules allow two pointers to point a overlapping objects, then
therestri ct keyword can be used to indicate that this function should not be called with pointersto
overlgpping objects. This guideline dso applies outsde of the library if a parameter can dias afile-
scope pointer.

7.1.1 Definitions of terms

The decimal-point character is the single character used in the input or output of fleating
petntfloating-point numbers, and may be changed by set | ocal e. Thisis alibrary congtruct; the
decimd point in numeric literalsin C source text is always a period.

7.1.2 Standard headers

Whereas in pre-C89 practice only certain library functions were associated with header files, C89
mandated that each library function be declared in some header. Severd headers were therefore added,
and the contents of afew old ones were changed, in each new Standard, C89, C95 and €9X%-C99.

In many implementations the names of heaeders are the names of files in specia directories. This
implementation technique is not required, however: the Standard makes no assumptions about the
form that a file name may take on any syssem. Headers may thus have a specid datus if an
implementation so chooses. Standard headers may even be built into a trandator, provided that their
contents do not become “known” until after they are explicitly included. One purpose of permitting
these header “files’ to be “built in” to the trandator isto dlow an implementation of the C language as
an interpreter in afree-standing environment where the only “file€’ support may be a network interface.

The C89 Committee decided to make library headers “idempotent,” that is, they should be includable
any number of times, and includable in any order. This requirement, which reflects widespread existing
practice, may necesstate some protective wrappers within the headers to avoid, for instance,
redefinitions of t ypedef s. To ensure that such protective wrapping can be made to work, and to
ensure proper scoping of typedefs standard headers may only be included outsde of any
declaration.

A common way of providing this“protective wrapping” is

#i fndef _ ERRNO H
#define _ ERRNO H

/* bodyof <errno.h> */
[* .o*

#endi f

where_ ERRNO_Hisan otherwise unused macro name.

Implementors often desire to provide implementations of C in addition to that prescribed by the
Standard. For ingtance, an implementation may want to provide system-specific 1/O facilities in
<stdi 0. h>. A technique that alows the same header to be used in both the conforming and
dternate implementations is to add the extra, non-Standard declarations to the header asin

10

15

20

25

30

35

40

| Index

#ifdef _ EXTENSI ONS_

typedef int file_no;

extern int read(file_no _N, void * _Buffer, int _Noytes);
..l

#endi f

The header is usable in a drictly conforming program in the absence of a definition of
_ _EXTENSI ONS_

7.1.3 Reserved identifiers

To give implementors maximum latitude in packing library functions into files, al externd identifiers
defined by the library are reserved in a hosted environment. This means, in effect, that no user-supplied
externd names may match library names, not even if the user function has the same specification.
Thus, for instance, st rt od may be defined in the same object module as pri nt f, with no fear that
link-time conflicts will occur. Equdly, st rt od may cdl printf,orprintf maycdlstrt od,for
whatever reason, with no fear that the wrong function will be called.

Also reserved for the implementor are all externa identifiers beginning with an underscore, and al
other identifiers beginning with an underscore followed by a capitd letter or an underscore. This gives
a name space for writing the numerous behind-the-scenes non-externd macros and functions a library
needs to do its job properly.

With these exceptions, the Standard assures the programmer that all other identifiers are available, with
no fear of unexpected collisions when moving programs from one implementation to another®. Note,
in particular, that part of the name space of internd identifiers beginning with underscore is available to
the user: trandator implementors have not been the only ones to find use for “hidden” names. Cis
such a portable language in many respects that the issue of *name space pollution” has been and is one
of the principal barriers to writing completely portable code. Therefore the Standard assures that
macro andt ypedef namesarereserved only if the associated header is explicitly included.

7.1.4 Useof library functions

To make usage more uniform for both implementor and programmer, the Standard requires that every
library function, unless specifically noted otherwise, must be represented as an actua function, in case a
program wishes to pass its address as a parameter to another function. On the other hand, every library
function is now a candidate for redefinition in its associated header as a macro, provided that the macro
performs a “safe’ evauation of its arguments, that is, it evaluates each of the arguments exactly once
and parenthesi zes them thoroughly; and provided that its top-level operator is such that the execution
of the macro is not interleaved with other expressons. Two exceptions are the macros get ¢ and
put ¢, which may evauate thelir arguments in an unsafe manner (see 87.19.7.5 and §87.19.7.8).

4 . .] . .
See §86.2.2.1 for a discussion of some of the precautions an implementor should take to keep this promise. Note aso that any implementation-
defined member names in structures defined in <t i ne. h> and <l ocal e. h> must begin with an underscore, rather than following the pattern of
other names in those structures.

\Y

10

15

20

25

30

35

40

Index
If a program requires that a library facility be implemented as an actua function, not as a macro, then
the macro name, if any, may be erased by using the#undef preprocessing directive (see 86.10.3.5).

All library prototypes are specified in terms of the “widened” types. an argument formerly declared as
char isnow written asi nt . Thisensures that most library functions can be cdled with or without a
prototype in scope, thus maintaining backwards compatibility with pre-C89 code. Note, however, that
gnce functionslike pri nt f and scanf use variable-length argument lists, they must be called in the

scope of a prototype.

The Standard contains an example showing how certain library functions may be “built in” in an
implementation that remains conforming.

Unlike in C89, some names are no longer unique in the first six characters. Such uniqueness is
unnecessary because €9xC99 no longer allows that minimum trandation limit.

7.2 Diagnostics<assert. h>

7.2.1 Program diagnostics
7.2.1.1 Theassert macro

Some pre-C89 implementations tolerated any arbitrary scdar expresson as the argument to_the
assert;_macro, but the C89 Committee decided to require correct operation only for i nt
expressons.. —C9X%;C99, on the other hand, permits arbitrary scdar expressons. There are other
€9XC99 macros that accept generic types, and such an implementation of asser t istrivid.

For the sake of implementors, no hard and fast format for the output of a failing assertion is required;
but the Standard mandates enough machinery to replicate the form shown in the footnote.

It can be difficult or impossbleto makeasser t atruefunction, soit is restricted to macro form-enly.

To minimize the number of different methods for program termination, assert is now defined in
terms of theabor t function.

Note that defining the macro NDEBUG to disable assertions may change the behavior of a program
with no failing assertion if any argument expression to assert has side effects, because the expresson is
no longer evaluated.

It is possible to turn assertions off and on in different functions within a trandation unit by defining or
undefining NDEBUG and including <assert. h> agan. The implementation of this behavior in
<assert. h>isgample undefine any previous definition of assert before providing the new one.
Thus the header might look like

10

15

20

25

30

35

40

Index

#undef assert
#i f def NDEBUG
#define assert(ignore) ((void)O0)
#el se
extern void _ _gripe(char *_Expr, char *_File,
int _Line, const char * Func);
#define assert(expr) \
((expr) ? (void)O :\
__gripe(#expr, _ _FILE _, _ LINE__, _ func__))
#endi f

Note that assert must expand to avoi d expresson, so the more obviousi f statement does not
auffice as a definition of assert. Note aso the avoidance of names in a header that would conflict
with the user’ s name space.

7.3 Complex arithmetic <conpl ex. h>
A new feature of €9X.C99.

The choice of | instead of i for the imaginary unit concedes to the widespread use of the
identifier i for other purposes. The programmer can use a different identifier, say j , for the
imaginary unit by following the inclusion of <conpl ex. h> with

#undef |
#define | _lmaginary_|

An | suffix to designate imaginary constants is not required, as multiplication by | provides a
sufficiently convenient and more generally useful notation for imaginary terms.

The corresponding real type for the imaginary unit isf | oat so that use of | for agorithmic or
notational convenience will not result in widening types.

On systems with imaginary types, the programmer has the ability to control whether use of the
macro | introduces an imaginary type, by explicitly defining | to be _|I maginary_| or
Conpl ex|. Disdlowing imaginary types is useful for some programs intended to run on
implementations without support for such types.

The macro _| magi nary_| provides atest for whether imaginary types are supported (whether
or not the implementation fully supports Annex G).

The cis function (cos(x) + I*sin(x)) was considered but reected because its

implementation is easy and straightforward, even though some implementations could compute
sine and cosine more efficiently in tandem.

VI

10

15

20

25

30

35

40

Index
7.3.9 Manipulation functions
7.3.9.4 Thecproj function

Two topologies are commonly used in complex mathematics. the complex plane with its
continuum of infinities, and the Riemann sphere with its single infinity. The complex plane is
better suited for transcendental functions, the Riemann sphere for agebraic functions. The
complex types with their multiplicity of infinities provide a useful (though imperfect) model for
the complex plane. Thecpr oj function helps model the Riemann sphere by mapping dl infinities
to one, and should be used just before any operation, especially comparisons, that might give
spurious results for any of the other infinities.

Note that a complex value with one infinite part and one NaN part is regarded as an infinity, not a
NaN, because if one part is infinite, the complex value is infinite independent of the value of the
other part. For the same reason, cabs returns an infinity if its argument has an infinite part and a
NaN part.

7.4 Character Handling <ct ype. h>

Pains were taken to eiminate any ASCII dependencies from the definition of the character handling
functions. One notable result of this policy was the dimination of the function i sasci i, both
because of the name and because its function was hard to generdize. Neverthdess, the character
functions are often most clearly explained in concrete terms, so ASCII is used frequently to express
examples.

Since these functions are often used primarily as macros, their domain is restricted to the smdl positive
integers representable in an unsi gned char , plus the value of ECF. ECF is traditiondly - 1, but
may be any negative integer, and hence distinguishable from any valid character code. These macros
may thus be efficiently implemented by using the argument as an index into asmal array of attributes.

87.26.2 warns that names beginning with i s and t o, when these are followed by lower-case |etters,
are subject to future use in adding itemsto <ct ype. h>.

7.4.1 Character classification functions
The definitions of printing character and control character have been generdized from ASCII.

Note that none of these functions returns a nonzero vaue (true) for the argument value ECF.

VIl

10

15

20

25

30

35

Index
7.4.1.2 Thei sal pha function

The Standard specifies that the set of Ietters, in the default locale, comprises the 26 upper-case and 26
lower-case letters of the Latin (English) dphabet. This set may vary in alocale-specific fashion (that
is, under control of theset | ocal e function, see 87.11.1.1) so long as

. i supper (c) impliesi sal pha(c)

. i sl ower (c¢) impliesi sal pha(c)

. i sspace(c), ispunct(c), iscntrl(c), ad isdigit(c) dl imply
I'i sal pha(c)

7.4.1.3 Thei sbl ank function

A new feature of €9X:C99: text processing applications often need to distinguish white space that can
occur within lines from white space that also separates lines (for example, see 86.10 regarding use of
whitespace in the preprocessor). Thisdistinction is aso a property of POSIX locae definition files.

7.4.1.10 Thei sspace function

I sspace iswiddy used within the library as the working definition of white space.

7.4.2 Character case mapping functions

Pre-C89 libraries had dmost equivdent macros, _t ol ower and _t oupper, for these functions.
The Standard now permits any library function to be additionally implemented as a macro provided that
the underlying function must still be present. _t oupper and _t ol ower are thus unnecessary and
were dropped as part of the generd standardization of library macros.

75 Errors<errno. h>

<er rno. h> is a header invented to encapsulate the error handling mechanism used by many of the
library routinesin<mat h. h> and<st dl i b. h>.?

The error reporting machinery centered about the setting of errno is generdly regarded with
tolerance at best. It requires a “pathologica coupling” between library functions and makes use of a
dtatic writable memory cdl, which interferes with the congtruction of shareable libraries. Nevertheless,
the C89 Committee preferred to standardize this existing, however deficient, machinery rather than
invent something more ambitious. 1N €9X%,C99, er r no need no longer be set by math functions.

The definition of er r no as an Ivalue macro grants implementors the license to expand it to something
like* __errno_addr (), where the function returns a pointer to the current modifiable copy of

> In early drafts of C89, er r no and related macros were defined in <st ddef . h>. When the C89 Committee decided that the other definitions
in this header were of such general utility that they should be required even in freestanding environments, it created <er r no. h>.

VI

10

15

20

25

30

35

40

45

Index
errno.

7.6 Floating-point environment <f env. h>
A new feature of €9X.C99.

The floating-point environment as defined here includes only execution-time modes, not the
myriad of possible trandation-time options that can affect a program’s results. Each such
option’s deviation from this specification should be well documented.

Dynamic vs. static modes
Dynamic modes are potentially problematic because

1. the programmer may have to defend against undesirable mode settings, which imposes
intellectua as well as time and space overhead.

2. the trandator may not know which mode settings will be in effect or which functions change
them at execution time, which inhibits optimization.

€9X.C99 addresses these problems without changing the dynamic nature of the modes.

An dternate approach would have been to present a model of static modes with explicit
utterances to the trandator about what mode settings would be in effect. This would have
avoided any uncertainty due to the global nature of dynamic modes or the dependency on
unenforced conventions. However, some essentially dynamic mechanism still would have been
needed in order to alow functions to inherit (honor) their caller's modes. The IEC 60559
standard requires dynamic rounding direction modes. For the many architectures that maintain
these modes in control registers, implementation of the static model would be more costly. Also,
standard C has no facility, other than pragmas, for supporting static modes.

An implementation on an architecture that provides only static control of modes, for example
through opword encodings, still could support the dynamic model, by generating multiple code
streams with tests of a private globa variable containing the mode setting. Only modules under
an enabling FENV_ACCESS pragma would need such special treatment.

Trandation

An implementation is not required to provide a facility for atering the modes for trandation-time
arithmetic, or for making exception flags from the trandation available to the executing program.
The language and library provide facilities to cause floating-point operations to be done at
execution time when they can be subjected to varying dynamic modes and their exceptions
detected. The need does not seem sufficient to require similar facilities for trandation.

Thef except _t type

f except _t does not have to be an integer type. Its values must be obtained by a cal to
f eget except f | ag, and cannot be created by logical operations from the exception macros.

IX

10

15

20

25

30

35

40

45

Index

An implementation might smply implement f except _t asani nt and use the representations
reflected by the exception macros, but isn't required to: other representations might contain extra
information about the exceptions. f except _t might be a st ruct with a member for each
exception (that might hold the address of the first or last floating-point instruction that caused that
exception). €9XC99 makes no claims about the internals of an f except _t, and so the user
cannot inspect it.

Exception and rounding macr os

Unsupported macros are not defined in order to assure that their use results in atranslation error.
A program might explicitly define such macros to alow trandation of code (perhaps never
executed) containing the macros. An unsupported exception macro should be defined to be O, for
example

#i f ndef FE_I NEXACT
#define FE_I NEXACT O
#endi f

50 that a bitwise OR of macros has a reasonabl e effect.
Exceptions

In previous drafts of this specification, several of the exception functions returned an i nt
indicating whether the except s argument represented supported exceptions. This facility was
deemed unnecessary because except s & ~FE_ALL_EXCEPT can be used to test invaidity of
the except s argument.

Rounding precision

The IEC 60559 floating-point standard prescribes rounding precision modes (in addition to the
rounding direction modes covered by the functions in this section) as a means for systems whose
results are always double or extended to mimic systems that deliver results to narrower formats.
An implementation of C can meet thisgoal in any of the following ways:

1. By supporting the evaluation method indicated by FLT _EVAL_METHOD equal to O.

2. By providing pragmas or compile options to shorten results by rounding to IEC 60559 single
or double precision.

3. By providing functions to dynamically set and get rounding precision modes which shorten
results by rounding to IEC 60559 single or double precison. Recommended are functions
fesetprec and fegetprec and macros FE FLTPREC, FE DBLPREC, and
FE_LDBLPREC, analogous to the functions and macros for the rounding direction modes.

This specification does not include a portable interface for precison control because the IEC
60559 floating-point standard is ambivalent on whether it intends for precision control to be
dynamic (like the rounding direction modes) or static. Indeed, some floating-point architectures
provide control modes suitable for a dynamic mechanism, and others rely on instructions to

| x

10

15

20

25

30

35

40

45

Index
ddiver single- and double-format results suitable only for a static mechanism.

7.6.1 TheFENV_ACCESS pragma

The performance of code under FENV_ACCESS ON may well be important; in fact an algorithm
may access the floating-point environment specifically for performance. The implementation
should optimize as aggressively as the FENV_ACCESS pragma allows. An implementation could
also smply honor the floating-point environment in all cases and ignore the pragma.

The Committee’'s model is that the regions of code that are under FENV_ACCESS OFF do not
have to maintain the exception flags, even if there are regions with FENV_ACCESS ON elsewhere
in the program.

7.6.2 Floating-point exceptions

7.6.2.3 Thef erai seexcept function

Raising overflow or underflow is allowed to also raise inexact because on some architectures the
only practical way to raise an exception is to execute an instruction that has the exception as a
side effect. Any IEC 60559 operation that raises either overflow or underflow raises inexact as
well.

The function is not restricted to accept only valid coincident expressions for atomic operations, so
the function can be used to raise exceptions accrued over severa operations.

7.6.3 Rounding
7.6.3.2 Thef esetround function

In previous drafts the function returned nonzero to indicate success. This was changed for
consistency with other C functions that return a status indicator.

7.6.4 Environment
7.6.4.2 Thef ehol dexcept function

In previous drafts the function returned nonzero to indicate success. This was changed for
consistency with other C functions that return a status indicator.

f ehol dexcept should be effective on typical IEC 60559 implementations which have the
default non-stop mode and at least one other mode for trap handling or aborting. If the
implementation provides only the non-stop mode, then installing the non-stop mode is trivial.

A previous draft specified af epr ocent r y function, which was equivalent to

f eget env(envp);

X1

10

15

20

25

30

35

40

45

| Index

f eset env(FE_DFL_ENV);

f ehol dexcept ismore appropriate for the user model prescribed in 87.6.

7.7 Characteristics of floating types<f | oat . h>

<f | oat . h> makes available to programmers a set of useful quantities for numerical analysis
(see 85.2.4.2.2). This set of quantities has seen widespread use for such anaysis, in C and in
other languages, and was recommended by the numerical analysts on the C89 Committee. The
set was chosen so as not to prgudice an implementation’s selection of floating-point
representation. See also 87.10 for generd remarks.

Regarding the FLT_DI G formula, note that the process of converting an arbitrary value in one
floating-point format to a second floating-point format and then back again so as not to change the
original vaue requires more precison than might be expected. In generd, the formulas for number of
digits needed for base conversons for integers do not work when gpplied to floating-point
representations.

If theradix b isapower of 10, then it is obvious that all decima numberswith p” logsob digits convert
exactly to afloating-point representation and then convert exactly back to the same decima number (as
longasp” logib isan integer).

When the radix b is not a power of 10, it can be difficult to find a case where a decima number with
&~ logbldigitsfals. Consder afour-bit mantissa system (that is, base b=2 and precision p=4) used
to represent one-digit decima numbers. While four bits are enough to represent one-digit numbers,
they are not enough to support the conversions of decima to binary and back to decimd in dl cases
(but they are enough for most cases). Consider a power of 2 that isjust under 9.5e21, for example, 2"
=9.44e21. For this number, the three consecutive one-digit numbers near that specid value and their

round-to-nearest representations are:

9e21 le22 2e22
OxFp69 O0x8p70 Ox8p71

No problems so far; but when these representations are converted back to decimal, the values as three-
digit numbers and the rounded one-digit numbers are:

8.85e21 9.44e21 1.89e22
9e21 9e21 2e22

and we end up with two vaues the same. For this reason, four-bit mantissas are not enough to start
with any one-digit decima number, convert it to a binary floating-point representation, and then
convert back to the same one-digit decima number in al cases, and so p radix b digits are (just bardly)
not enough to dlow any decima numbers with &~ log,ob0 digits to do the round-trip conversion. p
radix b digits are enough, however, for §p—1) * logyobldigitsin al cases.

X1l

10

15

20

25

30

35

40

45

Index
7.8 Format conversion of integer types<i nttypes. h>
A new feature of €9X.C99.

<i nttypes. h> was derived from the header of the same name found on severd existing 64-bit
gysems. The Committee debated other methods for specifying integer sizes and other characteristics,
but in the end decided to standardize existing practice rather than innovate in thisarea. (See dso §7.18
<stdint. h>)

C89 specifies that the language should support four sgned and unsigned integer data types, char ,
short, int and | ong, but places very little requirement on their sze other than that i nt and
short beatleast 16 bitsand | ong beat least aslong asi nt and not smaller than 32 bits. For 16-bit
systems, most implementations assgn 8, 16, 16 and 32 bits to char, short, i nt, and | ong,
respectively. For 32-bit systems, the common practice isto assign 8, 16, 32 and 32 bits to these types.
This difference in i nt dze can create some problems for users who migrate from one system to
another which assigns different Szes to integer types, because Standard C' s integer promotion rule can
produce slent changes unexpectedly. The need for defining an extended integer type increased with
the introduction of 64-bit systems.

The purpose of <i ntt ypes. h> isto provide a set of integer types whose definitions are consstent
across machines and independent of operating systems and other implementation idiosyncrasies. It
defines, viat ypedef , integer types of various sizes. Implementations are freeto t ypedef them as
Standard C integer types or extensions that they support. Consistent use of this header will greatly
increase the portability of auser’s program across platforms.

7.9 Alternate spellings<i s0646. h>

See SMSE 4.

7.10 Sizesof integer types<lim ts. h>

Both <fl oat. h> and <l i mts. h> are inventions of the C89 Committee. Included in these
headers are various parameters of the execution environment which are potentialy useful a compile
time, and which are difficult or impossible to determine by other means.

The availability of thisinformation in headers provides a portable way of tuning a program to different
environments. Requiring that preprocessing dways yidd the same results as run-time arithmetic,
however, would cause problems for portable compilers (themsaves written in C) or for cross-
compilers, which would then be required to implement the target machine's arithmetic on the host
machine.

711 Localization <l ocal e. h>

C has become an international language. Users of the language outside the United States have been
forced to ded with the various Americanisms built into the standard library routines. Aress affected by
internationa consderationsinclude:

X1

10

15

20

25

30

35

40

45

| Index

Alphabet. The English language uses 26 |etters derived from the Latin aphabet which suffice only for

English and Swahili; other living languages use either the Latin dphabet plus other characters,
or other non-Latin aphabets or syllabaries.

In English, each letter has an upper-case and lower-case form, but thisis not generdly the case.
The German “sharp S, 13, for example, occurs only in lower case. European French usudly
omits diacritics on upper-case letters. Some scripts do not have the concept of two cases.

Callation. In both EBCDIC and ASCII the code for “Z” is greater than the code for “&’, and so on for

other letters in the aphabet, so a “machine sort” gives not unreasonable results for ordering
srings. In contrast, most European languages use a codeset resembling ASCII in which some
of the codes used in ASCII for punctuation characters are used for dphabetic characters (see
§85.2.1). The ordering of these codes is not aphabetic. In some languages letters with
diacritics sort as separate letters; in others they should be collated just as the unmarked form.
In Spanish, “II” sortsasasingle letter following “17; in German, “(3" sortslike“ss’.

Formatting of numbers and currency amounts. In the United States the period is invariably used

for the decimal point, and this usage was built into the definitions of such functionsaspri nt f

and scanf. Prevdent practice in severd mgor European countries is to use a comma; a
rased dot is employed in some locdes. Similarly, in the United States a comma is used to
separate groups of three digits to the left of the decima point; but a period is common in
Europe, and in some countries digits are not grouped by threes a dl. In printing currency
amounts, the currency symbol (which may be more than one character) may precede, follow,
or be embedded in the digits. Note that the decima point is a Sngle character, not a multibyte
string.

Date and time. The standard function asct i me returns a string which includes abbreviations for

month and weekday names, and returns the various dements in a format which might be
consdered unusud even in its country of origin.

Various common date formats include

1998-07-03 SO Format

3.7.98 customary central European and British usage
7/3/98 customary U.S. usage

3.VI1.98 Italian usage

98183 Julian date (Y'YDDD)

03JUL98 arline usage

Friday, duly 3, 1998 full U.S. format

Freitag, 3. Juli 1998 full German format

den 3juli 1998 full Swedish format

Timeformats are d'so quite diverse:

X1V

3:30 PM customary U.S. and British format
1530 U.S. military format
15h.30 Italian usage

10

15

20

25

30

35

40

45

Index
15.30 German usage
15:30 common European usage

The C89 Committee introduced mechanisms into the C library to alow these and other issues to be
treated in the appropriate local e-specific manner.

The locdization features of the Standard are based on these principles:

English for C source. The C language proper is based on English. Keywords are based on English
words. A program which uses “nationd characters’ in identifiers was not strictly conforming
through C95, but €9XC99 dlows identifiers to be written usng the “universal character
names’ (UCNs) of ISO/IEC 10646. (Use of nationa characters in comments has aways been
grictly conforming, though what happens when such a program is printed in a different locale
is unspecified.) The decima point must be a period in C source, and no thousands delimiter
may be used.

Runtime selectability. The locale must be selectable a runtime from an implementation-defined set
of possbilities. Trandation time selection does not offer sufficient flexibility. Software
vendors do not want to supply different object forms of their programs in different locales.
Users do not want to use different versons of a program just because they ded with severd
different locaes.

Function interface. The locde is changed by caling a function, thus alowing the implementation to
recognize the change, rather than by, say, changing a memory location that contains the
decima point character.

Immediate effect. When a new locde is sdected, affected functions reflect the change immediately.
(Thisis not meant to imply that, if a Sgna-handling function were to change the selected locae
and return to alibrary function, the return vaue from that library function must be completely
correct with respect to the new locale.)

7.11.1 Localecontrol
71111 Thesetl ocal e function

The set | ocal e function provides the mechanism for controlling locale-specific features of the
library. The cat egory argument dlows parts of the library to be locadized as necessary without
changing the entire locale-specific environment. Specifying the locale argument as a string gives an
implementation maximum flexibility in providing a st of locdes. For ingtance, an implementation
could map the argument string into the name of a file containing appropriate localization parameters,
and these files could then be added and modified without requiring any recompilation of a locdizable

program.
7.11.2 Numeric formatting convention inquiry

7.11.2.1 Thel ocal econv function

XV

10

15

20

25

30

35

40

45

| Index

Thel ocal econv function gives a programmer access to information about how to format monetary
and non-monetary numeric quantities. This sort of interface was considered preferable to defining
conversion functions directly: even with a specified locae, the set of distinct formats that can be
congtructed from these lementsislarge; and the ones desired are very application-dependent.

A new feature of €9X:—C9XC99: C99 extends the membersin the | conv structure to cover long-
ganding POSIX practice and to permit additiond flexibility for internationally formatted monetary
amounts.

7.12 Mathematics<mat h. h>

Before €9X;,C99, the math library was defined only for the floating type doubl e. All the names
formed by appending f or | to a name in <mat h. h> were reserved to dlow for the definition of
f1 oat andl ong doubl e libraries; and €9XC99 providesfor dl three versons of math functions.

The functions ecvt, f cvt, and gcvt have been dropped since their capability is available through
sprintf.

Before C89, HUGE VAL was usudly defined as a manifest constant that approximates the largest
representable doubl e value. As an approximation to infinity it is problematic. As afunction return
vaue indicating overflow, it can cause trouble if first assgned to a f | oat before testing, Snce a
f 1 oat may not necessarily hold al vaues representablein adoubl e.

After consdering severd aternatives, the C89 Committee decided to generdlize HUGE VAL to a
positive expresson of type doubl e so that it could be expressed as an externd identifier naming a
location initidized precisely with the proper bit pattern. It can even be a specid encoding for machine
infinity on implementations that support such codes. It need not be representable as a f | oat
however. €9XC99 adds HUGE_VALF and HUGE _VALL.

Similarly, domain errors before C89 were typicaly indicated by a zero return, which is not necessarily
distinguishable from a vaid result. The C89 Committee agreed to make the return value for domain
errors implementation-defined, so that specid machine codes can be used to advantage. This makes
possible an implementation of the math library in accordance with the |EC 60559 proposd on fleating
petatfloating-point representation and arithmetic.

7.12.1 Treatment of error conditions

Whether underflow should be considered a range error and cause er r no to be set is ecified as
implementation-defined since detection of underflow is inefficient on some systems. In €9X,C99,
errno is no longer required to be set to EDOM or ERANGE because that is an impediment to
optimization.

The Standard has been crafted to nether require nor preclude any popular floating-point
implementation. This principle affects the definition of domain error: an implementation may define
extradomain errorsto dea with floating-point arguments such asinfinity or “not-a-number” (NaN).

The C89 Committee consdered the adoption of the mat her r capability from UNIX System V. In

| xwvi

10

15

20

25

30

35

40

45

Index

this feature of that system’ s math library, any error such as overflow or underflow resultsin acal from
the library function to a user-defined exception handler named mat herr. The C89 Committee
regjected this gpproach for severa reasons.

. This style is incompatible with popular #eating—peratfloating-point implementations |
such as |EC 60559, with its specid return codes, or that of VAX/VMS.

. It conflicts with the error-handling style of Fortran, thus making it more difficult to
trandate useful bodies of mathematica code from that language to C.

. It requires the math library to be reentrant since math routines could be caled from
mat her r , which may complicate some implementations.

. It introduces a new style of library interface: a user-defined library function with a

library-defined name. Note, by way of comparison, the signa and exit handling
mechanisms, which provide away of “registering” user-defined functions.

7.12.2 TheFP_CONTRACT pragma

A new feature of €9XC99. See 86.5 and §7.12.13.1.

7.12.3 Classification macros
New features of ©9X:C99.

Passing an integer, complex, or other non-floating type to a classfication macro yieds undefined
behavior.

7.12.3.3 Thei si nf macro

Note that isinf(x) cawnot smply be defined as !isfinite(x), because
I'isfinite(NAN) istrue

7.12.4 Trigonometric functions
Implementation note: trigonometric argument reduction should be performed by a method that causes
no catastrophic discontinuities in the error of the computed result. In particular, methods based soldly
on naive gpplication of acdculation like

X - (2%pi) * (int)(x/(2*pi))
areill-advised.
7.12.4.4 Theat an2 functions

The at an2 function is modeled after Fortran's. It is described in terms of arctan (y/x) for smplicity.
The C89 Committee did not wish to complicate the descriptions by specifying in detaill how to

XVII

10

15

20

25

30

| Index

determine the appropriate quadrant, snce that should be obvious from norma mathematical
convention. at an2(y, x) is well-defined and finite, even when x is O; the one ambiguity occurs
when both arguments are O, because a that point any value in the range of the function could logicaly
be sdlected. Since valid reasons can be advanced for al the different choices that have been made in
this gtuation by various implementations, the Standard preserves the implementor’ s freedom to return
an arbitrary well-defined vaue such as 0, to report adomain error, or to return a NaN.

71247 Thet an functions

The tangent function has singularities at odd multiples of p/2, gpproaching postive infinity from one
dde and negative infinity from the other. Implementations commonly perform argument reduction
using the best machine representation of p; and for argumentsto t an sufficiently closeto asingularity,
such reduction may yield a value on the wrong side of the singularity. In view of such problems, the
C89 Committee recognized that t an is an exception to the range error rule (see 8§7.12.1) that an
overflowing result produces HUGE VAL properly signed.

7.12.6 Exponential and logarithmic functions

7.12.6.4 Thefrexp functions

The functions f r exp, | dexp, and nodf are primitives used by the remainder of the library. There
was some sentiment for dropping them for the same reasons that ecvt, f cvt, and gcvt were
dropped, but their adherents rescued them for general use. Thelr use is problematic: on non-binary
architectures, | dexp may lose precison and f r exp may be inefficient.

7.12.6.6 Thel dexp functions

See §7.12.6.4.

XVI11

10

15

20

25

30

35

40

45

Index
7.12.6.7 Thel og functions

Whether | og(0. 0) isadomain error or arange error isarguable. The choice in the Standard, range
error, isfor compatibility with I[EC 60559. Some such implementations would represent the result as—

¥, inwhich case no error israised.

7.12.6.8 Thel 0g10 functions

See §7.126.7.

7.12.6.9 Thel oglp functions

See §7.126.7.

7.12.6.10 Thel og2 functions

See §7.126.7.

7.12.6.11 Thel ogb functions

The treatment of subnormal x follows the recommendation in |EEE 854, which differs from IEEE
754 on this point. Even 754 implementations should follow this definition rather than the one
recommended (not required) by 754.

7.12.6.12 Thenodf functions

See §6.12.6.4.

7.12.6.13 Thescal bn and scal bl n functions

In earlier versions of the specification, this function was called scal b. The name was changed
to avoid conflicting with the Single Unix scal b function whose second argument is doubl e
instead of i nt. Single Unix's scal b was not included in €9XC99 as its specification of certain
special cases is inconsstent with the €9XC99 approach and because the scal bn and scal bl n
functions were considered sufficient.

scal bl n, whose second parameter has type | ong i nt is provided because the factor required

to scae from the smallest postive floating-point value to the largest finite one, on many
implementations, is too large to represent in the minimum-width i nt format.

7.12.7 Power and absolute-value functions
7.12.7.1 Thecbrt functions

For some applications, a true cube root function, which returns negative results for negative
arguments, is more appropriate than pow(x, 1. 0/ 3. 0) , which returnsa NaN for x lessthan O.

XIX

10

15

20

25

30

35

40

| Index

7.12.7.2 Thef abs functions

Adding an absolute vaue operator was rejected by the C89 Committee. An implementation can
provide a built-in function for efficiency.

7.12.7.5 Thesqrt functions

|EC 60559, unlike the Standard, requires sqgrt (- 0.) to return a negatively signed magnitude-zero
result. This is an issue on implementations that support a negative floating zero. The Standard
gpecifies that taking the square root of a negative number (in the mathematica sense of lessthan 0) isa
domain error which requires the function to return an implementation-defined vaue. Thisrule permits
implementations to support either the IEC 60559 or vendor-specific fleating—petatfloating-point
representations.

7.12.8 Error and gamma functions
7.12.8.3 Thel gamra functions

Since the mathematical gamma function increases in vaue so quickly (it is around 10°® for an
argument of only 170), the logarithm of gamma extends the useful domain. Also, for computing
combinations and permutations, it is the quotient of the (potentidly large) gammeas that is needed;
taking differences of thel gammasinstead alows for calculations without overflow.

In Single Unix, acall tol gamra sets an external variable, si gngam to the sign of ganma(x) ,
whichis-1ifx < 0 && remai nder (floor(x), 2) !'= 0.

Note that this specification does not remove the externa identifier si gngam from the user’s
name space. An implementation that supports | ganma’s setting of Si gngamas an extension
must still protect the externa identifier si gngamif defined by the user.

7.12.8.4 Thet gamra functions

In many other standards, the meaning of gama has changed over the years. Originaly, it computed
the logarithm of the absolute value of the mathematica gamma function, with an externd i nt,
si gngam being set to the sign of the gamma function.

Then ganmma was replaced with | gamma, and ganma was dated to be withdrawn. About that time,
NCEG changed gama to compute the mathematical gamma function, and that is what was adopted
into €9XC99 CD1; but it appears that the old meaning of gamma has not yet been withdrawn, so there
would have been a conflict between €9XC99 and current industry practice. €9XC99 therefore
changed the name in the FCD to t ganma, meaning “true gamma,” to avoid this conflict.

XX

10

15

20

25

30

35

40

45

Index
7.12.9 Nearest integer functions

7.129.1 Theceil functions

Implementation note: the cei | function returns the smallest integer value in double format not less
than x, even though that integer might not be representable in a C integer type. cei | (x) equasx
for dl x sufficiently largein magnitude. Animplementation that calculatescei | (x) as

(doubl e) (int)x
isill-advised.
71295 Thelrint andl | rint functions

Previous drafts specified

long rinttol (I ong doubl e);
long long rinttoll (Il ong double);
| ong roundtol (1 ong doubl e);
I ong long roundtoll (1 ong double);

instead of

long Irint(double);

long long Ilrint(double);
| ong | round(doubl e);

I ong long |l round(double);

together with thef | oat and| ong doubl e versions.

There were two changes here. First, the parameter type changed to doubl e to match other
functions which, like these, return an integer-type result; this makes the interface style more
consistent. Second, the names changed to make way for f - and | -suffixed versions of the
functions, which become needed because of the first change (otherwise ri ntt ol | could be
either the doubl e version of the | ong | ong function or the | ong doubl e version of the
| ong function).

For functions with a floating argument and an integer return type, the previous specification took
the approach of declaring the parameter to be | ong doubl e. The rationae was to avoid
unnecessary multiple versions of the function in the interface. The implementation need not
actually promote af | oat or doubl e argument to | ong doubl e, so any potentid inefficiency
could be avoided.

With the previous interface, however, a programmer would be left to worry about the risk of
incurring a costly promotion to | ong doubl e. Also, the current specification seems more
consistent with the rest of the interface where all the other functions come in three sizes. (A
programmer might initially be surprised not to find f | oat and doubl e versions.)

XXI

10

15

20

25

30

35

40

45

| Index

7.12.10 Remainder functions
7.12.10.1 Thef nod functions

The f mod function is defined even if the quotient x/y is not representable. This function is properly
implemented by scaled subtraction rather than by divison. The Standard defines the result in terms of
the foomulax—n" y, where n is some integer. This integer need not be representable, and need not
even be explicitly computed. Thus implementations are advised not to compute the result using code
like

X -y * (int)(x/y)

Instead, the result can be computed in principle by subtracting | dexp(y, n) from x, for appropriately
chosen decreasing n, until the remainder is between 0 and x, dthough efficiency consderations may
dictate a different actual implementation.

Thereault of f mod(y, 0. 0) isether adomain error or O; the result dways liesbetween 0 and y, so
gpecifying the non-erroneous result as 0 Smply recognizesthe limit case,

The C89 Committee considered a proposa to use the remainder operator %for this function; but it was
rejected because the operatorsin genera correspond to hardware facilities, and f nod is not supported
in hardware on most machines.

7.12.10.3 Ther enguo functions

The r erquo functions are intended for implementing argument reductions which can exploit a
few low-order bits of the quotient. Note that x may be so large in magnitude relative to y that an
exact representation of the quotient is not practical.

7.12.11 Manipulation functions
7.12.11.1 Thecopysi gn functions

copysi gn and si gnbit need not be consistent with each other if the arithmetic is not
consistent in its treatment of zeros. For example, the IBM 370 has instructions to flip the sign
bit making it possible to create a negative zero, but £0.0 © +1.0 is always +0.0. In this case,
copysi gn will treat —0.0 as positive, whilesi gnbi t will treat it as negative.

7.12.11.3 Thenext aft er functions

It is sometimes desirable to find the next representation after a value in the direction of a
previoudy computed value, maybe smaller, maybe larger. The next af t er functions have a
second floating argument so that the program will not have to include floating-point tests for
determining the direction in such situations. (On some machines, these tests may fail due to
overflow, underflow or roundoff.)

For the case x =y, IEC 60559 recommends that x be returned. This specification differs so that

| xxii

10

15

20

25

30

35

40

45

Index
nextafter(-0.0, +0. 0) returns+0.0 and next aft er (+0. 0, - 0. 0) returns—0.0.

The next af t er functions can be employed to obtain next values in a particular format. For
example, next af t er f (x, y) will return the next float value after (f | oat) x in the direction
of (f1 oat)y regardless of the evaluation method.

An aternate proposal was to rename the doubl e version of next aft er to next afterd,
retaining next af t erf and next aft er| (thesethree did not have a generic macro), and using
the name next af t er for what is here named next t owar d. The current specification has a
number of advantages.

1. nextafter and nexttoward conform to the usual rules for suffixes and type-generic
macros. Before, next af t er d and next af t er were exceptiona on both counts.

2. Without the change, next afterf is not the f| oat version of next after, which is
potentially surprising.

3. It better matches prior art, which typically has a next af t er function with two doubl e
parameters.

7.12.11.4 Thenextt owar d functions

The second parameter of the nextt owar d function has type | ong doubl e so that the
uncoerced value of the second argument can be used to determine the direction.

7.12.12 Maximum, minimum, and positive difference functions

The names for f max, fm n and f di mhave f prefixes to alow for extension integer versions
following the example of f abs and abs.

7.12.13 Floating multiply-add
7.12.13.1 Thef ma functions

In many cases, clever use of floating (fused) multiply-add leads to much improved code; but its
unexpected use by the compiler can undermine carefully written code. The FP_CONTRACT
macro can be used to disalow use of floating multiply-add; and the f ma function guarantees its
use where desired. Many current machines provide hardware floating multiply-add instructions,
software implementation can be used for others.

7.13 Nonlocal jumps<setj np. h>

J mp_buf must be an array type for compatibility with existing practice: programs typicaly omit the
address operator before aj np_buf argument, even though a pointer to the argument is desired, not
the value of the argument itsdlf. Thus, ascdar or structure type is unsuitable. Note that a one-element
array of the appropriate typeisavaid definition.

XXI111

10

15

20

25

30

35

40

| Index

7.13.1 Save calling environment

7.13.1.1 Thesetj np macro

One proposed requirement on set j np is that it be usable like any other function, that is, thet it be
cdlable in any expression context, and that the expresson evaluate correctly whether the return from
setj np isdirect or viaacdl to | ongj np. Unfortunately, any implementation of setj np asa
conventiona cdled function cannot know enough about the calling environment to save any temporary
registers or dynamic stack locations used part way through an expression evauation. (A set | np
macro seems to help only if it expands to inline assembly code or a cdl to a specid built-in function.)
The temporaries may be correct on the initial cal to set j np, but are not likely to be on any return
initiated by a corresponding cal to | ongj np. These congderations dictated the condtraint that
set) np be cdled only from within fairly smple expressons, ones not likely to need temporary
storage.

An dternative proposa considered by the C89 Committee was to require that implementations
recognize that caling set j np is a specia case’, and hence that they take whatever precautions are
necessary to restore the set j np environment properly upon al ongj np cadl. This proposd was
rgected on grounds of consstency: implementations are currently allowed to implement library
functions specidly, but no other Situations require specid treatment.

7.13.2 Restore calling environment
7.13.2.1 Thel ongj np function

The C89 Committee also considered requiring that a cal to | ongj np restore the calling environment
fully, that is, that upon execution of | ongj np, dl locd variablesin the environment of set j np have
the values they did at the time of the | ongj np call. Register variables create problems with this idea
Unfortunately, the best that many implementations attempt with register variables is to save them in
j mp_buf at thetime of theinitid set j np cal, then restore them to that state on each return initiated
by al ongj np cdl. Since compilersare certainly at liberty to change register variablesto automatic, it
is not obvious that a register declaration will indeed be rolled back. And since compilers are at liberty
to change automatic variables to register if their addresses are never taken, it is not obvious that an
automatic declaration will not be rolled back, hence the vague wording. In fact, the only reliable way
to ensure that alocal variable retain the value it had at the time of the call to | ongj np isto defineit
withthevol ati | e attribute. Note this does not apply to the floating-point environment (status flags
and control modes) which is part of the global state just asf is.

Some implementations leave a process in a specia state while a 9gnd is being handled. Explicit

6.
This proposal was considered prior to the adoption of the stricture that set j mp be amacro. It can be considered as equivalent to proposing that
theset j np macro expand to acal to aspecia built-in compiler function.

XXV

10

15

20

25

30

35

40

45

Index
reassurance must be given to the environment when the sgnad handler returns. To keep this job
managesble, the C89 Committee agreed to restrict | ongj np to only oneleve of sgnad handling.

The | ongj np function should not be cdled in an exit handler, that is, a function registered with the
at exi t function (see 87.20.4.2), snceit might jump to code that is no longer in scope.

7.14 Signal handling <si gnal . h>

This facility was retained from /usr/group since the C89 Committee felt it important to provide some
gtandard mechanism for dedling with exceptional program conditions. Thus a subset of the sgnds
defined in UNIX were retained in the Standard, dong with the basic mechanisms of declaring sgnd
handlers and, with adaptations, raising sgnals (see 87.14.2.1). For a discusson of the problems
created by including signals, see 85.2.3.

The sgnd machinery contains many misnomers. S| G-PE, SI A LL, and SI GSEGV have their roots
in PDP-11 hardware terminology, but the names are too entrenched to change. The occurrence of
SI GFPE, for ingtance, does not necessarily indicate a floating-point error. A conforming
implementation is not required to field any hardware interrupts.

The C89 Committee has reserved the space of names beginning with SI Gto permit implementations to
add locd namesto <si gnal . h>. Thisimplies that such names should not be otherwise used inaC
source filewhich includes<si gnal . h>.

7.14.1 Specify signal handling
7.14.1.1 Thesi gnal function

When a signd occurs, the norma flow of control of a program isinterrupted. If asigna occursthat is
being trapped by a sgnd handler, that handler isinvoked. When it is finished, execution continues a
the point a which the signal occurred. This arrangement could cause problems if the signd handler
invokes alibrary function that was being executed at the time of the sgnal. Since library functions are
not guaranteed to be reentrant, they should not be called from asigna handler that returns (see 85.2.3).
A specific exception to this rule was granted for cdls to si gnal from within the sgna handler;
otherwise, the handler could not reliably reset the sgndl.

The specification that some sgnas may be effectively set to SI G | GN instead of SI G_DFL at
program startup alows programs under UNIX systems to inherit this effective setting from parent
processes.

For performance reasons, UNIX does not reset SI G LL to default handling when the handler is caled

(usudly to emulate missing ingtructions). This treatment is sanctioned by specifying that whether reset
occursfor SI A LL isimplementation-defined.

7.14.2 Send signal
7.14.2.1 Ther ai se function

XXV

10

15

20

25

30

35

40

45

| Index

The r ai se function replaces /usr/group’s ki | | function. The latter has an extra argument which
refers to the “process ID” affected by the sgnal. Since the execution model of the Standard does not
ded with multi-processing, the C89 Committee deemed it preferable to introduce a function which
requires no process argument. Theki | | function has been stlandardized in the POSIX specification.

7.15 Variablearguments<st darg. h>
For adiscussion of argument passing issues, see 86.9.1.

These macros, modeled, after the UNIX <var ar gs. h> macros, have been added to enable the
portable implementation in C of library functions such as pri nt f and scanf (see 87.19.6). Such
implementation could otherwise be difficult, consdering newer machines that may pass arguments in
machine registers rather than using the more traditiona stack-oriented methods.

The definitions of these macros in the Standard differ from their forebears. they have been extended to
support argument lists that have afixed set of arguments preceding the variable list.

va_start andva_ar g mus exis asmacros, Snceva_st art uses an argument that is passed by
name and va_ar g uses an argument which is the name of a data type. Usng #undef on these
names leads to undefined behavior.

Theva | i st typeisnot necessarily assgnable, however afunction can passapointer to itsinitiaized
argument list object as noted below. The wording has been changed in €9XC99 to state clearly that
va_| i st isanobject type.

7.15.1 Variableargument list access macros
7.15.1.1 Theva_ar g macro

Changing an arbitrary type name into a type name which is a pointer to that type could require
sophisticated rewriting. To alow the implementation of va_ar g as a macro, va_ar g need only
correctly handle those type names that can be transformed into the appropriate pointer type by
gppending a* , which handles most Smple cases. Typedefs can be defined to reduce more complicated
types to a tractable form. When using these macros, it is important to remember that the type of an
argument in a variable argument list will never be an integer type smdler than i nt , nor will it ever be
fl oat (see8§6.7.5.3).

va_ar g canonly be used to access the value of an argument, not to obtain its address.

7.15.1.2 Theva_copy macro

A new feature of €9X.C99.

When processing variable argument lists in a function, it is occasondly useful to backtrack and
examine one or more arguments a second time. In C89, the only way to do thiswasto start again and

exactly recreate the sequence of cdls to the va_ar g macro leading up to that argument; but when
these cdlls are controlled in a complicated manner (such asapr i nt f format) this can be difficult.

| xxwvi

10

15

20

25

30

35

40

45

Index

A much ampler approach is to copy the va_| i st object used to represent processing of the
arguments. However, there is no safe way to do thisin C89 because the object may include pointersto
memory dlocated by the va_start macro and destroyed by the va_end macro. The new
va_copy macro provides this safe mechanism.

Cdling the va_copy macro exactly duplicates the state of ava_| i st object; therefore an identical
cal to theva_ar g macro on the two objects will produce the same results, and both objects must be
cleaned up with separate calsto theva_end macro.

7.15.1.3 Theva_end macro

va_end must aso be caled from within the body of the function having the variable argument ligt. In

many implementations, this is a do-nothing operation; but those implementations that need it probably
need it badly.

7.15.14 Theva_start macro

va_start mus be cdled within the body of the function whose argument list is to be traversed.
That function can then pass a pointer to its va_| i st object to other functions to do the actua
traversd, or it can traversethe list itself.

The par mN argument to va_st art wasintended to be an aid to implementors writing the definition
of a conforming va_st art macro entirdy in C, even usng pre-C89 compilers (for example, by
taking the address of the parameter). The restrictions on the declaration of the par mN parameter
follow from the intent to dlow this kind of implementation, as applying the & operator to a parameter
name might not produce the intended result if the parameter's declaration did not meet these
restrictions.

In practice, many current implementations have “hidden machinery” that is used by the va_st art
macro to diagnose incorrect usage (for example, to verify that par mN actudly is the name of the last
fixed parameter) or to handle more complex argument passing mechanisms. Such machinery would be
capable of handling any kind of parameter without restriction, but the C89 Committee saw no
compelling reason to lift these redtrictions, as that would require al implementations to have such
machinery.

Multipleva_l i st variables can be in use smultaneoudy in the same function; each requires its own
cdlstova_start andva_end.

7.16 Boolean type and values<st dbool . h>

A new feature of €9X-C99.

7.17 Common definitions<st ddef . h>

<st ddef . h> is aheader invented to provide definitions of severa types and macros used widdy in

XXVII

10

15

20

25

30

35

40

| Index

conjunction with the library: ptrdi ff _t, size_t,wchar _t, and NULL. Including any header
that references one of these macros will dso define it, an exception to the usua library rule that each
macro or function belongs to exactly one header.

NULL can be defined as any null pointer constant. Thus existing code can retain definitions of NULL
as 0 or OL, but an implementation may also choose to define it as (voi d*) 0. This latter form of
definition is convenient on architectures where si zeof (voi d*) does not equad the sze of any
integer type. It has never been wise to use NULL in place of an arbitrary pointer as a function
argument, however, since pointers to different types need not be the same sze. Thelibrary avoids this
problem by providing speciad macros for the argumentsto si gnal , the one library function that might
see anull function pointer.

The of f set of macro was added to provide a portable means of determining the offset, in bytes, of a
member within its structure. This capability is useful in programs, such as are typicd in database
implementations, which declare a large number of different data structures: it is desirable to provide
“generic’ routines that work from descriptions of the structures, rather than from the structure
declarations themsalves.”
In many implementations, of f set of could be defined as one of

(size_ t)& ((s_name*)0)->m nane)
or

(size_t)(char*) & ((s_nane*)0)->m nane)
or, where X is some predeclared address (or 0) and A(Z) isdefinedas((char *) &2) ,

(size_ t)(A((s_name*)X->mnane) - A(X))
It was not feasible, however, to mandate any single one of these forms as a construct guaranteed to be

portable. Some implementations may choose to expand this macro as a cdl to a built-in function that
interrogates the trandator’ s symbol table.

7.18 Integer types<stdi nt. h>
A new feature of €9X.C99.

<stdint.h>is asubset of <i nttypes. h> (see 8§7.8) more suitable for use in freestanding
environments, which might not support the formatted 1/O functions. In hosted environments, if the
formatted conversion support is not wanted, using this header instead of <i ntt ypes. h> avoids
defining such alarge number of macros.

7Consi der, for instance, a set of nodes (structures) which are to be dynamically allocated and garbage-collected, and which can contain pointers to
other such nodes. A possible implementation isto have thefirst field in each node point to a descriptor for that node. The descriptor includes a table of
the offsets of fields which are pointers to other nodes. A garbage-collector "mark" routine needs no further information about the content of the node
(except, of course, where to put the mark). New node types can be added to the program without requiring the mark routine to be rewritten or even
recomplied.

| xxvii

10

15

20

25

30

35

40

45

Index

It was observed that macros for minimum and maximum limits for other integer t ypedef s in
standard headers would be smilarly useful, so these were added.

7.18.1 Integer types
7.18.1.5 Greatest-width integer types

Note that these can be implementation-defined typesthat are wider than long | ong.

7.19 Input/output <st di 0. h>
(Seeds0 SMSE.9 in regards to wide streams and files.)

Many implementations of the C runtime environment, most notably the UNIX operating system,
provide, asde from the standard 1/O library’sf open, f cl ose,fread,fwite,andf seek, aset
of unbuffered 1/0 services, open, cl ose,read, wi t e, and| seek. The C89 Committee decided
not to standardize the latter set of functions.

Additiond semantics for these functions may be found in the POSIX standard. The standard 1/0
library functions use afile pointer for referring to the desired 1/0 stream. The unbuffered 1/0 services
use afile descriptor (asmall integer) to refer to the desired 1/0 stream.

Due to weak implementations of the standard 1/O library, many implementors have assumed that the
standard 1/O library was used for smal records and that the unbuffered 1/0 library was used for large
records. However, a good implementation of the standard 1/O library can match the performance of
the unbuffered services on large records. The user dso has the capability of tuning the performance of
the standard 1/O library (with set vbuf) to suit the application.

Some subtle differences between the two sets of services can make the implementation of the
unbuffered 1/0 services difficult:

. The modd of afile used in the unbuffered 1/0 servicesis an array of characters. Many
C environments do not support this file mode!.

. Difficulties arise when handling the newline character. Many hosts use conventions
other than an in-stream newline character to mark the end of aline. The unbuffered
I/O services assume that no trandation occurs between the program’ s data and the file
data when performing 1/O, so ether the newline character trandation would be lost
(which bresks programs) or the implementor must be aware of the newline trandation
(which resultsin non-portable programs).

. On UNIX systems, file descriptors O, 1, and 2 correspond to the standard input,
output, and error streams. This convention may be problematic for other systems in
that file descriptors 0, 1, and 2 may not be available or may be reserved for another
purpose; and the operating system may use a different set of services for terminal and
filel/O.

XXIX

10

15

20

25

30

35

40

45

| Index

In summary, the C89 Committee chose not to standardize the unbuffered 1/0 services because
. They duplicate the facilities provided by the standard 1/0 services.

. The performance of the standard 1/0 services can be the same or better than the
unbuffered 1/0O services.

. The unbuffered 1/0O file mode may not be appropriate for many C language
environments.

7.19.1 Introduction

The macros _| OFBF, _| OLBF, and _| ONBF are enumerations of the third argument to set vbuf , a
function adopted from UNIX System V.

SEEK CUR, SEEK_END, and SEEK SET have been moved to <st di 0. h> from a header specified
in /usr/group and not retained in the Standard.

FOPEN_MAX and TMP_MAX were added as environmenta limits of some interest to programs that
manipul ate multiple temporary files.

FI LENAVE_MAX is provided so that buffers to hold file names can be conveniently declared. If the
target system supports arbitrarily long filenames, the implementor should provide some reasonable
vaue (80, 255, 509, etc.) rather than something unusable like USHRT _IVAX.

Thef pos_t wording has been changed in €9XC99 to exclude array type objects. If f pos_t were
an array, then afunction would not be ableto handlef pos_t parametersin the same manner as other
f pos_t varidbles.

7.19.2 Streams

C inherited its notion of text streams from the UNIX environment in which it was born. Having each
line delimited by a sngle newline character, regardless of the characteristics of the actua termind,
supported a ssimple modd of text as a sort of arbitrary length scroll or “gdley.” Having achanne that
is “trangparent” (no file structure or reserved data encodings) eiminated the need for a distinction
between text and binary streams.

Many other environments have different properties, however. If aprogram writtenin Cisto produce a
text file digestible by other programs, by text editors in particular, it must conform to the text
formatting conventions of that environment.

The 1/O facilities defined by the Standard are both more complex and more redtrictive than the
ancestrd 1/0O facilities of UNIX. This is justified on pragmatic grounds: most of the differences,
restrictions and omissions exist to permit C /O implementations in environments which differ from the
UNIX 1/O modd.

Troublesome aspects of the stream concept include:

| xxx

10

15

20

25

30

35

40

45

Index

The definition of lines. In the UNIX modd, divison of a file into lines is effected by newline

characters. Different techniques are used by other syslems. lines may be separated by CR-LF
(carriage return, line feed) or by unrecorded areas on the recording medium; or each line may
be prefixed by its length. The Standard addresses this diversity by specifying that newline be
used as a line separator at the program level, but then permitting an implementation to
transform the data read or written to conform to the conventions of the environment.

Some environments represent text lines as blank-filled fixed-length records. Thus the Standard
gpecifies that it is implementation-defined whether trailing blanks are removed from a line on
input. (This specification aso addresses the problems of environments which represent text as
variable-length records, but do not alow arecord length of 0: an empty line may be written as
aone-character record containing a blank, and the blank is stripped on input.)

Transparency. Some programs require access to externa data without modification. For instance,

trandformation of CR-LF to a newline character is usudly not desirable when object code is
processed. The Standard defines two stream types, text and binary, to alow a program to
define, when a file is opened, whether the preservation of its exact contents or of its line
structure is more important in an environment which cannot accurately reflect both.

Random access. The UNIX /O modd features random access to datain afile, indexed by character

number. On systems where a newline character processed by the program represents an
unknown number of physcaly recorded characters, this smple mechanism cannot be
congstently supported for text streams. The Standard abstracts the significant properties of
random access for text streams. the ability to determine the current file position and then later
repogition the file to the same location. ft el | returns afile position indicator, which has no
necessary interpretation except that an f seek operation with that indicator value will position
the file to the same place. Thus an implementation may encode whatever file positioning
information is most appropriate for a text file, subject only to the constraint that the encoding
berepresentableasal ong. Useof f get pos and f set pos removes even this congtraint.

Buffering. UNIX alowsthe program to control the extent and type of buffering for various purposes.

For example, a program can provide its own large I/O buffer to improve efficiency, or can
request unbuffered terminal 1/0 to process each input character asit isentered. Other systems
do not necessarily support this generdity. Some systems provide only line-at-a-time access to
termina input; some systems support program-alocated buffers only by copying data to and
from sysem-dlocated buffers for processng. Buffering is addressed in the Standard by
gpecifying UNIX-like set buf and set vbuf functions, but permitting great latitude in their
implementation. A conforming library need neither attempt the impossible nor respond to a
program attempt to improve efficiency by introducing additional overhead.

Thus, the Standard imposes a clear distinction between text streams, which must be mapped to suit
locd custom, and binary streams, for which no mapping takes place. Loca custom on UNIX and
related systems is of course to treat the two sorts of streams identically, and nothing in the Standard
requires any change to this practice.

Even the specification of binary streams requires some changes to accommodate a wide range of
sysems. Because many systems do not keep track of the length of a file to the nearest byte, an

XXXI

10

15

20

25

30

35

40

45

| Index

arbitrary number of characters may appear on the end of a binary stream directed to a file. The
Standard cannot forbid this implementation, but does require that this padding consist only of null
characters. The dternative would be to restrict C to producing binary files digestible only by other C
programs, this aternative runs counter to the spirit of C.

The set of characters required to be preserved in text stream 1/O are those needed for writing C
programs, the intent is that the Standard should permit a C trandator to be written in a maximally
portable fashion. Control characters such as backspace are not required for this purpose, so their
handling in text streams is not mandated.

It was agreed that some minimum maximum line length must be mandated, and 254 was chosen for
C89. €9XC99 increasesthislimit to 4095.

7.19.3 Files

The as if principle is once again invoked to define the nature of input and output in terms of just two
functions, f get ¢ and f put c. Theactud primitivesin agiven syslem may be quite different.

The digtinction between buffered and unbuffered streams suggests the desired interactive behavior; but
an implementation may gill be conforming even if delays in a network or termina controller prevent
output from appearing intime. It istheintent that matters here.

No congtraints are imposed upon file names except that they must be representable as strings with no
embedded null characters.

7.19.4 Operationson files
7.19.4.1 Ther enove function

/usr/group provides the unl i nk system cdl to remove files. The UNIX-specific definition of this
function prompted the C89 Committee to replace it with a portable function.

7.19.4.2 Ther enane function

This function was added to provide a system-independent atomic operation to change the name of an
existing file; /ust/group only provided the link system cdl, which gives the file a new name without
removing the old one, and which is extremely system-dependent.

The C89 Committee considered a proposal that r ename should quietly copy afile if Smple renaming
couldn’t be performed in some context, but regjected this as potentialy too expensive at execution time.

r ename is meant to give access to an underlying facility of the execution environment’s operating
system. When the new name is the name of an existing file, some systems dlow the renaming and
delete the old file or make it inaccessible by that name, while others prohibit the operation. The effect
of r enare isthusimplementation-defined.

7.19.4.3 Thet npfi |l e function

| xxxii

10

15

20

25

30

35

40

45

Index

Thet npfi | e function isintended to allow users to create binary “scratch” files. The asif principle
implies that the information in such afile need never actudly be stored on afile-structured device.

The temporary fileis created in binary update mode because it will presumably be first written and then
read as trangparently as possble. Trailing null-character padding may cause problems for some existing
programs.

7.19.4.4 Thet npnamfunction

This function alows for more control than t npfi | e: afile can be opened in binary mode or text
mode, and files are not erased at completion.

There is dways some time between the cdl to t npnamand the use in f open of the returned name.
Hence it is concalvable that in some implementations the name, which named no file at the cdl to
t npnam has been used as a filename by the time of the cdl to f open. Implementations should
devise name generation strategies which minimize this possibility, but users should dlow for it.

A new feature of €9X—the €9XC99: the C99 Ceommittee recognized that the C89 specification had
a serious flaw: if t npnamwere cdled fewer than TMP_MAX times but was unable to generate a
suitable string because every potential string named an existing file, there was no way to report failure
and no undefined beharior, so there was no option other than to never return. €9XC99 resolved the
problem by alowing t npnamto return a null pointer when it cannot generate a suitable string and by
gpecifying that TMP_MAX is the number of potentia strings, any or al of which may name existing files
and thus not be suitable return values.

QUIET CHANGE IN €9XC99

Code that cals t mpnam and doesn't check for a null return vaue may produce
undefined behavior.

7.19.5 File access functions
7.195.1 Thef cl ose function

On some operating systems, it is difficult or impossible to create afile unless something is written to the
file. A maximaly portable program which relies on a file being crested must write something to the
associated stream before clogng it.

7.195.2 Theffl ush function

The f f | ush function ensures that output has been forced out of interna 1/O buffers for a specified
sream. Occasondly, however, it is necessary to ensure that all output is forced out, and the
programmer may not conveniently be able to specify al the currently open streams, perhaps because
some streams are manipulated within library packages® To provide an implementation-independent

8For instance, on a system (such as UNIX) which supports process forks, it is usually necessary to flush al output buffers just prior to the fork.

XXXI

| Index
method of flushing al output buffers, the Standard specifies that this is the result of caling f f | ush
withaNULL argument.

XXXIV

10

Index
7.19.5.3 Thef open function

The b type modifier was added to ded with the text/binary dichotomy (see §7.19.2). Because of the
limited ability to seek within text files (see §7.19.9.1), an implementation is at liberty to treat the old
update + modes asif b were aso specified.

Table 7.1 tabulates the capabilities and actions associated with the various specified mode string
argumentsto f open.

XXXV

10

15

20

25

Index

Table7.1: File and stream properties of f open modes

rlw|a/|r+|w|at
file must exist before open v v
old file contents discarded on open v v
stream can be read v VAR A I 4
stream can be written VAR A I A I AN I 4
stream can be written only at end v v

Other specifications for files, such as record length and block size, are not specified in the Standard due
to their widdy varying characteridtics in different operating environments. Changes to file access
modes and buffer szes may be specified usng the set vbuf function (see §7.19.56). An
implementation may choose to allow additiona file specifications as part of the mode string argument.
For ingtance,

filel = fopen(fil elnanme, "wb,reclen=80");

might be a reasonable extension on a system that provides record-oriented binary files and dlows a
programmer to specify record length.

A change of input/output direction on an update file is only alowed following a successful f set pos,
f seek, rew nd, or f f | ush operation, since these are precisely the functions which assure that the
1/O buffer has been flushed.

§7.19.2 imposes the requirement that binary files not be truncated when they are updated. This rule
does not preclude an implementation from supporting additiona file types that do truncate when
written to, even when they are opened with the same sort of f open cadl. Magnetic tape files are an
example of afile type that must be handled thisway. (On most tape hardware it is impossible to write
to a tape without destroying immediately following data) Hence tape files are not “ binary files’ within
the meaning of the Standard. A conforming hosted implementation must provide and document at
least one file type (on disk, most likely) that behaves exactly as specified in the Standard.

XXXVI

10

15

20

25

30

35

40

45

Index

7.19.55 Theset buf function

set buf issubsumed by set vbuf ; but it has been retained for compatibility with old code.
7.19.5.6 Theset vbuf function

set vbuf was adopted from UNIX System V, both to control the nature of stream buffering and to
gpecify the sze of 1/0O buffers. An implementation is not required to make actua use of a buffer
provided for a stream, so a program must never expect the buffer’ s contents to reflect 1/0 operations.
Furthermore, the Standard does not require that the requested buffering be implemented; it merdly
mandates a standard mechanism for requesting whatever buffering services might be provided.

Although three types of buffering are defined, an implementation may choose to make one or more of
them equivdent. For example, a library may choose to implement line buffering for binary files as
equivaent to unbuffered 1/0O, or it may choose to aways implement full buffering as equivaent to line
buffering.

The generd principle is to provide portable code with a means of requesting the most appropriate
popular buffering style, but not to require an implementation to support these styles.

A new feature of €9%:C99: C90 was not clear about what, if anything, the si ze argument means
when buf isanull pointer. Exigting practice is mixed: some implementations ignore it completely,
other implementations use it as guidance for determining the size of the buffer allocated by set vbuf .
€9XC99 gives warning that si ze might not be ignored in this case, so portable programs must be |
sure to supply areasonable value.

7.19.6 Formatted input/output functions
7.19.6.1 Thefprintf function
The%hh, % | and % f length modifiers were added in €9XC99 (see §7.19.6.2).

Use of the L modifier with floating conversions was added in C89 to ded with formatted output of the
| ong doubl e type.

Note that the %X and % formats expect a corresponding unsi gned i nt argument, and % X and
% x must be supplied with anunsi gned | ong argument.

The % conversion specifier was added in C89 for programmer convenience to provide symmetry with
f scanf 's% converson specifier, even though it has exactly the same meaning as the %a conversion
gpecifier when used withf pri nt f .

The % conversion specifier was added to C89 for pointer conversion since the size of a pointer is not

necessarily the same as the size of any integer type. Because an implementation may support more
than one Size of pointer, the corresponding argument is expected to be a pointer to voi d.

XXXVII

10

15

20

25

30

35

40

45

| Index

The % format was added to C89 to permit ascertaining the number of characters converted up to that
point in the current invocation of the formatter.

Some pre-C89 implementations switch formats for g at an exponent of —3 instead of the Standard’ s—
4: exigting code which requires that the format switch a —3 will have to be changed.

Some existing implementations provide % and %0 as synonyms or replacements for % d and % o.
The C89 Committee considered the latter notation preferable.

The C89 Committee reserved lower case conversion specifiers for future standardization.

The use of leading zero in field widths to specify zero padding is superseded by a precison fidd. The
older mechanism was retained.

Some implementations have provided the % format as a means of indirectly passng a variable-length
argument list. The functions vf pri nt f, etc., are consdered to be a more controlled method of
effecting thisindirection, s0 % was not adopted in the Standard (see §7.19.6.8).

New features of €9X%-C99.

The C89 trandation limit of 509 characters produced from a single conversion specifier was increased
to 4095 in €9XC99 (gpproximately an eight-fold increase) to reflect the increase in the minimum
amount of memory available in the €9xC99 target machine (see 85.2.4.1).

The printing formats for numbers are not entirely specified. The requirements of the Standard are
loose enough to alow implementations to handle such cases as signed zero, NaN, and infinity in an
gppropriate fashion. These have been improved in €9X-C99.

Binary implementations can choose the hexadecimal digit to the left of the decimal-point character
so that subsequent digits align to nibble boundaries. For example, the next value greater than one
in the common IEC 60559 80-hit extended format could be

0x8. 000000000000001p-3

The next value less than one in |EC 60559 double could be

Ox1.fffffffffffffp-1

Note that if the precision is missing, trailing zeros may be omitted. For example, the value
positive zero might be

0x0. p+0

The more suggestive conversion specifiers for hexadecimal formatting, namely x and h, were
unavailable, and since h was taken, H was ruled out in favor of a lower/upper case option.
Possibilities other than a included: bj k mgr t v wy z. The optiona h to indicate
hexadecimal floating, as in %he, was deemed a less natural fit with the established scheme for
specifiers and options.

| xxxvii

10

15

20

25

30

35

40

45

Index
QUIET CHANGE IN C95

Use of the A and F format specifiers constitutes a minor extension to C89 which does
not reserve them.

For binary-to-decimal conversion, the infinitely precise result is just the source value, and the
destination format’s values are the numbers representable with the given format specifier. The
number of significant digits is determined by the format specifier, and in the case of fixed-point
conversion by the source value as well.

7.19.6.2 Thef scanf function

The specification of f scanf isbased in part on these principles:

. As soon as one specified converson fails, the whole function invocation falls.

. One-character pushback is sufficient for the implementation of f scanf. Given the
invdid fidd" - . x", thecharacters"” - . " are not pushed back.

. If a“flawed field” is detected, no value is stored for the corresponding argument.

. The conversons performed by f scanf are compatible with those performed by

strtodandstrtol.

Input pointer conversion with %p was added to C89, dthough it is obvioudy risky, for symmetry with
fprintf. The% format was added to permit the scanner to determine the radix of the number in
the input stream; the % format was added to make available the number of characters scanned thus far
in the current invocation of the scanner. €9XC99 adds %a and YA.

White space is defined by thei sspace function (see §7.4.1.9).

An implementation must not use the unget ¢ function to perform the necessary one-character
pushback. In particular, sSince the unmatched text isleft “unread,” the file position indicator as reported
by thef t el | function must be the position of the character remaining to be read. Furthermore, if the
unread characters were themsalves pushed back via unget ¢, the pushback in f scanf could not
affect the pushback stack in unget c. A scanf cdl that matches N characters from a stream must
leave the stream in the same state asif N consecutive get ¢ cals had been made.

A new feature of €9X:C99: Thehh and | | length modifiers were added in €9X-C99. | | supports
the new | ong | ong i nt type. hh adds the ability to treat character types the same as dl other
integer types, this can be useful in implementing macros such as SCNd8 in <i ntt ypes. h> (see
7.18).

7.19.6.3 Theprintf function

See commentsin §7.19.6.1 above.

XXXIX

10

15

20

25

30

35

40

45

Index

7.19.6.4 Thescanf function

See commentsin §87.19.6.2 above.

7.19.6.5 Thesnprintf function

A new feature of €9X:C99: The spri ntf function is very useful, but can overrun the output
buffer; and that has been exploited in attacks on computer and network security. €9XC99
addresses this problem by adding the snpri nt f function, modeled after the 4.4BSD version,
which performs bounds checking on the output array.

7.19.6.6 Thesprintf function

See §7.19.6.1 for comments on output formeatting.

In the interests of minimizing redundancy, spri ntf has subsumed the older, rather uncommon,
ecvt,fcvt,andgcvt .

7.19.6.7 Thesscanf function

The behavior of sscanf on encountering end of string has been darified. See dso comments in
§7.19.6.2 above.

7.19.6.8 Thevfprintf function

The functions vfprintf, vprintf, and vspri ntf were adopted from UNIX System V to
facilitate writing specid purpose formatted output functions.

7.19.6.9 Thevfscanf function

The functions vf scanf, vscanf, and vsscanf were adopted andogoudy to the vf pri nt f
functions to facilitate writing specia-purpose formatted intput functions.

7.19.6.10 Thevpri ntf function
See §7.19.6.8.

7.19.6.11 Thevscanf function
See §7.19.6.9.

7.19.6.12 Thevsnpri ntf function

See 87.19.6.5.

10

15

20

25

30

35

40

45

Index

7.19.6.13 Thevsprintf function
See §7.19.6.8.

7.19.6.14 Thevsscanf function

See §7.19.6.9.

7.19.7 Character input/output functions
7.19.7.1 Thef get c function

Because much existing code assumes that f get ¢ and f put ¢ are the actud functions equivaent to
the macros get ¢ and put ¢, the Standard requires that they not be implemented as macros.

7.19.7.2 Thef get s function

This function subsumes get s which has no limit to prevent storage overwrite on arbitrary input (see
87.19.7.7).

7.19.7.3 Thef put c function

See §7.19.7.1.

7.19.7.5 Theget c function

get ¢ and put ¢ have often been implemented as unsafe macros, snceit is difficult in such a macro to
touch the stream argument only once. Since this danger is common in prior art, these two functions
are explicitly permitted to evaluate st r eammore than once.

7.19.7.7 Theget s function

Because get s does not check for buffer overrun, it is generally unsafe to use when its input is not
under the programmer’s control. This has caused some to question whether it should appear in the
Standard a al. The Committee decided that get s was useful and convenient in those specid
circumstances when the programmer does have adequate control over the input, and as longstanding
existing practice, it needed a standard specification. In generd, however, the preferred function is
f get s (see§7.19.7.2).

7.19.7.8 The put c function

See §7.19.7.5.

7.19.7.10 Theput s function

put s(s) isnot exactly equivaent to f put s(st dout, s); and put s aso writes a newline after

XLI

| Index
the argument string. Thisincompatibility reflects existing practice.

XLII

10

15

20

25

30

35

Index
7.19.7.11 Theunget c function

/usr/group requires that a least one character be read before unget ¢ is cdled in cetan
implementation-specific cases. The C89 Committee removed this requirement, thus obliging a Fl LE
structure to have room to store one character of pushback regardless of the state of the buffer. It felt
that this degree of generality makes clearer the ways in which the function may be used. The €9XC99
Committee decided to deprecate the use of unget ¢ on abinary file at the beginning of the file because
of the impossbility of distinguishing between successful and error returns from theft el | function,
both of which would be—1L.

It is permissible to push back a different character than that which was read, which accords with
common exigting practice. The last-in, first-out nature of unget ¢ has been clarified.

unget c is typicdly used to handle agorithms such as tokenization which involve one-character
lookahead in text files. fseek andft el | areused for random access, typicdly in binary files. So
that these disparate file-handling disciplines are not unnecessarily linked, the vaue of a text file' sfile
position indicator immediately after unget ¢ has been specified asindeterminate.

Exiging practice relies on two different models of the effect of ungetc. One mode can be
characterized as writing the pushed-back character “on top of” the previous character. This model
implies an implementation in which the pushed-back characters are stored within the file buffer and
bookkeeping is performed by setting the file postion indicator to the previous character position.
(Care must be taken in this model to recover the overwritten character vaues when the pushed-back
characters are discarded as a result of other operations on the stream.) The other mode can be
characterized as pushing the character “between” the current character and the previous character.
This implies an implementation in which the pushed-back characters are specidly buffered (within the
FI LE structure, say) and accounted for by aflag or count. In this modd it is natural not to move the
file pogtion indicator. The indeterminacy of the file pogition indicator while pushed-back characters
exist accommodates both models.

Mandating either model by specifying the effect of unget ¢ on a text file's file postion indicator
creates problems with implementations that have assumed the other moddl. Requiring the file position
indicator not to change after unget ¢ would necessitate changes in programs which combine random
access and tokenization on text files, and rely on the file position indicator marking the end of a token
even after pushback. Requiring the file podtion indicator to back up would creste severe
implementation problems in certain environments, since in some file organizations it can be impossble
to find tr;e previous input character pogition without having read the file sequentidly to the point in
question.

9Consi der, for instance, a sequentia file of variable-length records in which aline is represented as a count field followed by the charactersin the
line. The file position indicator must encode a character position as the position of the count field plus an offset into the line; from the position of the
count field and the length of the line, the next count field can be found. Insufficient information is available for finding the previous count field, so
backing up from the first character of aline necessitates, in the general case, a sequential read from the start of thefile.

XLIT

10

15

20

25

30

35

40

45

Index

7.19.8 Direct input/output functions
7.19.8.1 Thef read function

si ze_t isthe appropriate type both for an object size and for an array bound (see 86.5.3.4), so thisis
thetype of both si ze and nel em

7.19.8.2 Thefwite function

Sec 87.19.8.1.

7.19.9 File podstioning functions
7.19.9.1 Thef get pos function

f get pos and f set pos were added to C89 to allow random access operations on files that are too
largeto handlewithf seek andftel | .

7.19.9.2 Thef seek function

Whereas a binary file can be treated as an ordered sequence of bytes counting from zero, a text file
need not map one-to-one to its interna representation (see 8§7.19.2). Thus, only seeks to an earlier
reported position are permitted for text files. The need to encode both record position and position

within arecord in al ong value may congran the size of text files upon which f seek andf t el |
can be used to be consderably smdler than the size of binary files.

Given these redtrictions, the Committee gtill felt that this function has enough utility, and is used in
sufficient existing code, to warrant its retention in the Standard. f get pos and f set pos were added
to dedl with filesthat aretoo large to handlewith f seek andftel | .

The f seek function will reset the end-of-file flag for the stream; the error flag is not changed unless
an error occurs, in which case it will be set.

71994 Theftell function
ftell canfall for a least two reasons.

. the stream is associated with atermind or some other file type for which file position
indicator is meaningless.

. the file may be positioned at alocation not representableinal ong.

Thusamethod for f t el | to report failure was specified (see also §7.19.9.1).

| xLiv

10

15

20

25

30

35

40

45

Index
7.19.95 Ther ew nd function

Resetting the end-of-file and error indicators was added to the specification of r ewi nd to make the
specification more logicaly consstent.

7.19.10 Error-handling functions
7.19.10.4 Theperror function

At various times, the C89 Committee conddered providing a form of perror that ddivers up an
error string version of er r no without performing any output. It ultimately decided to provide this
capability in aseparate function, st r er r or (see §87.21.6.2).

7.20 General Utilities<stdl i b. h>

The header <st dl i b. h> was invented by the C89 Committee to hold an assortment of functions
that were otherwise homeless.

7.20.1 Numeric conversion functions
7.20.1.1 Theat of function

at of ,at oi ,and at ol aresubsumed by strt od andst rt ol , but were retained because they are
used extensvely in existing code. They are lessrdiable, but may be fagter if the argument is known to
beinavadid range.

This specification does not require f | oat and | ong doubl e versions of at of , but instead
encouragestheuse of st rt of andst rt ol d which have amore generally useful interface.

7.20.1.2 Theatoi,atol,andatol |l functions
See §7.20.1.1.
7.20.1.3 Thestrtod,strtof,andstrtol dfunctions

strtod was adopted for C89 from UNIX System V because it offers more control over the
conversion process, and because it is required not to produce unexpected results on overflow during
converson. strtol (87.20.1.4) was adopted for the same reason. €9XC99 adds st rt of and
strtold.

So much regarding NaN significands is unspecified because so little is portable. Attaching
meaning to NaN significands is problematic, even for one implementation, even an IEC 60559
one. For example, the IEC 60559 floating-point standard does not specify the effect of format
conversions on NaN significands. Conversions, perhaps generated by the compiler, may alter
NaN significands in obscure ways.

XLV

5 |

10

15

20

25

30

35

40

45

Index

Requiring a sign for NaN or infinity input was considered as a way of minimizing the chance of
mistakenly accepting nonnumeric input. The need for this was deemed insufficient, partly on the
basis of prior art.

QUIET CHANGE IN €9xC99

For simplicity, the infinity and NaN representations are provided through
straightforward enhancements to C89 rather than through a new locale. Note also that
standard C locale categories do not affect the representations of infinities and NaNs.

A previous specification that st r t od return aNaN for invalid numeric input as recommended by
|EEE 854 was withdrawn because of the incompatibility with C89, which demands that st r t od
return zero for invalid numeric input.

QUIET CHANGE IN C99

Due to support for hexadecimal floating-point numbers, a string such as
“0Ox12. 34p-12" is now a valid nonzero value that is totally consumed. In C89,
such a string vielded the value zero and the pointer was left pointing at the x.

72014 Thestrtol ,strtoll,strtoul ,andstrtoull functions

strtol was adopted for C89 as was strtod (87.20.1.3); €9XC99 adds strtoll and
strtoul I .

strtoul wasintroduced by the C89 Committee to provide a fecility like st rt ol for unsi gned
| ong vdues. Smply usngst rt ol insuch cases could result in overflow upon converson.

7.20.2 Pseudo-random sequence generation functions
7.20.2.1 Ther and function

The C89 Committee decided that an implementation should be alowed to provide ar and function
which generates the best random sequence possible in that implementation, and therefore mandated no
standard agorithm. It recognized the value, however, of being able to generate the same pseudo-
random sequence in different implementations, and o it published as an example in the Standard an
algorithm that generates the same pseudo-random sequence in any conforming implementation, given
the same seed.

Ther and and sr and functions were based on exigting practice; indeed the example implementation
was actudly used in some versions of UNIX. Pseudo-random numbers have many uses; and it should
be noted that the example generator, while adequate for casual purposes, is insufficiently random for
demanding applications such as Monte-Carlo sampling and cryptography. Also, only 32,768 distinct
vaues are returned, which may be insufficiently fine resolution for some purposes. Implementations
may substitute improved algorithms and wider ranges of vaues; it is incumbent on the programmer to
ensure that the particular generator has appropriate statistica properties for the intended application.

| xLvi

10

15

20

25

30

35

40

45

Index
7.20.2.2 Thesr and function

See§7.20.2.1.

7.20.3 Memory management functions

The treatment of null pointers and zero-length alocation requests in the definition of these functions
was in part guided by a desire to support this paradigm:

aBJ * p; /] pointer toavariablelist of OBJs

/* initial allocation */
p = (0BJ *) calloc(0, sizeof(CBJ));
[* *

[* reallocations until Size settles */

while(l) {
p= (0 *) realloc((void *)p, ¢ * sizeof (OBJ));
[* changevalue of ¢ or break out of loop */

}
This coding style, not necessarily endorsed by the Committee, is reported to be in widespread use.

Some implementations have returned non-null values for alocation requests of zero bytes. Although
this drategy has the theoreticd advantage of distinguishing between “nothing” and “zero” (an
unalocated pointer vs. a pointer to zero-length space), it has the more compelling theoretica
disadvantage of requiring the concept of a zero-length object. Since such objects cannot be declared,
the only way they could come into existence would be through such alocation requests.

The C89 Committee decided not to accept the idea of zero-length objects. The alocation functions
may therefore return a null pointer for an adlocation request of zero bytes. Note that this treatment
does not preclude the paradigm outlined above.

QUIET CHANGE IN C89

A program which relies on sze-zero allocation requests returning a non-null pointer
will behave differently.

Some implementations provide a function, often caled al | oca, which alocates the requested object
from automatic storage; and the object is automatically freed when the calling function exits. Such a
function is not efficiently implementable in a variety of environments, so it was not adopted in the
Standard.

7.20.3.1 Thecal | oc function

Both nel emand el si ze must be of type si ze_t for reasons smilar to those for f r ead (see
§7.19.8.1).

XLVII

10

15

20

25

30

35

40

45

| Index

If ascdar with al bits zero is not interpreted as a zero vaue by an implementation, then cal | oc may
have astonishing results in existing programs transported there.

7.20.3.2 Thefr ee function

The Standard makes clear that a program may only free that which has been dlocated, that an
alocation may only be freed once, and that a region may not be accessed once it is freed. Some
implementations allow more dangerous license. The null pointer is specified as avaid argument to this
function to reduce the need for specia-case coding.

7.20.3.4 Ther eal | oc function

A null first argument is permissible. If the first argument is not null, and the second argument is 0, then
the cdl frees the memory pointed to by the first argument, and a null argument may be returned; this
specification is congstent with the policy of not allowing zero-sized objects.

A new feature of €9X:C99: ther eal | oc function was changed to make it clear that the pointed-to
object is dedllocated, a new object is adlocated, and the content of the new object is the same as that of
the old object up to the lesser of the two sizes. C89 attempted to specify that the new object was the
same object as the old object but might have a different address. This conflicts with other parts of the
Standard that assume that the address of an object is congtant during its lifetime. Also,
implementations that support an actua alocation when the size is zero do not necessarily return a null
pointer for this case. C89 appeared to require a null return value, and the Committee felt that this was
too redtrictive.

7.20.4 Communication with the environment
7.20.4.1 Theabort function

The C89 Committee vecillated over whether acall to abor t should return if the SI GABRT sgnd is
caught or ignored. To minimize astonishment, the find decision wasthat abor t never returns.

7.20.4.2 Theat exit function

at exi t providesaprogram with a convenient way to clean up the environment beforeit exits. It was
adapted from the Whitesmiths C run-time library function onexi t .

A suggested dternative was to use the SI GTERMfacility of the si gnal /r ai se machinery, but that
would not give the lagt-in-first-out stacking of multiple functions so useful with at exi t .

It is the respongibility of the library to maintain the chain of registered functions so that they are
invoked in the correct sequence upon program exit.

7.20.4.3 Theexit function

The argument to exi t is a datus indication returned to the invoking environment. In the UNIX

| xLvin

10

15

20

25

30

35

40

45

Index

operating system, a value of zero is the successful return code from a program. As usage of C has
spread beyond UNIX, exi t (0) has often been retained as an idiom indicating successful termination,
even on operating systems with different systems of return codes. This usage is thus recognized as
sandard. There has never been a portable way of indicating a non-successful termination, since the
arguments to exit are implementation-defined. The EXI T_FAI LURE macro was added to C89 to
provide such a capability. EXI T_SUCCESS was added as well.

Aside from cdls explicitly coded by aprogrammer, exi t isinvoked on return from mai n. Thusin at
least this case, the body of exi t cannot assume the existence of any objects with automatic storage
duration except those declared inexi t .

The Committee considered the addition of _exi t , but rgected it based on concerns of incompatible
with the POSIX specification upon which it is based. For example, one concern expressed is that
_exi t was specified asaway to get out of asignal handler without triggering another signd, but that
isnot actudly theway _exi t behavesin POSIX environments. The Committee did not wish to give
programmersthis kind of false hope. (But see 87.20.4.4 for €9X-)C99.)

7.20.44 The Exit function

A new feature of €9X:—the C9XC99: the C99 Committee considered it desrableto havean _exi t -
like function that would result in immediate program termination without triggering signals or
at exi t -regigered functions, but chose the name, _Exi t, rather than _exi t, because of the
potential conflict with existing practice mentioned above.

7.20.45 Theget env function

The definition of get env is desgned to accommodate both implementations that have dl in-memory
read-only environment strings and those that may have to read an environment siring into a static
buffer. Hence the pointer returned by the get env function points to a string not modifiable by the
cdler. If an attempt is made to change this string, the behavior of future cdls to get env are
undefined.

A corresponding put env function was omitted from the Standard, since its utility outsde a multi-
process environment is questionable, and since its definition is properly the domain of an operating
system standard.

7.20.4.6 The syst emfunction

The syst emfunction alows a program to suspend its execution temporarily in order to run another
program to completion.

Information may be passed to the called program in three ways. through command-line argument
strings, through the environment, and (most portably) through data files. Before calling the syst em
function, the caling program should close dl such datafiles.

Information may be returned from the called program in two ways through the implementation-
defined return vaue (In many implementations, the termination status code which is the argument to

XLIX

| Index
theexi t function isreturned by the implementation to the caler asthe vaue returned by thesyst em
function.), and (most portably) through datafiles.

If the environment is interactive, information may aso be exchanged with users of interactive devices.

5 Some implementations offer built-in programs called “commands’ (for example, “date’) which may
provide useful information to an gpplication program via the syst emfunction. The Standard does
not attempt to characterize such commands, and their useis not portable.

On the other hand, the use of the sy st emfunction is portable, provided the implementation supports

10 the capability. The Standard permits the application to ascertain this by cdling the syst emfunction
with anull pointer argument. Whether more levels of nesting are supported can aso be ascertained this
way; but assuming more than one such level is obvioudy dangerous.

7.20.5 Searching and sorting utilities
15
| €9XC99 clarifies requirements and usage of the comparison functions.

7.20.6 Integer arithmetic functions
20 7.20.6.1 Theabs,| abs,and! | abs functions

abs was moved from <mat h. h> as it was the only function in that library which did not involve
doubl e arithmetic. Some programs have included <mat h. h> solely to gain access to abs, but in
some implementations this results in unused floating-point run-time routines becoming part of the
25 trandated program.

The C89 Committee rgected proposas to add an absolute value operator to the language. An
implementation can provide a built-in function for efficiency.

30 7.20.6.2 Thediv,ldiv,andl I di v functions

Because C89 had implementation-defined semantics for divison of sgned integers when negative
| operands were involved, di v and | di v, and | | di v in €9%,C99, were invented to provide well-

gpecified semantics for sgned integer divison and remainder operations. The semantics were adopted
35 to be the same as in Fortran. Since these functions return both the quotient and the remainder, they
aso serve as a convenient way of efficiently modeling underlying hardware that computes both results
as part of the same operation. Table 7.2 summarizes the semantics of these functions.

Table7.2: Resultsof di v, | divandl | div

numer denom quot rem
7 3 2 1
-7 3 -2 -1
7 -3 -2 1
-7 -3 2 -1

10

15

20

25

30

35

40

45

Index

Divison by zero is described as undefined behavior rather than as setting er r no to EDOM The
program can just as easly check for a zero divisor before a division as for an error code afterwards,
and the adopted scheme reduces the burden on the function.

Now that €9XC99 requires smilar semantics for the divison operator, the main reason for new
programstousedi v, | di v or | | di v isto Smultaneoudy obtain quotient and remainder.

7.20.7 Multibyte/wide character conversion functions

See §5.2.1.2, SMSE.8 and 8MSE.9.1 for an overdl discusson of multibyte character representations
and wide characters.

Implementation note: dthough these functions are described as having a converson date for

consstency with the restartable equivalentsin 87.24.6.3 and 87.24.6.4, the only piece of the converson
dtate that isrequired for these functionsis the current shift Sate, if any.

7.20.8 Multibyte/wide string conversion functions

See §7.20.7.

7.21 String handling<stri ng. h>

The C89 Committee fet that the functions in this subclause were dl excdlent candidates for
replacement by high-performance built-in operations. Hence many smple functions have been
retained, and severa added, just to leave the door open for better implementations of these common
operations.

The Standard reserves function names beginning with st r or memfor possible future use.

7.21.1 String function conventions
menctpy, nmenset, nmenctnp, and nencthr were adopted in C89 from severd existing
implementations. The general goa was to provide equivaent capabilities for three types of byte
sequences.

. null-terminated strings (st r -).

. null-terminated strings with amaximum length (st r n-).

. transparent data of specified length (mem).

7.21.2 Copying functions

A block copy routine should be “right”: it should work correctly even if the blocks being copied

LI

10

15

20

25

30

35

| Index

overlap. Otherwise it is more difficult to correctly code such overlapping copy operations, and
portability suffers because the optima C-coded agorithm on one machine may be horribly dow on
another.

A block copy routine should be “fast”: it should be implementable as a few inline ingructions which
take maximum advantage of any block copy provisons of the hardware. Checking for overlapping
copies produces too much code for convenient inlining in many implementations. The programmer
knows in a great many cases that the two blocks cannot possibly overlap, so the space and time
overhead are for naught.

These arguments are contradictory but each is compelling. Therefore the Standard mandates two
block copy functions nenmmove is required to work correctly even if the source and destination
overlap, while mentpy can assume non-overlapping operands and be optimized accordingly.

7.21.2.4 Thestrncpy function

st r ncpy wasinitidly introduced into the C library to deal with fixed-length name fields in structures
such as directory entries. Such fields are not used in the same way as drings. the trailing null is
unnecessary for a maximum-length field, and setting trailing bytes for shorter names to null assures
efficient fidld-wise comparisons. st r ncpy is not by origin a “bounded strcpy,” and the Committee
preferred to recognize existing practice rather than ater the function to better suit it to such use.

7.21.3 Concatenation functions
7.21.3.2 Thestrncat function

Note that this function may add n+1 charactersto the string.

7.21.4 Comparison functions
7.21.4.1 Thenentnp function

See §7.21.1.

LIl

10

15

20

25

30

35

40

45

Index
7.21.4.3 Thestrcoll function

strcoll and strxfrm provide for locale-specific string sorting. strcol | is intended for
gpplications in which the number of comparisons is smdl; st r xf r mis more appropriate when items
are to be compared a number of times and the cost of transformation is paid only once.

7.21.45 Thestrxfr mfunction

See §7.21.4.3.

7.21.5 Search functions
7.21.5.1 Thenmenthr function
See §7.21.1.

7.21.5.7 Thestrstr function

The strstr function is an invention of the C89 Committee. It is included as a hook for efficient
substring agorithms, or for built-in substring instructions.

7.21.5.8 Thestrt ok function

This function was included in C89 to provide a convenient solution to many smple problems of lexica
andyds, such as scanning command line arguments.

The st r sep function was proposed as an enhanced replacement for the st r t ok function. While
this is a common extension, it is easy enough for a user to provide this functiondity, and it is unclear

that an implementor can do a substantially better job; so, there was not sufficient support for adding
thisfeature.

7.21.6 Miscellaneous functions
7.21.6.1 Thenenset function

See §87.21.1 and §7.20.3.1.

7.21.6.2 Thestrerror function

This function is a descendant of perror (see §7.19.10.4). It is defined such that it can return a
pointer to an in-memory read-only string, or can copy a string into a static buffer on each call.

7.21.6.3 Thestr| en function

Thisfunction is now specified asreturning avalue of typesi ze_t (see 86.5.3.4).

LI

10

15

20

25

30

35

40

45

| Index

7.22 Type-generic math <t gmat h. h>
A new feature of C9X.C99.

Type-generic macros allow calling a function whose type is determined by the argument type, as
is the case for C operators such as + and *. For example, with a type-generic cos macro, the
expression cos((f 1 oat) x) will havetypef | oat . Thisfeature enableswriting more portably
efficient code and alleviates need for awkward casting and suffixing in the process of porting or
adjusting precision. Generic math functions are a widely appreciated feature of Fortran.

The only arguments that affect the type resolution are the arguments corresponding to the
parameters that have type doubl e in the synopsis. Hence the type of a type-generic call to
next t owar d, whose second parameter is| ong doubl e in the synopsis, is determined solely
by the type of the first argument.

The term type-generic was chosen over the proposed alternatives of intrinsic and overloading.
The term is more specific than intrinsic, which aready is widely used with a more general
meaning, and reflects a closer match to Fortran’s generic functions than to C++ overloading.

The macros are placed in their own header in order not to silently break old programs that include
<mat h. h>, for examplewithpri ntf (" %", sin(x)).

nmodf (doubl e, doubl e *) is excluded because no way was seen to make it safe without
complicating the type resolution.

This specification differs from an earlier proposa in that the type is determined solely by the
argument, and may be narrower than the type for expression evaluation. This change was made
because the performance costs for computing functions with narrow arguments to wide range and
precision might be too high, even if the implementation efficiently evaluates basic operations to
wider format.

Also, this differs from earlier proposals in that integer-type arguments are converted to doubl e
instead of f | oat. Although converting to f | oat would have been more consistent with the
usual arithmetic conversions, converting to doubl e has the advantages of preserving the value
more often on many systems, and of being more compatible with C89 where unsuffixed cals to
math functions with integer arguments were callsto doubl e functions.

Having a g suffix for the generic macros was considered but thought unnecessary.

The implementation might, as an extension, endow appropriate ones of the macros that this
standard specifies only for real arguments with the ability to invoke the complex functions.

This specification does not prescribe any particular implementation mechanism for generic
macros. It could be implemented smply with built-in macros. The generic macro for sqrt , for
example, could be implemented with

#undef sqrt
#define sqrt(x) _ _BULTIN GENERI C sqrt(x)

LIV

10

15

20

25

30

35

40

45

Index

Generic macros are designed for a useful level of consistency with C++ overloaded math
functions.

The great mgjority of existing C programs are expected to be unaffected when <t gnat h. h> is
included instead of <mat h. h> or <conpl ex. h>. Generic macros are smilar to the C89
library masking macros, though the semantic types of return values differ.

The ability to overload on integer as well as floating types would have been useful for some
functions, for example copysi gn. Overloading with different numbers of arguments would
have allowed reusing names, for example r emai nder for r enguo. However, these facilities
would have complicated the specification; and their natural consistent use, such as for a floating
abs or a two-argument at an, would have introduced further inconsistencies with C89 for
insufficient benefit.

This specification in no way limits the implementation’s options for efficiency, including inlining
library functions.

7.23 Dateandtime<ti ne. h>

7.23.1 Components of time

Thetypescl ock_t andti ne_t are arithmetic because vaues of these types must, in accordance
with existing practice, on occasion be compared with —1 (a“don’t-know” indication), suitably cast. No
arithmetic properties of these types are defined by the Standard, however, in order to alow
implementations the maximum flexibility in choosing ranges, precisons, and representations most
appropriate to their intended application. The representation need not be a count of some basic unit; an
implementation might conceivably represent different components of a tempora value as subfields of

an integer type.

Many C environments do not support /usr/group library concepts of daylight saving time (DST, aso
caled summer time) or time zones. Both notions are defined geographicaly and politicaly, and thus
may require more knowledge about the real world than an implementation can support. Hence the
Standard specifies the date and time functions such that information about DST and time zones is not
required. /usr/group’st zset function, which would require dedling with time zones, was excluded
atogether. An implementation reports that information about DST is not available by setting the
t m i sdst fidd in a broken-down time to a negative value. An implementation may return a null
pointer from a cal to gnt i nme if information about the offset between Coordinated Universa Time
(UTC, née GMT) and loca timeisnot available.

7.23.2 Time manipulation functions
7.23.21 The cl ock function

Thisfunction isintended for measuring intervals of execution time in whatever units an implementation
desires. The conflicting goas of high resolution, long interval capacity, and low timer overhead must

LV

10

15

20

25

30

35

40

45

| Index

be balanced carefully in the light of thisintended use.
7.23.2.2 Thedi ffti me function

di ffti meisaninvention of the C89 Committee. It is provided so that an implementation can store
an indication of the date/time value in the most efficient format possible and till provide a method of
caculating the difference between two times.

7.23.2.3 Thenkti nme function

nkt i me wasinvented by the C89 Committee to complete the set of time functions. With this function
it becomes possible to perform portable cal culations involving clock times and broken-down times.

The rules on the ranges of the fieds within the *t i meptr record are crafted to permit useful
arithmetic to be done. For instance, hereis aparadigm for continuing some loop for an hour:

#i ncl ude <ti ne. h>
struct tm when;

time_t now,
time_t deadl i ne;
[* .*

now = tine(0);

when = *| ocal ti ne(&ow);

when. t m hour += 1; /'l resultisintherange[1,24]
deadl i ne = nkti me(&when);

printf("Loop will finish: %\n", asctinme(&when));
while (difftine(deadline, tine(0)) > 0) whatever();

The specification of nkt i me guarantees that the addition to thet m_hour field produces the correct
result even when the new vaue of t m _hour is24, that is, avaue outside the range ever returned by a
library functioninast r uct t mobject.

One of the reasons for adding this function is to replace the capability to do such arithmetic which is
lost when a programmer cannot depend ont i ne_t being an integra multiple of some known time
unit.

Severd readers of earlier versons of this Rationale have pointed out apparent problemsin this example
if now is just before a trandtion into or out of daylight saving time. However, when. t m i sdst
indicates what sort of time was the basis of the calculation. Implementors, take heed. If thisfidld is set
to —1 on input, one truly ambiguous case involves the trangtion out of daylight saving time. AsDST is
currently legidated in the United States, the hour from 0100 to 0159 occurs twice, first as DST and
then as standard time. Hence an unlabeled 0130 on this date is problematic. An implementation may
choose to take this as DST or standard time, marking its decison inthet m i sdst fidd. It may dso
legitimately take thisasinvaid input andreturn (tinme_t) (-1).

| Lvi

10

15

20

25

30

35

40

45

Index
7.23.2.4 Theti ne function

Since no measure is given for how precise an implementation’ s best approximation to the current time
must be, an implementation could aways return the same date instead of a more honest —1. Thisis, of
course, not the intent.

7.23.3 Time conversion functions
7.23.3.1 Theascti me function

Although the name of this function suggests a conflict with the principle of removing ASCII
dependencies from the Standard, the name was retained due to prior art. For the same reason of
existing practice, a proposa to remove the newline character from the string format was not adopted.
Proposals to dlow for the use of languages other than English in naming weekdays and months met
with objections on grounds of prior art, and on grounds that a truly international verson of this
function was difficult to specify: three-letter abbreviation of weekday and month names is not
universaly conventiond, for indance. Thestrfti me function (see 87.23.3.5) provides gppropriate
facilitiesfor locae-specific date and time strings.

7.23.3.3 Thegnti me function

Despite objections that GMT, that is, Coordinated Universa Time (UTC), is not available in some
implementations, this function was retained because UTC is a ussful and widespread standard
representation of time. If UTC isnot available, anull pointer may be returned.

7.23.35 Thestrftime function

strftime provides away of formatting the date and time in the appropriate locale-specific fashion
usng the %, %, and %X format specifiers. More generdly, it dlows the programmer to tailor
whatever date and time format is appropriate for a given application. The facility isbased on the UNIX
system date command. See 87.5 for further discussion of locale specification. For the field controlled
by 942, an implementation may wish to provide speciad symbols to mark noon and midnight.

A new feature of €9X—C9XC99: C99 extendsthe st rfti me specifiers, introducing %C, %0, %e,
%, %g, Y6 W, Y, %, IR % , %0, Y and %/, as well asthe E and O modifiers. These specifiers
were chosen according to existing practice to cover long-standing POSIX practice and to dlow dl the
formatting available in 1SO 8601.

7.26 Futurelibrary directions

This subclause includes specific mention of the future direction in which the Committee intends to
extend and/or redtrict the library. The contents of this subclause should be consdered as quite likely to
become a part of the next verson of the Standard. Implementors are advised that failure to take heed
of the points mentioned herein is consdered undesirable for a conforming implementation. Users are
advised that fallure to take heed of the points mentioned herein is consdered undesirable for a
conforming program.

LVII

LVIII

| Index
8. Annexes

Most of the materid in the annexesis not new. Itissmply asummary of information in the Standard,
collated for the convenience of users of the Standard.

New (advisory) information is found in Annex J (Common warnings) and in Annex K.5 (Common
extensons). The subclause on common extensions is provided in part to give programmers even
further information which may be useful in avoiding features of local didects of C.

10

15

20

25

30

35

40

45

Index
Annex F |EC 60559 floating-point arithmetic (nor mative)

A new feature of €9X-C99.

Vagaries of floating-point arithmetic have plagued programmers and users since its inception; and
they still do, even though hardware floating-point is now largely standardized. When |EEE binary
floating-point standard 754 became an official standard in July 1985, 26 months before the radix-
independent standard 854, severa |EEE implementations were aready shipping. In 1993, IEEE
754 was published as international standard IEC 559, now IEC 60559. Now virtually all new
floating-point implementations conform to IEC 60559, at least in format if not to the last detall.
Although these standards have been enormoudy successful in influencing hardware
implementation, many of their features, including predictability, remain impractical or unavailable
for use by programmers. |EC 60559 does not include language bindings, a cost of ddlivering the
basic standard in atimely fashion. The C89 Committee attempted to remove conflicts with IEEE
arithmetic, but did not specify IEEE support. Expediencies of programming language
implementation and optimization can deny the features offered by modern hardware. In the
meantime, particular companies have defined their own |EEE language extensions and libraries;
and not surprisingly, lack of portability has impeded programming for these interfaces.

The Numerical C Extensions Group, NCEG, at itsinitial meeting in May 1989, identified support
for IEEE floating-point arithmetic as one of its focus areas and organized a subgroup to produce
atechnical report. The subgroup benefited from the considerable C language and | EEE floating-
point expertise associated with NCEG. It included individuals with substantial experience with
language extensions (albeit proprietary) for IEEE floating-point. And, following after the
standardization of C, it had a stable, well defined base for its extensions. Thus NCEG had a
unique opportunity to solve this problem. The floating-point part of NCEG's technical report
published in 1995 was the basis for the €9XC99 floating-point specification.

F.2 Types

Minimal conformance to the IEC 60559 floating-point standards does not require a format wider
than single. The narrowest C doubl e type adlowed by standard C is wider than IEC 60559
single, and wider than the minimum IEC 60559 single-extended format. (IEC 60559 single-
extended is an optional format intended only for those implementations that don’t support double;
it has at least 32 bits of precison.) Both standard C and the IEC 60559 standards would be
satisfied if f1 oat were IEC 60559 single and doubl e were an IEC 60559 single-extended
format with at least 35 bits of precison. However, this specification goes dightly further by
requiring doubl e to be IEC 60559 double rather than just a wide IEC 60559 single-extended.

The primary objective of the IEC 60559 part of this specification is to facilitate writing portable
code that exploits the floating-point standard, including its standardized single and double data
formats. Bringing the C data types and the IEC 60559 standard formats into line advances this
objective.

This specification accommodates what are expected to be the most important IEC 60559 floating-
point architectures for general C implementations.

10

15

20

25

30

35

40

45

| Index

Because of standard C’s bias toward doubl e, extended-based architectures might appear to be
better served by associating the C doubl e type with IEC 60559 extended. However, such an
approach would not allow standard C types for both IEC 60559 double and single and would go
against current industry naming, in addition to undermining this specification’s portability goal.
Other features in the Standard, for example the type definitions f| oat _t and doubl e_t
(defined in <mat h. h>), are intended to alow effective use of architectures with more efficient,
wider formats.

Thel ong doubl e typeisnot required to be |EC 60559 extended because

1. some of the magor IEC 60559 floating-point architectures for C implementations do not
support extended.

2. double precision is adequate for a broad assortment of numerical applications.

3. extended is less standard than single or double in that only bounds for its range and precision
are specified in IEC 60559.

For implementations without extended in hardware, non-1EC 60559 extended arithmetic written
in software, exploiting double in hardware, provides some of the advantages of IEC 60559
extended but with significantly better performance than true IEC 60559 extended in software.

Specification for a variable-length extended type, one whose width could be changed by the user,
was deemed premature. However, not unduly encumbering experimentation and future
extensions, for example for variable length extended, isa goal of this specification.

Narrow-format implementations

Some C implementations, namely ones for digital signal processing, provide only the IEC 60559
single format, possibly augmented by single-extended, which may be narrower than IEC 60559
double or standard C doubl e, and possibly further augmented by double in software. These
non-conforming implementations might generally adopt this specification, though not matching its
requirements for types.

One approach would be to match standard C f | oat with single, match standard C doubl e with
single-extended or single; and match standard C | ong doubl e with double, single-extended, or
single. Then most of this specification could be applied straightforwardly. Users should be
clearly warned that the types may not meet expectations.

Another approach would be to refer to a single-extended format as | ong f | oat and then not
recognize any C types not truly supported. This would provide ample warning for programs
requiring double. The trandation part of porting programs could be accomplished easily with the
help of type definitions. In the absence of a double type, most of this specification for double
could be adopted for the | ong fl oat type. Having distinct types for | ong f| oat and
doubl e, previoudy synonyms, requires more imagination.

10

15

20

25

30

35

40

Index

F.5 Binary-decimal conversion

The 1EC 60559 floating-point standard requires perfect rounding for a large though incomplete
subset of decimal conversions. This specification goes beyond the IEC 60559 floating-point
standard by requiring perfect rounding for al decimal conversions involving DECI MAL_DI Gor
fewer decimal digits and a supported IEC 60559 format, because practical methods are now
available. Although not requiring correct rounding for arbitrarily wide decimal numbers, this
specification is sufficient in the sense that it ensures that every internal numeric value in an IEC
60559 format can be determined as a decimal constant.

F.7 Environment

F.7.4 Constant expressions

An early version of this specification allowed trandation-time constant arithmetic, but empowered
the unary + operator, when applied to an operand, to inhibit trandlation-time evaluation of
constant expressions. Introducing special semantics for the unary + operator did not seem
necessary, as trand ation-time evaluation can be achieved by using static declarations.

F.75 Initialization

C89 did not specify when aggregate and union initialization is done. Otherwise, this section is
merely a clarification. Note that, under the effect of an enabling FENV_ACCESS pragma, any
exception resulting from execution-time initialization must be raised at execution time.

The specification for constant expressions and initialization does not suit C++, whose static and
aggregate initializers need not be constant. Specifying al floating-point constant arithmetic and
initidlization to be as if a execution time would be suitable for C++, and given the

FENV_ACCESS mechanism, still would alow the bulk of constant arithmetic to be done, in
actuality, at trandation time.

F.9 Mathematics<nmat h. h>

HUGE_VAL cannot be implemented as

#defi ne HUGE VAL (1.0/0.0)

whose use may raise the divide-by-zero exception. Similarly, | NFI NI TY and NAN cannot be
implementedas((fl oat) (1.0/0.0)) and((float) (0.0/0.0).

10

15

20

25

30

35

40

45

| Index

Special cases
The goals of the specification for special cases are to
1. define special-case results so that programs will run correctly for the widest range of inputs.

2. assure predictable specia-case behavior the programmer can exploit for simpler, more efficient
code.

3. alow implementations enough flexibility to provide needed performance.

Compatibility with IEC 60559 is aforemost strategy. The €9XC99 annexes adopt the IEC 60559
specification for the functions covered by that standard, such assqrt andri nt, and follows the
spirit of 1EC 60559 for other functions. This means the specia values (infinities, NaNs, and
signed zeros) and the floating-point exceptions have a consistent meaning throughout the basic
arithmetic and the libraries. At a higher level, €9XC99 shares the IEC 60559 goal to enhance
robustness through predictable behavior. For specia cases, this behavior is chosen to be useful
for most applications wherever possible, recognizing that it is in the nature of exceptiona cases
that one behavior isnot best in al situations.

Typically, the tradeoff is between a numeric result that is useful in only some applications and a
more pessimistic NaN result. Asin IEC 60559, choosing utility over conservatism exacts a cost
in specification complexity. For example, regarding NaNs only as error indicators and rules like
“NaN in, NaN out” are smple but not aways most useful. A NaN argument is often better
interpreted as an indeterminate value. This supports the programming practice of initializing with
NaNs those variables whose true values are yet to be determined, and permits returning the
obvious numeric vaue for functions that are independent of one of their arguments. Thus
hypot (¥, NAN) isinfinity, as this would be the result regardless of the numeric value of the
second argument. The €9XC99 f max and f m n functions return the maximum or minimum of
their numerical arguments, hence f max(NAN, 1. 2) is 1.2, which is the desired behavior for
determining the maximum value in a set of partidly initialized data.

Although a definition of f max implying a NaN result for f max(NAN, 1. 2) might be equaly
useful, choosing one of the viable specifications instead of leaving the choice to the
implementation has the inherent value of suiting some portable code instead of none. In other
special cases, however, choices are left to the implementation because of existing practice (for
example, the return value of il ogb) or performance issues (for example, whether certain
rounding functions raise the inexact exception).

Generadly, €9XC99 eschews a NaN result where a numerical value is useful. |EC 60559 follows
the same approach, as in defining overflow results to be infinite (given default rounding), which is
neither mathematically correct nor useful in all cases. The results of pow(¥, 0) and pow(0, 0)
are both 1, because there are applications that can exploit this definition. For example, if x(p) and
y(p) are any analytic functions that become zero a p = a, then pow X, y), which equas
exp(y*l og(x)), approaches 1 as p approaches a. The result of pow —2, ¥) is+¥, because
all large positive floating-point values are even integers. Theresult of at an2(+0, +0) , whichis
equivalent to car g(+0+i0) , is defined to be +0. A significant benefit is supporting acl og that
isequivaent to| og on the nonnegative real axis.

| v

10

15

20

25

30

35

Index

The choice for specia-case behavior, which typically is arbitrary to some degree, was made in
favor of preserving identities (involving numeric, not NaN, values), specification consistency
among functions, and efficiency in implementation. The functions hypot (%, y) and
cabs(x+yi) areequivaent, asareat an2(y, X) and car g(x+yi) , and these behave so as to be
useful building blocks for other complex functions.

In certain respects, €9XC99 is less demanding than might be expected, in order to give some
flexibility in implementation, especialy where the loss of utility is believed to be negligible or the
cost is not judtifiable. For example, €9XC99 leaves to the implementation to decide whether
functions (like si n) that are essentially aways inexact raise the inexact flag, as there doesn’'t
seem to be significant utility in testing an expression involving such a function for exactness.
Functions in <mat h. h> are alowed to raise undeserved inexact and underflow exceptions,
because determination may be difficult. €9XC99 allows complex multiply and divide to raise
spurious exceptions because of the performance cost of avoiding them.

The cost for exception behavior is intended to be modest enough for most purposes. And, as the
exceptions are accessible only in code under the effect of an enabling FENV_ACCESS pragma, an
implementation could invoke, perhaps even by default, routines that didn't have the specified
exception behavior. (The pragma does not exempt the implementation from having to return
specified result values.)

Underflow

The IEC 60559 floating-point standard offers the implementation multiple definitions of
underflow. All resulting in the same values, the options differ only in that the thresholds when the
exception is raised may differ by a rounding error. It is not intended that library functions
necessarily use the same definition of underflow as the arithmetic, because the difference so rarely
matters.

Exactness
For some functions, pow for example, determining exactnessin all cases may be too costly.
Functions have certain restrictions against raising spurious exceptions detectable by the user. For

example, the implementation must hide an underflow generated by an intermediate computation of
anon-tiny result.

10

15

20

25

30

35

| Index

F.9.1 Trigonometric functions

F.9.14 Theat an2 functions

The more contentious cases are y and x both infinite or both zero. These deliver numeric results
instead of NaNs in order to preserve more identities and for better utility. The specification of
at an2(0, 0) to be O facilitates the definition of car g(x+yi) asatan2(x,y) and cl og(2
aslog(|x]) +1*carg(2 sothatcl og(2 agreeswithl og(x) ontherea axis.

The specification of at an2(¥, ¥) as p/4 indicates the reasonable quadrant, preserving some
information in preference to none.

F.9.4 Power and absolute value functions
F.94.3 Thehypot functions

Note that hypot (I NFI NI TY, NAN) returns +I NFI NI TY, under the justification that
hypot (1 NFI NI TY, y) is+¥ for any numeric valuey.

F.94.4 Thepowfunctions

pow x, 0) is specified to return 1 for any X, because there are significant applications where 1 is
more useful than NaN. pow f(t), g(t)) approaches 1 in al cases where f and g are anaytic
functions and g(t) approaches zero. The result 1 better supports applications where the second
argument is integra. pow(NAN, O) returns 1.0 on the genera principle that if a result is

independent of the numerical value of an argument, then that result is appropriate if that argument
isaNaN.

F.9.9 Maximum, minimum, and positive difference functions
F.9.9.2 Thef max functions

Some applications may be better served by a max function that would return a NaN if one of its
arguments were a NaN:

{ return (isgreaterequal (x, y) || isnan(x)) ? x : vy; }

Note that two branches till are required for symmetry in NaN cases.

VI

10

15

20

25

30

35

40

45

Index

Annex G |EC 60559-compatible complex arithmetic (infor mative)

A new feature of €9%-C99.

Although the specification in Annex G is fundamental for IEC 60559 style complex arithmetic, the
annex is designated informative because of insufficient prior art for normative status.

G.2 Types

Although not present in older complex arithmetic facilities such as Fortran’s, the imaginary types
naturally model the imaginary axis of complex analysis, promote computational and storage
efficiency, and capture the completeness and consistency of IEC 60559 arithmetic for the complex
domain. Seeaso rationae for 8G.5.

The representation and alignment requirements of imaginary types are intended to alow imaginary
arguments to fprintf and f scanf; however, technically speaking, this invokes undefined
behavior because corresponding real and imaginary types are not compatible types. The
recommended practice is that implementations promote arguments with f | oat i magi nary
types to doubl e i magi nary, and treat the arguments as if they had the corresponding redl
type. When no prototype is in scope, function calls involving arguments with imaginary types
should behave in asimilar manner.

G.5 Binary operators

G.5.1 Multiplicative operators

Text book formulas for complex arithmetic tend to turn infinite inputs into NaNs, often losing
useful information unnecessarily. For example,

(L+HO)(¥+H¥) P (1 ¥ —0 ¥)+i(0 ¥+1" ¥) b NaN+iNaN
and
cexp(¥ +iNaN) b exp(¥)” (cis(NaN)) b NaN+iNaN

but for applications modeling the Riemann sphere, result values of infinite magnitude would be
more useful (even though their phase angles may be meaningless). In order to support the one-
infinity model, €9XC99 regards any complex value with at least one infinite part as a complex
infinity (even if the other part is a NaN), and guarantees that operations and functions honor basic
properties of infinities, and provides the cpr oj function to map all infinities to a canonical one.
For example, a finite non-zero value times an infinity must be an infinity, hence (1+i0)* (¥ +i¥)
must be an infinity. In the same spirit, cexp(¥ +iNaN) is an infinity and cexp(-¥ +iNaN) is a
complex zero, which preserve cabs(cexp(x+iy)) = exp(X).

C9XC99 treats multiple infinities so as to preserve directional information where possible, despite
the inherent limitations of the ordered-pair (Cartesian) representation. The product of the
|

10

15

20

25

30

35

40

45

| Index

imaginary unit and areal infinity is a correctly signed imaginary infinity, i = ¥ =i¥. And
iT (¥ -¥)=¥ +i¥
which at least indicates the reasonable quadrant.

€9XC99 dlows complex multiply and divide to raise spurious exceptions because of the
performance cost of avoiding them.

G.6 Complex arithmetic <conpl ex. h>
See dlso rationde for 8F.9 and 8G.4.1.

Positing the imaginary unit constant is a natural analog to the mathematical notion of augmenting
the reals with the imaginary unit. It allows writing imaginary and complex expressions in common
mathematical style, for example x + | *y. Note that the multiplication here affects translated
code, but does not necessitate an actual floating-point multiply, nor does the addition necessitate a
floating-point add.

IEC 60559 compatibility is a primary rationale for the imaginary types. Without them the
traditional complex arithmetic programming facilities prove fundamentally incompatible with IEC
60559 in the treatment of specid values, with them compatibility comes surprisingly naturally.
Very little special-case specification is required for imaginary types.

The imaginary types, together with the usua arithmetic conversion rules and operator
specifications (see 8G.4), allow substantially more efficient code. For example, multiplication of
an imaginary by a complex can be implemented straightforwardly with two multiplications, instead
of four multiplications and two additions.

In the absence of imaginary types, macros would be required in order to create certain special
values. For example, O+¥i could be created by CMPLX(0. O, | NFI NI TY) . With the imaginary
types, imaginary infinity is smply the value of | *I NFI NI TY. (If imaginary types are not
supported and | is_Conpl ex_I, then | NFI NI TY*I would result in areal part of NaN and an
invalid exception.) With imaginary types, values of | *y and x + | *y, where x and y are real
floating values, cover al values of the imaginary and complex types, hence eliminating this need
for the complex macros.

Some programs are expected to use the imaginary types implicitly in constructions with the
imaginary unit | , such as x + | *y, and not explicitly in declarations. This suggests making the
imaginary types private to the implementation and not available for explicit program declarations.
However, such an approach was rejected as being less in the open spirit of C, and not much
simpler. For the same reasons, the approach of treating imaginariness as an attribute of certain
complex expressions, rather than as additional types, was rejected.

Another proposal was to regard the special values (infinities, NaNs, and signed zeros) as outside
the model. This would allow any behavior when special values occur, including much that is
prescribed by this specification. However, this approach would not serve the growing majority of
implementations, including al IEC 60559 ones, that support the specia vaues. These

10

15

20

25

Index

implementations would require additional specification in order to provide a consistent extension
of their treatment of special cases in the real domain. On the other hand, implementations not
supporting specia values should have little additional trouble implementing imaginary types as
proposed here.

The efficiency benefits of the imaginary types goes beyond what the implementation provides. In
many cases programmers have foregone a programming language' s complex arithmetic facilities,
which, lacking an imaginary type, required contiguous storage of both real and imaginary parts,
programmers could store and manipulate complex values more efficiently using real arithmetic
directly. The imaginary types enable programmers to exploit the efficiency of the real formats
without having to give up support for complex arithmetic semantics.

Care is taken throughout so that the sign of zero is available for distinguishing the sides of a
branch cut along the axes, even at infinities. Therefore

O-¥ +i0 = 0+i¥
and by conjugation

O¥-0=0-¥
G.7 Type-generic math <t gnat h. h>
Exploiting the fact that some functions map the imaginary axis onto the real or imaginary axis
gains more efficient calculation involving imaginaries, and better meets user expectations in some
cases. However, dropping out of the complex domain may lead to surprises as subsequent
operations may be done with real functions, which generally are more restrictive than their

complex counterparts. For example, sqrt (-cos(1)) invokestherea sqgrt function, which
isinvalid for the negative real value- cos(1) , whereasthe complex sqrt isvalid everywhere.

10

15

20

25

30

Index

Annex H Languageindependent arithmetic (infor mative)

A new feature of €9X-C99.

LIA-1 was not made a normative part of €9XC99 for three reasons. implementation vendors saw no
need to add LI1A-1 support because customers are not asking for it, LIA-1 may change now that work
on LIA-2 isfinishing and work on LIA-3 is starting, and the Committee did not wish to rush a possibly
incomplete specification into €9XC99 at the last moment. A proposed binding between C and LIA-1
was produced a few months before €9XC99 was frozen. That binding was a compromise between
those who believe LIA-1 should be forgotten and those who wanted full L1A-1 and more (for example,
C dgnd handlers that could patch up exceptions on the fly and restart the exceptiona floating-point
ingtruction). It took severa years for the NCEG floating-point specification to settle down, so it was
assumed that it would take a gmilar timeframe to get the LIA-1 binding stable. The Committee did not
wish to delay €9XC99 for this one item. An informative LIA-1 annex was added, however, because
al programming languages covered by 1SO/IEC JTC1 SC22 standards are expected to review LIA-1
and incorporate and further define the binding between L1A-1 and each programming language.

€9 sC99's hinding between C and LIA-1 differs from LIA-1's C binding in three cases in which the
Committee believes that LIA-1 is incorrect. First, LIA-2 and LIA-1 have different behaviors for
mathematical pole exceptions (Smilar to finite non-zero divided by zero and l1og(0)). The Committee
believes that LIA-2 is better and that LIA-1 will be changed to match LIA-2. Second, the existing
hardware that many computers use for converson from floating-point type to integer type raises the
undefined exception, instead of the required integer overflow, for values that are out of bounds. Third,
requiring support for signaing NaNs on IEC 60559 implementations should be optiona because
existing hardware support for sgnaling NaNs is incons stent.

H.3.1.2 Traps

The math library is required by both C89 and €9XC99 to be atomic in that no exceptions (raise of a
sgnd and invocation of a user’'s sgna handler) may be visible in the user’s program. Because of that
requirement, €9XC99 cannot meet LIA’ s requirement of either trap-and-terminate or trap-and-resume
for math library errors. On the other hand, both kinds of traps are dlowed for the arithmetic
operations.

| Index

Annex | Universal character namesfor identifiers (nor mative)

| A new feature of €9X.C99.

10

15

20

25

30

35

40

Index

MSE. Multibyte Support Extensions Rationale

This text was taken from the rationale furnished with the amendment, 1SO/IEC 9899/AMD1:1995,
cdled smply AMDL1 in this Annex.

MSE.1 M SE Background

Mog traditiond computer sysems and computer languages, including traditiond C, have an
assumption, sometimes undocumented, that a “character” can be handled as an atomic quantity
asociated with a single memory storage unit — a “byte” or something Smilar. This is not true in
generd. For example, a Japanese, Chinese or Korean character usualy requires a representation of
two or three bytes; this is a multibyte character as defined by §3.72 and 85.2.1.2. Eveninthe Latin
world, a multibyte coded character set appears. This conflict is called the byte and character problem.

A related concern in this arealis how to address having at least two different meanings for string length:
number of bytes and number of characters.

To cope with these problems, many technical experts, particularly in Japan, have developed their own
sets of additional multibyte character functions, sometimes independently and sometimes cooperatively.

Fortunately, the developed extensions are actualy quite smilar. 1t can be said that in the process they
have found common features for multibyte character support. Moreover, the industry currently has
many good implementations of such support.

The above in no way denigrates the important groundwork in multibyte- and wide-character
programming provided by C9O0:

Both the source and execution character sets can contain multibyte characters with possibly
different encodings, eveninthe“C” locae.

* Multibyte characters are permitted in comments, string literds, character constants, and header
names.

» Thelanguage supports wide-character constants and strings.

The library hasfive basic functions that convert between multibyte and wide characters.

However, the five functions are often too restrictive and too primitive to develop portable internationa
programs that manage characters. Consder a smple program that wants to count the number of
characters, not bytes, in itsinput.

10

15

20

25

30

35

40

45

| Index

The prototypica program,

#i ncl ude <stdi o. h>
i nt main(void)

{
int ¢, n=0;
while ((c = getchar()) !'= ECF)
n++;
printf("Count = %\ n", n);
return O;
}

does not work as expected if the input contains multibyte characters; it dways counts the number of
bytes. It is certainly possible to rewrite this program using just some of the five basic conversion
functions, but the smplicity and elegance of the above arelost.

C90 ddiberately chose not to invent a more complete multibyte- and wide-character library, choosing
instead to await their natural development as the C community acquired more experience with wide
characters. The task of the Committee was to study the various existing implementations and, with
care, develop the first amendment to C90. The set of developed library functions is commonly called
the MSE (Multibyte Support Extension).

Similarly, C90 deliberately chose not to address in detail the problem of writing C source code with
character sets such as the nationa variants of ISO/IEC 646. These variants often redefine severd of
the punctuation characters used to write a number of C tokens. The partial solution adopted was to
add trigraphs to the language. Thus, for example, ??< can gppear anywhere in a C program that {
can gppear, even within acharacter constant or astring literd.

AMD1 responds to an internationa sentiment that more readable dternatives should also be provided
wherever possble. Thus, it adds to the language dternate spellings of severad tokens. It aso adds a
library header, <i s0646. h>, that defines a number of macros that expand to till other tokens which
are less readable when spelled with trigraphs. Note, however, that trigraphs are still the only dternative
to writing certain characters within a character constant or astring literal.

An important god of any amendment to an internationd standard is to minimize quiet changes —
changes in the definition of a programming language that transform a previoudy vaid program into
another vaid program, or into an invalid program that need not generate a diagnostic message, with
different behavior. (By contrast, changes that invdidate a previoudy vaid program are generaly
conddered pdatable if they generate an obligatory diagnostic message at trandation time.)
Nevertheless, AMD1 knowingly introduces two classes of quiet changes:

o digraphs — The tokens % and % % are just sequences of preprocessing tokens in C90 but
become single preprocessing tokens with specific meanings in AMD1. An existing program
that uses either of these tokens in a macro argument can behave differently as a result of
AMDL

* new function names — Severd names with externd linkage, such as bt owc, not reserved to
the implementation in C90, are now so reserved. An existing program that uses any of these
names can behave differently as aresult of AMD1.

10

15

20

25

30

35

40

45

Index

MSE.2 Programming model based on wide characters

Using the MSE functions, a multibyte-character-handling program can be written as easlly and in the
same style as atraditiond sngle-byte-based program. A programming moded based on MSE function
is as follows. Firg, a multibyte character or a multibyte string is read from an externd file into a
wchar _t object or awchar _t array object by thef get we function, or other input functions based
on the f get we function such as get wchar , get we, or f get ws. During this read operation, a
code conversion occurs: the input function converts the multibyte character to the corresponding wide
character asif by acdl to the nmbr t owc function.

After dl necessary multibyte characters are read and converted, thewchar _t objectsare processed in
memory by the MSE functions such asi swxxx, wcst od, wescpy, whrentnp, and so on. Findly,
the resulting wchar _t objects are written to an externd file as a sequence of multibyte characters by
the f put we function or other output functions based on the f put we function such as put wchar ,
put we, or f put ws. During this write operation, a code conversion occurs. the output function
converts the wide character to the corresponding multibyte character asif by acall to thewcr t onb
function.

In the case of the formatted input/output functions, a Smilar programming style can be applied, except
that the character code converson may aso be done through extended conversion specifiers such as
%s and % c. For example, the wide-character-based program corresponding to that shown in
8MSE.1 can be written asfollows:

#i ncl ude <stdi o. h>
#i ncl ude <wchar. h>

i nt main(void)

L
w nt_t wc;
int n=0;
while ((w = getwchar()) != WECF)
n++;
wprintf(L"GCount = %\n", n);
return O;
}

MSE.3 Parallelism versusimprovement

When defining the MSE library functions, the Committee could have chosen a design policy based
either on parallelism or on improvement. “Pardldism” means that a function interface defined in
AMDL1 is dmilar to the corresponding single-byte function in C90. The number of parameters in
corresponding functions are exactly same, and the types of parameters and the types of return vaues
have a smple correspondence:

char « wchar t int « wnt_t

10

15

20

25

30

35

40

45

50

| Index

An gpproach using this policy would have been relatively essy.

On the other hand, “improvement” means that a function interface in AMDL1 is changed from the
corresponding single-byte functions in C90 in order to resolve problems potentidly contained in the
exigting functions. Or, a corresponding function is not introduced in AMD1 when the functiondity can

be better attained through other functions.

In an attempt to achieve improvement, there were numerous collisions of viewpoints on how to get the
most appropriate interface. Moreover, much careful consderation and discusson among various
experts in this area was necessary to decide which policy should be taken for each function. AMD1 is
the result of this process.

Thefollowing isalist of the corresponding functions that manipulate characters:

C90

sal num
sal pha
scntrl
sdigit
sgraph
sl ower
sprint
spunct
sspace
supper
sxdi gi t
t ol ower
t oupper

fgetc
fgets
fputc
fputs
fprintf
f scanf
getc

get char
printf
put c

put char
scanf
sprintf
sscanf
unget c
viprintf
vprintf
vsprintf

menthr

| v

AMD1

swal num
swal pha
swentr
swdi gi t
swgr aph
sw ower
swpri nt
swpunct
swspace
swupper
swxdi gi t
t owl ower
t owupper

f getwc

f get ws

f put we

f put ws
fwprintf
f wscanf
get we

get wchar
wpri ntf
put we

put wchar
wscanf
swprintf
swscanf
unget wc
vw printf
vwpri nt f
vswpri nt f

wnencthr

10

15

20

25

30

35

40

Index

menctnp wWTrentnp
menctpy wWTentpy
menmove WTEMDVeEe
menset wrenset
strcat wcscat
strcnp wescnp
strcol | wescol
strcpy wcscpy
strchr weschr
strcspn wescspn
strftinme wesftine
strlen wesl en
strncat wcsncat
strncnp wesncnp
st rncpy wesnecpy
strpbrk wespbr k
strrchr wesr chr
strspn wesspn
strstr wesstr
strtod west od
strtok west ok
strtol west ol
strtoul west oul
strxfrm wesxfrm

Additiond pardld functions were added in €9xC99

i sbl ank i swbl ank
snprintf (swprintf)
vf scanf vf wscanf
vscanf vwscanf
vsnprint f (vswprintf)
vsscanf vswscanf
strt of wecst of
strtold wcst ol d
strtoll west ol |
strtoull west oul

Note that there may till be subtle differences (see for example SMSE.6.2).

The following functions have different interfaces between single-byte and wide-character versons.

10

15

20

25

30

35

40

45

50

Index

- Members of the spri nt f family based on wide characters dl have an extrasi ze_t parameter in
order to avoid overflowing the buffer. Compare:

int sprintf(char *s, const char *format, ...);
int swprintf(wchar_t *s, size_ t n,
const wchar_t *format, ...);

int vsprintf(char *s, const char *format, va_ list arg);
int vswprintf(wchar_t *s, size_t n, const wchar_t *fornmat,
va_list arg);

- west ok, the wide-character version of st rt ok, has an extrawchar _t ** parameter in order to
eliminate the interna memory that the st r t ok function hasto maintain. Compare:

char *strtok(char *sl1, const char *s2);
wchar t *wcstok(wchar _t *sl1, const wchar _t *s2,
wchar _t **ptr);

The following is a list of the functions in C90, with at ol | added in €9%C99, that do not have
parald functionsin AMD1 for any of several reasons such as redundancy, dangerous behavior, or a
lack of need in awide-character-based program. Most of these can be rather directly replaced by other
functions:

at of

at oi

at ol

at ol
gets
perror
puts
strerror

Finaly, the following is a ligt of the functions in AMDL1 that do not have pardld functions in C90.
They were introduced either to achieve better control over the converson between multibyte
characters and wide characters, or to give character handling programs grester flexibility and smplicity:

bt owc

fwi de

I swct ype
mbrl en
nmbr t owc
nmbsi ni t
nmbsrt owcs
t owct r ans
wer t onb
wesrt onbs
wct ob

wct rans
wct ype

10

15

20

25

30

35

40

45

Index
MSE.4 Support for invariant | SO/IEC 646

With its rich set of operators and punctuators, the C language makes heavy demands on the ASCII
character set. Even before the language was standardized, it presented problems to those who would
move C to EBCDIC machines. More than one vendor provided dternate spellings for some of the
tokens that used characters with no EBCDIC equivaent. With the spread of C throughout the world,
such representation problems have only grown worse.

| SO/IEC 646, the international standard corresponding to ASCII, permits national variants of a number
of the characters used by C. Strictly speaking, thisis not a problem in representing C programs, since
the necessary characters exist in dl such variants. they just print oddly. Displaying C programs for
human edification suffers, however, since the operators and punctuators can be hard to recognize in
their various dtered forms.

C90 addresses the problem in a different way. It provides replacements a the level of individua
characters usng three-character sequences cadled trigraphs (see 85.2.1.1). For example, ??< is
entirely equivadent to { , even within a character constant or string literd. While this gpproach provides
asolution for the known limitations of EBCDIC (except for the exclamation mark) and 1SO/IEC 646,
the result isarguably not highly readable.

Thus, AMDL provides a set of more readable digraphs (see 86.4.6). These are two-character dternate
spdllings for severa of the operators and punctuators that can be hard to read with ISO/IEC 646
nationa variants. Trigraphs are il required within character constants and string literals, but at least
the more common operators and punctuators can have more suggestive spellings using digraphs.

The added digraphs were intentiondly kept to a minimum. Wherever possible, the Committee instead
provided dternate spellings for operators in the form of macros defined in the new header
<i s0646. h>. Alternate spellings are provided for the preprocessing operators # and ## because
they cannot be replaced by macro names. Digraphs are aso provided for the punctuators| ,], {, and
} because macro names proved to be a less readable dternative. The Committee recognizes that the
solution offered in this header is incomplete and involves a mixture of gpproaches, but nevertheless
believesthat it can help make Standard C programs more readable.

MSE.5 Headers

MSE.5.1 <wchar. h>
MSE.5.1.1 Prototypesin <wchar . h>

Function prototypes for the MSE library functions had to be included in some header. The Committee
congdered following idess.

1. Introduce new headers such as <wctype. h> <wstdio.h> and <wstring. h>,
corresponding to the existing headers specified in C90 such as <ct ype. h>, <st di 0. h>, and
<string. h>.

2. Decdlaredl the MSE function prototypesin <st dl i b. h>wherewchar _t isadready defined.

Vil

5

10

15

20

25

30

35

40

45

| Index

3. Introduce anew header and declare al the M SE function prototypesin the new header.

4. Declare the MSE function prototypes in the existing headers specified in C90 which are most
closdly related to these functions.

The drawback to idea 1 is that the relationship between new headers and existing ones becomes
complicated. For example, there may be dependencies between the old and the new headers, so one or
more headers may haveto beincluded prior to including <wst di 0. h>, asin:

#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>
#i ncl ude <wstdi 0. h>

The drawback to idea 2 is that the program has to include many prototype declarations even if the
program does not need declarations in <st dl i b. h> other than existing ones. At the time, the
Committee strongly opposed adding several identifiers to existing headers for this purpose.

The drawback to idea 3 is that it introduces an asymmetry between existing headers and the new
headers.

The drawback to idea 4, aswith idea 2, is that the Committee strongly opposed adding many identifiers
to existing headers.

So the Committee decided to introduce a new header, <wchar . h>, asthe least objectionable way to
declare dl M SE function prototypes. Later, the Committee split off the functions anadlogous to those in
<ct ype. h> and placed their declarations in the header, <wct ype. h>, asdescribed in SMSE.5.2.

MSE.5.1.2 Typesand macrosin <wchar . h>

The Committee was concerned that the definitions of types and macros in <wchar . h> be specified
efficiently. One god was to require that only the header <wchar . h> need be included to use the
MSE library functions; but there were strong objections to declaring existing typessuch asFI LE inthe
new header.

The definitionsin <wchar . h> are thus limited to those types and macros that are largely independent
of the exiding library. The exising header <st di 0. h> must dso be included dong with
<wchar . h> when the program needs explicit definitions of either of thetypesFI LEandf pos_t .

MSE.5.2 <wctype. h>

The Committee originally intended to place adl MSE functiondity in a sngle header, <wchar . h>, as
explained in SMSE.5.1.1. It found, however, that this header was excessvely large, even compared to
the existing large headers, <st di 0. h> and <st dl i b. h>. The Committee also observed that the
wide-character classfication and mapping functions, typicdly have names of the form i swxxx or
t owxxx, seemed to form a separate group. A trandation unit could well make use of most of the
functiondity of the MSE without using this separate group. Equally, a trandation unit might need the

| vin

10

15

20

25

30

35

40

45

Index
wide-character classfication and mapping functions without needing the other M SE functions.

The Committee therefore decided to form a separate header, <wct ype. h>, closaly anaogousto the
exiging <ct ype. h>. That divison aso reduced the sze of <wchar . h> to more managegble
proportions.

MSE.6 Wide-character classification functions

Eleven i swxxx functions were introduced to correspond to the character-testing functions defined in
C90. Each wide-character testing function is specified in pardle with the matching single-byte
character handling function, however the following changes were aso introduced.

MSE.6.1 Localedependency of i swxxx functions

The behavior of character-testing functions in C90 is affected by the current locale, and some of the
functions have implementation-defined aspects only when not in the “C” locadle. For example, in the
“C’ locde, i sl ower returnstrue (nonzero) only for lower case letters as defined in 85.2.1.

This exigting “C” locde redriction for character testing functions in C90 has been replaced with a
superseding congraint for wide-character-testing functions. There is no specid description of “C”
locade behavior for the i swxxx functions. Instead, the following rule is gpplied to any locde: when a
character ¢ causes i sxxx(c) to return true, the corresponding wide character we shdl cause the
corresponding i swox(we) to return true.

isxx(c) '=0 b iswox(we) '=0

wherec ==wct ob(wc) . Note that the converse relationship does not necessarily hold.

MSE.6.2 Changed space character handling

The space character, ' ', istreated specidly ini spri nt, i sgraph, andi spunct . Handling of
the space character in the corresponding wide-character functions differs from that specified in C9O0.
The corresponding wide-character functions return true for al wide characters for which i swspace
returns true, instead of just the single space character; therefore the behaviors of the i swgr aph and
i swpunct functions may differ from their matching functions in C90 in this regard (see the footnote
concerning i swgr aph in 87.25.2.1.6).

MSE.7 Extensible classification and mapping functions

There are eleven standard character-testing functions defined in C90. As the number of supported
locales increases, the requirements for additional character classifications grows, and varies from locale
to locde. To satisfy this requirement, many existing implementations, especidly for non-English-
gpeaking countries, have been defining new i sxxx functions, such asi skanj i, i shanj a, and so
forth.

This approach, however, adds to the globa namespace clutter (although the names have been reserved)

IX

10

15

20

25

30

35

40

45

| Index

and is not flexible at dl in supporting additiond classfication requirements. Therefore, in AMD1, a
pair of extengble wide character classfication functions, wet ype and i swet ype, are introduced to
satisfy the open-ended requirements for character classfication. Since the name of a character
classfication is passed as an argument to the wet ype function, it does not add to problem of globa
namespace pollution; and these generic interfaces alow a program to test if the classfication is
available in the current locale, and to test for locale-specific character classifications, such as Kanji or

Hiraganain Japanese.

In the same way, a par of wide character mapping functions, wct rans and t owct r ans, are
introduced to support locae-specific character mappings. One of the example of agopplying this
functiondity is the mappings between Hiragana and Katakana in a Japanese character et.

MSE.8 Generalized multibyte characters

C90 intentionally restricted the class of acceptable encodings for multibyte characters. One god wasto
ensure that, at least in the initid shift state, the characters in the basic C character set have multibyte
representations that are single characters with the same code as the single-byte representation. The
other was to ensure that the null byte should aways be available as an end-of-string indicator. Hence,
it should never appear as the second or subsequent byte of any multibyte code. For example, the one-
byte sequence’ a' should dwaysrepresent L' a' , at least initidly, and' \ 0" should aways represent
L'\O".

While these may be reasonable restrictions within a C program, they hamper the ability of the MSE
functions to read arbitrary wide-oriented files. For example, a syssem may wish to represent files as
sequences of 1SO/IEC 10646 characters. Reading or writing such a file as a wide-oriented stream
should be an easy matter. At mog, the library may have to map between native and some canonica
byte order in the file. In fact, it is easy to think of an ISO/IEC 10646 file as being some form of
multibyte file except that it violates both restrictions described above: the code for ' a' can look like
the four-byte sequence\ 0\ 0\ Oa for example.)

Thus, the MSE introduces the notion of a generalized multibyte encoding. It subsumes dl the ways
the Committee can currently imagine that operating systems will represent files containing characters
from alarge character set. (Such encodings are vaid only in files; they are ill not permitted as interna
multibyte encodings.)

MSE.9 Streamsand files

MSE.9.1 Conversion state

It is necessary to convert between multibyte characters and wide characters within wide character
input/output functions. The conversion sate introduced in 87.24.6 is used to help perform this
converson. Every wide character input/output function makes use of, and updates, the conversion
gate held in the FI LE object controlling the wide-oriented stream.

The converson state in the FI LE object augments the file position within the corresponding multibyte
character stream with the parse state for the next multibyte character to be obtained from that stream.
For state-dependent encodings, the remembered shift state is a part of this parse Sate, and therefore a

| x

10

15

20

25

30

35

40

45

Index
part of the converson state. (Note that a multibyte encoding that has any characters requiring two or
more bytes needs a nontrivial converson state even if it is not a state-dependent encoding.)

The wide character input/output functions behave asif:
* aFl LEobjectincludesahidden nbst at e_t object.

» the wide character input/output functions use this hidden object as the state argument to the
nbr t owc or wer t onb functions that perform the conversion between multibyte charactersin
the file and wide charactersinsde the program.

MSE.9.2 Implementation

The Committee assumed that only wide character input/output functions can maintain condstency
between the conversion state information and the stream. The byte input/output functions do nothing
with the converson gtate information in the FI LE object. The wide character input/output functions
are desgned on the premise that they adways begin executing with the stream postioned at the
boundary between two multibyte characters.

The Committee felt that it would be intolerable to require implementors to implement these functions
without such aguarantee. Since executing a byte input/output function on awide-oriented stream may
wdll leave the file postion indicator a other than the boundary between two multibyte characters, the
Committee decided to prohibit such use of the byte input/output functions.

MSE.9.2.1 Seek operations

Anf pos_t object for a stream in a state-dependent encoding includes the shift state information for
the corresponding stream. In order to ensure the behavior of subsequent wide character input/output
functions in a state-dependent encoding environment, a seek operation should reset the conversion
gtate corresponding to the file position as well as restoring the file position.

The traditiona seek functions, f seek and ft el |, may not be adequate in such an environment
because even an object of type | ong i nt may be too smal to hold both the converson sate
information and the file podition indicator. Thus, the newer f set pos and f get pos are preferred,
snce they can ore as much information as necessary inanf pos_t object.

MSE.9.2.2 State-dependent encodings

With state-dependent encodings, a Fl LE object must include the conversion state for the stream. The
Committee felt strongly that programmers should not have to handle the tedious details of keeping
track of converson dates for wide-character input/output. There is no means, however, for
programmers to access the internal shift state or conversion statein aFl LE object.

MSE.9.2.3 Multiple encoding environments

A multiple encoding environment has two or more different encoding schemes for files. In such an
environment, some programmers will want to handle two or more multibyte character encodings on a
sngle platform, possibly within a single program. Thereis, for example, an environment in Japan that
X1

10

15

20

25

30

35

| Index

has two or more encoding rules for a single character set. Most implementations for Japanese
environments should provide for such multiple encodings.

During program execution, the wide character input/output functions get information about the current
encodings from the LC_CTYPE category of the current locale when the conversion state is bound, as
described immediately below. When writing a program for a multiple encoding environment, the
programmer should be aware of the proper LC_CTYPE category when opening a file and establishing
its orientation. During subsequent accesses to the file, the LC_CTYPE category need not be restored
by the program.

The encoding rule information is effectively a part of the converson state. Thus, the information
about the encoding rule should be stored with the hidden nbst at e_t object within the FI LE object.
Some implementations may even choose to store the encoding rule as part of the vdue of anf pos_t

object.

The converson state just created when afile is opened is said to have unbound state because it has no
relations to any of the encoding rules. Just after the first wide character input/output operation, the
converson state is bound to the encoding rule which corresponds to the LC_CTYPE category of the
current locale. Thefollowing isasummary of the relations between various objects, the shift sate, and
the encoding rules.

f pos_t FI LE
shift sate included included
encoding rule maybe included
changing LC_CTYPE (unbound) no effect affected
changing LC_CTYPE (bound) no effect no effect

MSE.Q.3 Byteversuswide-character input/output

Both the wide character input/output functions and the byte input/output functions refer the same type
of object, aFI LE object. Asdescribed in SMSE.9.2, however, there is a congtraint on mixed usage of
the two types of input/output functions. That is, if awide character input/output function is executed
for aFl LE object, its stream becomes wide-oriented and no byte input/output function may be applied
later, and conversely.

The reason for this congtraint is to ensure consstency between the current file position and the current
converson date in the Fl LE object. Executing one of the byte input/output functions for a wide-
oriented stream breaks this consstency because the byte input/output functions may, and should,
ignore the conversion state information in the Fl LE object.

The diagram A1 shows the State trangitions of a stream in response to various input/output functions.

| xi

Index

X111

Diagran Al

fopen

faide (s,) or
positioning

‘ function
furde (3, -1)

or byte
function

INBOUND

fulde(s, 1) or
wide-character
function

freopen

obher
function

WIDE
ORIENTED

ORIENTED

frlose

10

15

20

25

30

35

40

45

| Index

MSE.9.4 Text versusbinary input/output

In some implementations such as UNIX, there are streams which look the same whether read or
written as text or binary. For example, arbitrary file positioning operations are supported even in text
mode. In such an implementation, the Committee specified a file opened as a binary stream should
obey the usage congtraints placed upon text streams when accessed as a wide-oriented stream (for
example, the restrictions on file positioning operations should be obeyed).

So an implementation of the wide character input/output functions can rely on the premise that
programmers use the wide character input/output functions with a binary stream under the same
condraints as for a text tream. An implementation may aso provide wide character input/output
functions that behave correctly on an unconstrained binary stream, however the behavior of the wide
character input/output functions on such an unconstrained binary stream cannot be ensured by Al
implementations.

MSE.10 Formatted input/output functions

MSE.10.1 Enhancing existing formatted input/output functions

The smplest extenson for wide character input/output is to use existing formatted input/output
functions with existing byte-oriented streams. In this case, data such as strings that consist of
characters only are treated as sequences of wide characters, and other data such as numerica vaues are
treated as sequences of single-byte characters. Though thisis not a complete model for wide character
processing, it is a common extenson among some existing implementations in Japan, and o the
Committee decided to include asmilar extension.

The origind intent was to add the new conversion specifiers %6 and %€ to the existing formatted input
and output functions to handle a wide character string and a wide character respectively. After long
discussons about the actua implementation and future library directions, these specifiers were
withdrawn. They were replaced with the qudified converson specifiers, % s and % c, with the
addition of % [...] in the formatted input functions. Note that even though the new qudifier is
introduced as an extension for wide character processing, the field width and the precision still specify
the number of bytes in the multibyte representation in the stream.

To implement these new conversion specifiers efficiently, a new set of functionsis required to parse or
generate multibyte sequences “restartably.” Thus, the functions described in §87.24.6.4 were
introduced.

Because these new conversions are pure extensions to C90, they have severd essentid restrictions on
them, and 0 it is expected that they will be most useful in implementations that are not
state-dependent. Therestrictions are:

» fscanf function — In a State-dependent encoding, one or more shift sequences may be
included in the format to be matched as part of an ordinary multibyte character literd text
directive. Shift sequences may aso be included in an input string. Because the f scanf
function treats these shift sequences in exactly the same way as for sngle byte characters, an
unexpected match may occur or an expected match might not occur (see 84.6.2.3.2 of AMD1

X1V

10

15

20

25

30

35

40

45

Index
for some examples).

e fprintf function — In a state-dependent encoding, redundant shift sequences may be
written.

MSE.10.2 Formatted wide-character input/output functions

In the early MSE, formatted wide character input/output functions were not introduced because an
extension to existing formatted input/output functions seemed to be sufficient. After consdering the
complete modd for wide character handling, the need for formatted wide character input/output
functions was recognized.

Formatted wide character input/output functions have much the same conversion specifiers and
qudifiers as exiging formatted input/output functions, even including the qualified converson
Specifiers, % ¢, % s, and % [...] , but because the format string congsts of wide characters and the
field width and precison specify the number of wide characters, some of the retrictions on existing
functions are removed in the new functions. This means that wide characters are read and written
under tighter control of the format string.

MSE.11 Addingthefw de function

While the Committee believes that the MSE provides reasonably complete functiondity for
manipulating wide-oriented files, it noticed that no reliable mechanism existed for testing or setting the
orientation of a stream. The program can try certain operations to see if they fail, but that is risky and
dtill not a complete strategy. The Committee therefore introduced the f wi de function as a means of
forcing a newly opened stream into the desired orientation without attempting any input/output on the
sream. The function also serves as a passve means of testing the orientation of a stream, either before
or after the orientation has been fixed; and it serves as a way to bind an encoding rule to a wide-
oriented stream under more controlled circumstances (see SMSE.9.2.3).

MSE.12 Single-byte wide-character conversion functions

Two sngle-byte wide character conversion functions, bt owc and wct ob, were introduced in AMDL1.
These functions amplify mappings between a single-byte character and its corresponding wide
character, if any.

C0 specifiestherulethat L' x' ==" x" for any member x of the basic character set. The Committee
discussed whether to relax or tighten thisrule. In AMDL, thisrule is preserved without any changes.
Applying the rule to dl single-byte characters, however, imposes an unnecessary constraint on
implementations with regard to wide-character encodings. It prohibits an implementation from having
acommon wide-character encoding for multiple multibyte encodings.

On the other hand, relaxing or removing the rule was consdered to be ingppropriate in terms of
practicad implementations. The new wct ob function can be used to test safely and quickly whether a
wide character corresponds to some single-byte character. For example, when the format string passed
to scanf is parsed and searched for a white space character, the wet ob function can be used in
conjunction with thei sspace function.

XV

10

15

20

25

30

35

40

45

| Index

Similarly, there are frequent occasons in wide-character processing code, especidly in the wide
character handling library functions, where it is necessary to test quickly and efficiently whether a
sangle-byte character isthe first and only character of avalid multibyte character. Thisisthe reason for
introducing the bt owc function. Note that, for some encodings, bt owc can be reduced to a smple
inline expression.

MSE.13 Extended conversion utilities

Although C90 dlows multibyte characters to have state-dependent encoding (85.2.1.2), the origina
functions are not aways sufficient to efficiently support such encodings due to the following limitations
of the multibyte character conversion functions (87.20.7):

1. Since the functions maintain shift state information interndly, they cannot handle multiple strings at
the sametime.

2. The formatted output functions may write redundant shift sequences, and the formatted input
functions cannot reliably parse input with arbitrary or redundant shift sequences.

3. The multibyte string converson functions (87.20.8) have an inconvenient shortcoming regardless
of state dependency of the encoding: when an encoding error occurs, these functions return
(size_t)(—1) without any information on the location where the conversion stopped.

For al these reasons, the Committee felt it necessary to augment the set of conversion functions in
AMDL1.

MSE.13.1 Conversion state

To handle multiple strings with a state-dependent encoding, the Committee introduced the concept of
conversion state. The conversion state determines the behavior of a conversion between multibyte and
wide-character encodings. For converson from multibyte characters to wide characters, the
converson sate stores information such as the postion within the current multibyte character (as a
sequence of characters or a wide character accumulator). For conversions in ether direction, the
converson state stores the current shift sate, if any, and possibly the encoding rule.

The non-array object type nbst at e_t is defined to encode the converson state. A zero-vaued
nbst at e_t object is assumed to describe the initia converson state. (This is not necessarily the
only way to encode the initid conversion state, however.) Before any operations are performed on it,
such a zero-vaued nbst at e _t object is unbound. Once a multibyte or wide-character converson
function executes with the nbst at e _t object as an argument, however, the object becomes bound
and holds the above information.

The converson functions maintain the converson state in an nbst at e_t object according to the
encoding specified in the LC_CTYPE category of the current locale. Once the conversion gtarts, the
functions will work as if the encoding scheme were not changed provided al three of the following
conditions obtain:

| xwvi

10

15

20

25

30

35

40

45

Index
» thefunction is gpplied to the same string aswhen the nbst at e_t object wasfirst bound.
» theLC_CTYPE category setting isthe same aswhen thenbst at e_t object wasfirst bound.

» the conversion direction (multibyte to wide character, or wide character to multibyte) is the
sameaswhenthenbst at e_t object wasfirst bound.

MSE.13.2 Conversion utilities

Once the nbst at et object was introduced, the Committee discussed the need for additional
functions to manipulate such objects.

MSE.13.2.1 Initializing conversion states

Though a method to initialize the object is needed, the Committee decided that it would be better not
to define too many functionsin AMD1. Thus the Committee decided to specify only one way to make
annbst at e_t object represent the initial conversion state, by initidizing it with zero. No initidizing
function is supplied.

MSE.13.2.2 Comparing conversion states

The Committee reached the conclusion that it may be impossble to define the equdity between two

converson states. If two nbst at e_t objects have the same vaues for dl attributes, they might be

the same. However, they might dso have different values and still represent the same conversion state.
No comparison function is supplied.

MSE.13.2.3 Testing for initial shift state

The nbsi nit function was added to test whether an nbst at e_t object describes the initid
conversion state or not, because this state does not aways correspond to a certain set of component
values (and the components cannot be portably compared anyway). The function is necessary because
many functionsin AMDL treet the initid shift state as a gpecia condition.

MSE.13.2.4 Restartable multibyte functions

Regarding problems 2 and 3 described at the beginning of SMSE.13, the Committee introduced a
method to distinguish between an invaid sequence of bytes and a vadid prefix to a till incomplete
multibyte character. When encountering such an incomplete multibyte sequence, the nbr | en and
nbrtowc functions return (size_t)(-2) insead of (size_t)(-1), and the character
accumulator in the mbst at e_t object Stores the partid character information. Thus, the user can
resume the pending conversion later, and can even convert a sequence one byte a atime.

The new multibyte/wide-string conversion utilities are thus made restartable by using the character
accumulator and shift state information stored in an nbst at e_t object. As part of this enhancement,
the functions aso have a parameter that is a pointer to a pointer to the source of the position where the
conversion stopped.

XVII

10

15

20

25

30

| Index

MSE.14 Column width

The number of characters to be read or written can be specified in existing formatted input/output
functions. On a traditiona display device that displays characters with fixed pitch, the number of
charactersis directly proportiona to the width occupied by these characters; so the display format can
be specified through the field width and/or the precision.

In formatted wide character input/output functions, the field width and the precision specify the number
of wide characters to be read or written. The number of wide characters is not aways directly
proportiona to the width of their display. For example, with Japanese traditiond display devices, a
sgngle-byte character such as an ASCII character has haf the width of a Kanji character, even though
each of them is treated as one wide character. To control the display format for wide characters, a set
of formatted wide character input/output functions were proposed whose metric was the column width
instead of the character count.

This proposa was supported only by Japan. Critics observed that the proposa was based on such
traditiond display devices with fixed-width characters, while many modern display devices support a
broad assortment of proportiona pitch type faces. Hence, it was questioned whether the extra
input/output functions in this proposa were redly needed or were sufficiently general. Also considered
was another set of functions that return the column width for any kind of display device for a given
wide character or wide-character string; but these seemed to be beyond the scope of C. Thus dl
proposals regarding column width were withdrawn.

If an implementor needs this kind of functiondity, there are a few ways to extend wide character
output functions and still remain conforming to AMD1. For example, the new conversion specifier can
be used to specify the column width as shown below:

%N — set the counting mode to “printing positions’ and reset the % counter.

%N — set the counting mode back to “wide characters’ and reset the % counter.

XVI11

| ndex

#el se directive, 65
#endi f directive, 65
#error directive, 73

#i f directive, 1, 36, 65
#i ncl ude directive, 66
#pr agna directive, 73
#undef directive, 5, 26
[/ _comments, 23

lusr/group, 1

?7? escapedigraph, 7
DATE ,73
FILE 73
func ,16
LINE ,73
STDC 74

STDC | EC 559,74

STDC | EC 559 COWPLEX

, 74

STDC VERSION , 74
TIME 73
Bool , 15

Conpl ex, 15
Imaginary, 15
<complex.h>, 15

<ctype. h>7
<errno. h>, 8

<fenv. h> 9

<fl oat. h>, 13
<inttypes. h>, 13
<i s0646.h>2 7
<locdeh>, 13

<mat h. h>, 16, 47
<setj np. h>, 23
<si gnal . h>, 25

<stdarg. h>, 26
<st ddef. h>, 29, 32, 27

<st di 0. h>, 29, 30
<stdlib. h> 42

<string. h>, 48

<t gmat h. h>, 51
<tine. h>, 52
<varargs. h>, 26
<wchar.h>, 8
<wctype.h>, 8

1984 /usr/group Standard, 1
abort,5,45

abs, 47

abstract machine, 3, 4
Ada 5

agreement point, 3, 23
diasing, 24

aignment, 1

al |l oca, 44

ambiguous expression, 34
ANS X3.64, 18

ANS X3L2, 9

Index

argc/argv, 3

argument promotion, 27

asif,1,4,5,12,24,64,32,34,37,3,11, 16

ASCII, 5,6,7,9,7,14,54,7

ascti ne, 54

asm 15

assert,5

asocidivity, 23

AT&T Bell Laboratories, 57

at an2, 17

atexit, 3, 25,45

at of , 42

atoi , 42

atol , 42

Backus-Naur Form, 1

behavior
implementation-defined, 1, 18, 19, 41, 16, 20, 25, 31,

32
undefined, 1, 2,4, 6,13, 1,5, 7, 14, 18, 20, 24, 27, 31,
42,70, 1, 26, 46, 48

unspecified, 1, 48, 73

benign redefinition, 68

binary numeration systems, 9, 29

binary streams, 31

bit, 1

bit fields, 41

break, 63

brtowc, 17

bt owc, 15

byte 1, 29

C++,49, 53

C89,1

C90, 1

C95,1

case ranges, 60

ceil,21

cl ock, 52

clock t,52

codest, 7, 14

collating sequence, 7

comments, 22

common extensions, 3, 15, 19

common sorage, 3

compatible types, 9, 50

complex, 8, 15

composite types, 9, 50

compound literal, 16, 28

concatenation, 20

conformance, 1, 2. See also conforming implementation,
conforming program, strictly conforming program

conforming implementation, 2, 1, 2, 5, 9, 10, 11, 13, 1, 53,
68,74,3,5, 25,31, 34,43,54

conforming program, 2, 1, 48, 74, 54

const, 15

Index

constant expressions, 35 function definition, 63
constraint error, 28 function prototypes, 53
continue, 63 future directions, 74, 54
control character, 7 fw de, 15
conversons, 10 fwite, 29
cross-compilation, 1, 36, 13 getc, 4,39
curses, 1 get env, 46
decimal-point character, 3 GMT, 54
declarations, 36 gnti me, 52, 54
defi ned, 35 got 0, 57
Designated initidizers, 57 Gr. 9
diagnogtics, 2, 11, 68, 73 arouping, 23
difftine, 53 header names, 21
digraph, 6 Hiragana, 10
digr 7 hosted implementation, 1, 3
div, 47 HUGE VAL, 16
domain error, 16 IEC 60559, 12, 16, 17, 20
EBCDIC, 18, 14,7 IEC 60559 floating point standard, 11
entry, 15 |EEE 754, 11
enum 15, 36 imagin 15
enumerations, 8, 18, 36 | magi nary, 15
ECF, 7 implementation
errno, 8,16 conforming, 2
€rroneous program, 2 freestanding, 1, 2
executable program, 1 hosted, 1, 3, 34
existing practice, 1 implementation-defined behavior, 1, 18, 19, 41, 16, 20, 25,
exit, 3,45, 46 31,32
EXI T FAl LURE, 46 impliciti nt, 41
EXI T _SUCCESS, 46 infinity, 36
expressions, 23 i nline, 15,48
extended character, 1 int64 t,39
Extended integer, 13 integral constant expression, 35
extensions, 2 integra promotions, 10
externd linkage, 1 integra widening conversions, 53
fcl ose, 29 interactive device, 4
fflush, 33,34 interleaving, 23
fgetc, 32, 39 internationalization, 54
f get pos, 41 invalid pointers, 14
fgets, 39 isascii,7
FI LE, 40 10,7
file pointer, 29 1SO 10646, 15
file position indicator, 31, 41 1ISO0646,7,2, 7
FI LENAVE MAX, 30 1SO 9899:1990/DAM 1, 1
flexible array member, 42 i sspace, 8, 37
float.h, 11 i swetype, 10
f nod, 31, 22 jmp_buf, 23
f open, 29, 34 K&R, 1
f open modes, 34 Kanji, 10
FOPEN MAX, 30 Katakana, 10
fortran, 15 Ken Thompson, 57
Fortran, 11, 3, 24, 31, 17, 47,51, 1 kill, 25

conversion to C, 11, 24, 31, 49, 54, 57, 17 labels, 59
f pos_t, 30 | dexp, 18
fput c, 32 I div, 47
fread, 29, 41 lexical dlements, 15
free, 45 library, 1
freestanding implementation, 1, 2 limits, 3
frexp, 18 linmts. h 11
f scanf, 37 linkage, 1, 2
fseek, 29,31, 34,41 :ocd;e,l_S s
f set pos, 34 L ocal econv, 1o
frell ,3i locae-specific, 50

full expression, 3 | og function, 19

| ong doubl e, 7,17, 36, 35
longfloat,7 36

| ong | ong, 37
| ongj np, 9, 24
Ivalue, 1, 13, 28, 35
Ivalues, 24, 28
machine generation of C, 36, 49, 57
nai n, 3
manifest constant, 16
mantissa, 11
mat herr, 16
nbrl en, 17
nbrt onb, 11
nbrt owc, 11
nbstate t, 12, 16
nenchr , 48
nencnp, 48
nencpy, 48, 49
nmenmmove, 49
nmenset , 48, 50
minimum maxima, 3
mixed code and declarations, 62
nkti ne, 53
nodf , 18
modifiable lvaue, 13
MSE, 5, 2
multibyte character, 1
multibyte characters, 8, 48
Multibyte Support Extension, 2
Multibyte Support Extensions, 5
Multiple encoding environment, 11
multi-processing, 25
name space, 1
NaN, 13, 18, 36
new-line, 9
NULL, 33, 28
null pointer constant, 28
object, 1
obsolescent, 74
of f set of , 28
old-style declaration, 54
ones-complement, 11
onexit, 45
optimization, 36
order of evduation, 23
overlapping objects, 1
Pascdl, 8, 60
perror, 42, 50
phases of trandation, 1, 2
POSIX, 26, 29
pragma operator, 74
precedence, 23
preprocessing, 1, 2, 15, 20, 21, 22,5
primary expression, 26
printf,9,5
printing character, 7

rogram

erroneous, 2

program startup, 2, 3, 36
prototype, 63
prototypes, 74
ptrdiff t,32 27

purefunction, 34

put c, 4, 39

put env, 46

put s, 39

quality of implementation, 1, 2
quiet change, 3, 15

rand, 43

range error, 18

register, 36
renove, 32

r enane, 32

repertoire, 7

restrict,45,1

rewi nd, 34, 42

Ritchie, DennisM., 3

safe evaluation, 4

sametype, 9

scanf,5

scope, 1

seguence points, 3, 23

sequenced expression, 34

sequencing, 3

set buf , 31, 35

setjnp, 24

set | ocal e, 8, 15

set vbuf, 29, 30, 31, 34, 35

side effect, 6, 34, 50

sig atomic t,9

S| GABRT, 45

SIALL, 25

sgnd, 4, 9, 6, 24, 25, 28, 45

signal . h,9

si gned, 15, 36

significand, 11

sign-magnitude, 11

S| GTERM 45

size t,29, 27,41 44,50

si zeof , 1,35

si zeof operator, 29

snprintf,38

sourcefile, 1

spiritof C, 3

sprintf,16

srand, 43

sscanf , 38

sandard pragmas, 73

Statements, 57

daticinitiaizers, 36

storage duration, 1

strcol |,50

sreams, 30

strerror, 50

strftine, 54

drictly conforming program, 2, 1, 2,6, 9,16, 19,2, 4
not, 3, 6, 3, 15

sringizing, 71

strl en, 50

strncat, 49

strncpy, 49

strstr, 50

strtod, 42

strt ok, 50

strtol, 42, 43

strtoul, 43

Index

Index

struct hack, 42
structure constant, 16
structures, 41
strxfrm50
system 46
tags, 36

text streams, 31
tinme, 54

time t,52
tmi sdst, 52
TVP_NAX, 30
tnpfile, 32

t npnam 33
token pasting, 71

translation limits, 3
translation phases, 1
trigraph, 6, 7

Trigr: 2
twos-complement, 7
type modifier, 49
type qudifiers, 43

t ypedef , 50, 55, 63
UCN, 16, 15
uintmax t,1

undefined behavior, 1, 2, 4,6, 13, 1, 5, 7, 14, 18, 20, 24,

27,31, 42,70, 1, 26, 46, 48

unget c, 40
universal character, 1

universal character name, 15

Universal Character Name, 16

UNIX, 11, 1, 16, 29, 32
unl i nk, 32

unsequenced expression, 34

unsigned preserving, 10

unspecified behavior, 1, 48, 73

va_arg, 26
va end, 27
va list, 26,27
va start, 26, 27

vaue presarving, 10

variable length array, 4, 9, 30, 32, 35, 50, 54, 62

variably modified type, 50

VAX/NMS, 17
viprintf, 36, 38
voi d, 15, 36
void*, 13

void*, 7, 31, 33, 34, 35
vol atile, 15
vprintf, 38
vsnprintf,38
vsprintf, 38
wchar t, 27

wct ob, 15

wct ype, 10

WG14, 1

white space, 15

wide character, 1, 19
wide string, 21
widened types, 5

Index

VI

VIl

