ISO/JTC1/SC22/WG14/N532 Page 1

From: Frank Farance

Organization: Farance Inc.

Telephone: +1 212 486 4700

Fax: +1 212 759 1605

E-mail: frank@farance.com

Date: 1995-12-22

Document Number: WG14/N532 X3J11/95-133
Subject: Extended Identifiers

Since the 1995-10 WGl4 meeting in Nashua, the extended
character problem has been divided into two parts: (1)
extended identifiers in C programs, (2) extended characters
in string literals. The companion paper is WG14/N533. This
paper identifies several outstanding issues. We must
resolve these issues prior to proposing syntax.

WHAT IS AN IDENTIFIER?

The problem with extended identifiers has discussed by
several people in WG14, WG20, and WG21l. C and C++ should be
compatible in the extensions they choose. There seems to be
agreement on what constitutes an identifier across all
character sets. Using ISO 10646 terminology, the following
characters are considered identifiers (16-bit hex values) :

Latin: 0041-005a,0061-007a,00c0-00d6,00d8-
00f6,00£f8-01f5,01fa-0217, 0250-02a8,1e00-1e9a,1leal-
lef?9

Greek: 0384,0388-038a,038¢c,038e-03al1,03a3-

03ce, 03d0-03d6, 03da, 03dc, 03de, 03e0,03e2-03£3,
1f00-1f15,1f18-1f1d,1£f20-1£f45,1f48-1£f4d,1£50-
1£f57,1£f59,1f5b,1£f5d, 1f5f-1f7d,1£80-1fb4,1fb6-
1fbc,1fc2-1fc4,1fc6-1fcc,1£d0-1£d3, 1fde-1fdb,1fe0-
1fec,1ff2-1ff4,1£ff6-1ffc,

Cyrilic: 0401-040d,040f-044f,0451-045¢c,045e-
0481,0490-04c4,04c7-04c8, 04cb-04cc,04d0-04eb, O4ee-
04f5,04£f8-04f9

Armenian: 0531-0556,0561-0587

Hebrew: 05d0-05ea,05f0-05f4

Arabic: 0621-063a,0640-0652,0670-06b7,06ba-
0O6be,06c0-06ce, 06e5-06e7,

Devanagari: 0905-0939,0958-0962

Bengali: 0985-098c,098f-0990,0993-09a8,0%aa-
09b0,09b2,09b6-09b9, 09dc-09dd,09df-09el1,09f0-09f1
Gurmukhi: 0a05-0al0a,0a0f-0al0,0al3-0a28,0a2a-
0a30,0a32-0a33, 0al35-0a36,0a38-0a39,0a59-0a5c, 0abe
Gujarati: 0a85-0a8b,0a8d,0a8f-0a91,0a93-0aa8,0aaa-
0ab0,0ab2-0ab3, 0ab5-0ab9, 0ael,

Oriya: 0b05-0b0c, 0b0f-0b10,0b13-0b28, 0b2a-
0b30,0b32-0b33,0b36-0b39, 0b5c-0bt5d,0b5f-0b61,
Tamil: 0b85-0b8a,0b8e-0b90,0b92-0b95,0b99-

0bY%a, 0b9c, 0b9e-0b9f, 0bal3-0ba4, 0ba8-0baa, Obae-
0bb5, 0bb7-0bbg,

Telugu: 0c05-0c0c,0c0e-0cl10,0c1l2-0c28,0c2a-
0c33,0c35-0c39,0c60-0ch1,

Kannada: 0c85-0c8c,0c8e-0c90,0c92-0ca8, 0caa-



ISO/JTC1/SC22/WG14 /N532 Page 2

0cb3,0cb5-0cb9, 0cel0-0cel,

Malayalam: 0d05-0d0c, 0d0e-0d10,0d12-0d28, 0d2a-
0439, 0d60-0d61,

Thai: Oe01—0e30,0e32—Oe33,0e40—Oe46,0e4f—Oe5b,
Lao: Oe81—0e82,0e84,0e87,0688,0e8a,OeOd,Oe94—
0e97,0e99-0e9f, 0ecal-0eas, O0ea5, 0ea7,0eaa, Oeab, Oead-
0eb0, 0eb2, 0eb3, 0ebd, Oec0-0ec4, Oecé,

Georgian: 10a0-10c¢5,10d0-10f6,

Hiragana: 3041-3094,309b-309%e

Katakana: 30al-30fe,

Bopmofo: 3105-312c,

Hangul: 1100—1159,ll6l—lla2,lla8-llf9

CJK Unified Ideographs: £900-fa2d, fblf-
fb36,fb38-fb3c, fble, fb40-fb4al, fb42-£fbd4, fbie6-

fbbl, fbd3-fd3f, fds0-fdsf,fd92-£fdc7,£df0-£d4fb, fe70-
fe72,fe74,5e76-fefc; £E21-ff£34,ff41-Ff5a,ff66-
ffbe,ffc2-ffc7,ffca-ffcf, ££42-££47, ffda-ffdc,4e00-
9fas

ISSUE: We need to refer to a specific, published (i.e.,
someone can purchase it) document that contained the range
information above.

These characters may be included in the source code using
the trigraph notation for ISO 10646 16-bit characters RUb il
is a hex digit):

? 2UXXXX
and the trigraph notation for ISO 10646 32-bit characters:
? PUXKXXXKXKXKXX

NOTE: This does not imply the use of any ISO 10646 encoding
of the source code. This notation only identifies the
*name* of the character, not its encoding.

This leaves us with the question of how do we translate a C
(or C++) program that includes these characters? There are
four competing models of interpretation (provided by Tom
Plum) :

MODEL #1: In phase 1, a program is translated
(conceptually) into the minimal basic source
character set of the host compiler; i.e. the minimal
C/C++ ASCII characters, or a character set that
contains a one-to-one mapping of those characters
(e.g. an EBCDIC mapping). Any character not in the
minimal basic source character set is converted into
a specific ‘‘canonical multibyte encoding’’ which
uses double-question-mark. Any double-question-mark
code in the original source is preserved unchanged.
(In all three models, it is an error, diagnostic-
mandatory, if the source contains a double-
question-mark code that stands for one of the
minimal basic source characters. For example, there

G

v



ISO/JTC1/SC22/WG14 /N532 Page 3

is only one allowable encoding for TAB, or SPACE, or
‘‘lowercase latin a’’.) There are no shift
sequences in the output of phase 1, because all
non-basic characters have been replaced by double-
question-mark codes. The lexical grammar for
‘‘identifier’’ doesn’t need to refer to any
characters that aren’t in the minimal basic source
character set, because all the extended characters
are represented as double-question-mark codes.

MODEL #2: In phase 1, a program is translated
(conceptually) into the (full) multibyte source
character set of the host compiler. Any character
not in the source character set is converted into a
specific ‘‘canonical multibyte encoding’’ which uses
double-question-mark. Any double-question-mark code
that maps into a character in the (full) source
character set is mapped into that character. Any
redundant shift sequences are (at the proper time)

eliminated. The lexical grammar for ‘'‘identifier’’
includes a non-terminal for ‘'‘other source
characters’’.

MODEL #3: In phase 1, a program is translated
(conceptually) into a widechar character set which
is large enough to encode every 10646 character.

(Or just say that the output of phase 1 actually IS
10646, conceptually.) (It is effectively a
requirement of model 1, 2, or 3 that every character
of the source character set of the host compiler
must map into some 10646 character.) In model 3,
there are no characters not in the (augmented)
source character set, because 10646 encodes all of
them. Any double-question-mark code in the physical
source 1s translated into the corresponding
widechar. There are no shift sequences in the
output of phase 1, because the entire program
consists at this point of widechars.

MODEL #4: All "??" sequences are translated, if
possible, into a character in the source character
set. All non-translatable sequences are left as
"??" sequences. An identifier contains the usual
characters plus any identified by the WG20 paper.
The compiler vendor would know which of *their*
characters corresponded to identifier characters AND
they’d know which ‘'‘foreign’’ characters were
included by comparing ranges.

ISSUE: We need to resolve the conceptul model at the next
meeting.

WHAT IS THE MAXIMUM LENGTH OF AN IDENTIFIER?

With encoding identifiers as "??U12345678", the programmer
might be severely limited in the portable programs you could

Ly



I1S0/JTC1/SC22/WG14/N532 Page 4

write. This is because the linker may only support 31
characters in external identifiers. Even using the best
encoding (i.e., variable length multibyte), this would limit
the programmer to about 6 characters per extenal identifier.
This isn’t a problem for C++ since there is no translation
limit for external identifiers. However, this is-a problem
Tor:C;

ISSUE: What limit should be required for C translators?
HOW DO I WRITE A TEXT EDITOR FOR C PROGRAMS

There are three significant applications_that characterized
the C programming language: (1) the ‘‘hello world’’ program,
(2) a text editor for writing C progams, (3) the UNIX
operating system implemented in C. Although we have
identified a syntax for supporting extended identifiers, we
have no mechanism for handling the characters of the C
source code.

ISSUE: What character I/0O should we support? (See
WG14/N533, ‘‘Extended String Literals’’.)

L0



