Farance Inc.

subject: Extensions to <inttypes.h> Revision 1 date:  1995-12-22

document: W(G14/N526 X3J11/95-127

fl: extended-integers/eir.* fom: Frank Farance

+1 212 486 4700
frank @farance.com

William Rugolsky, Jr.
+1 212 486 4700
rugolsky @farance.com

ABSTRACT

This proposal addresses the extended integer problem using the problem analysis of
SBEIR proposal, but frames the solution around the <inttypes.h> design, i.e., using
preprocessor features. This technique allows the programmer to specify extended
integer types via requirements (minimum number of bits, space-time optimization), but
uses the preprocessor to achieve this, thus. greatly reducing the complexity of the
solution. This proposal allows the introduction of long long type as a C type
because the primary objection to it (increases portability cost) can now be eliminated
(hiding it with a precis macro). In summary, this solution provides several
features: it uses existing C types, it provides a mechanism for specifying types based
on requirements, it allows the use of long long, it provides promotion rules, it pro-
vides support for printf and scanf.

1995-12-22 Revision 1 Farance & Rugolsky REVIEW COPY Page 0



CONTENTS

1. OVERVIEW

2. FEATURES .
2.1 precis() macro
2.2 Performance Attributes
2.3 <inttypes.h> compatibility
2.4 precof() macro
2.5 Integer Constants
2.6 long long type
2.7 Preprocessor Constants
2.8 printf and scanf support
2.9  strtoint

2.10 Promotion Rules

3. OPEN ISSUES .

p—

OO OO0 00 ~] ] 1 0 ) U U —

Y4



Extensions to <inttypes.h> — WG14/N526 X3J11/95-127

1. OVERVIEW

This proposal is a fresh approach to addressing the extended integer problem.
Although this proposal acknowledges the problems addressed by the SBEIR
(Specification-Based Extended Integer Range) proposal, the solution is a completely
new design. In short, this proposal is a compromise of several proposals: the
<inttypes.h> proposal, the SBEIR proposal, and long long proposals. The follow-
ing are a summary of the features:

1. Extended integer types can be described by a set of requirements (minimum pre-
cision, performance attributes) that greatly reduce porting cost across many plat-
forms. The programmer is still free to use char, short, int, and long.

2. The simplicity of the <inttypes.h> solution is maintained by keeping most of the
work in the preprocessor. No new types are required. The preprocessor maps
the features to existing C types.

3. Additional types, such as long long, can be added without porting problems
because there is a precis () feature. Thus, the long long extension that
many vendors have implemented can remain as is.

4. With the generic promotion rules, de facto types, such as long long, or
vendor-specific types, e.g., int48, can be included in implementations because
programmers will know how they interact.

5. C++ overloading needs are addressed by mnot creating new types: the
precis () does a preprocessor map to existing C types.

2. FEATURES

2.1 precis() macro

In previous papers, it was demonstrated that ‘‘loss of information causes portability
problems’” for extended integer range types. The primary problem has been mapping
the programmer’s requirements to the capabilities of the target system, e.g., if the
‘‘fastest type of 32 bits’’ is the requirement, what type does that map into in C? Pre-
vious proposals dealt with, literally, creating new types in C.

The precis () macro is used to specify the precision for the type. The precision
specified is a minimum (i.e., ‘‘at least’”) requirement for precision. For example:

1995-12-22 Revision 1 Farance & Rugolsky REVIEW COPY Page |

~-%



Extensions to <inttypes.h> — WG14/N526 X3J11/95-127

main ()

{
[* gt Teast 32" biteof precision */
precis(32) X,Y,Z;
K=Y 7

}

The performance attributes can be included by OR-ing features in, as necessary:

struct
{
/ *
* Space optimization: smallest storage
* when using structures to be saved in
* external storage
g/
precis (32 |INT_SMALL_C) A;
gt~
1995-12-22 Revision 1 Farance & Rugolsky REVIEW COPY Page 2



Extensions to <inttypes.h> — WG14/N526 X3J11/95-127

my_api
(
/*
* The API (the interface) doesn’t require
* gspace-time optimization.
i’ 4
precis (32) E;
U
{
/*
* Time optimization: The fastest version
* of the type is used for ‘'‘inner’’ loops
* to speed calculations.
*/
precis (32 |INT_FAST_C) F,G;
G =0 0%
Bl=7F
while ( -F >= 0 )
%
G += F;
}
/*
* The result is stored in the smallest
* type that matches the reguirements.
*f
B.A = G;
}

Since precis () is a macro and it expands to one of the existing C types, there is no
new syntax or typing required. In other words, the main problem (‘‘the loss of infor-
mation causes portability problems’”) is solved without major changes to the language.
The qualifier signed or unsigned can be added as:

typedef unsigned precis(32|INT_FAST_C) ufast32;

An important question is: How to implement precis () as a macro? The following
might be some implementation of the precis () macro.

1995-12-22 Revision 1 Farance & Rugolsky REVIEW COPY Page 3



Extensions to <inttypes.h> — WG14/N526 X3J11/95-127

*

Contents of "<stdint.h>" for

* a sample 32/64-bit machine. In this

implementation, the "SMALL" attribute
* has no effect on the choice of types.
i/

*

#define precof (P) ((sizeof (P))*CHAR_BIT)

#define INT_FAST C 0x1000
#define INT_SMALL_C 0x2000
#define INT_PREC OxFFF

ik
* On this machine, any ‘'‘fast’’ type greater
* than 16 bits gets mapped to "long". Otherwise,

* the type is mapped to "short".

* For unoptimized and ‘'‘small’’ types, >32 is mapped
* to "long", >16 is mapped to "int", >8 1s mapped to
* "short", and <= 8 is mapped to "char".

e

#define precis(P) \
#if ( P & INT_FAST C ) /* choose fast type */

#if ( ((P) & INT_PREC) > 16 )
long

#else
short

#endif

#else /* choose unoptimized or small type */
#if ( ((P) & INT_PREC) > 32 )

long

#elif ( ((P) & INT_PREC) > 16 )
int

#elif ( ((P) & INT_PREC) > 8 )
short

#felse
char

#endif

#endif

Note that the #define has a #if included in it. Currently, this is not permitted in
the preprocessor. Either C9X would need to include this extension, or precis
would have to be recognized specially in the preprocessor.

1995-12-22 Revision 1 Farance & Rugolsky REVIEW COPY Page 4

G\
¥
‘l



Extensions to <inttypes.h> — WG14/N526 X3J11/95-127

If the committee choses to extend the preprocessor, then we’re not tied to a specific
syntax of a preprocessor extension, only the capability to include #if inside a
#define. For example, it might be acceptable to require the body of the #define
above to have backslashes at the end of each line.

2.2 Performance Attributes

The following performance attributes are supported:

— INT_FAST — the fastest integer type (optional — this might not be a C type).
— INT_FAST_C — the fastest integer type that is a C type (required).

— INT_SMALL_C — the smallest type that is a C type (required).

— INT_SMALL_BYTE — the smallest type that fits in a byte boundary (optional —
this might not be a C type).

— INT_SMALL_BIT — the smallest type that fits in a bit field, contained in an
addressable unit (optional — this might not be a C type, nor possible on some sys-
tems).

2.3 <inttypes.h> compatibility

Each of the precis types could be derived from the <inttypes.h> types or vice
versa. The following is an example if implementing the precis types via existing
<inttypes.h> types.

1995-12-22 Revision 1 Farance & Rugolsky REVIEW COPY Page 5
£ z3



Extensions to <inttypes.h> — WG14/N526 X3J11/95-127

/*
* tContehtsyofl "sstdint h3d: ifoxr
* a machine uses "<inttypes.h>". In this

* implementation, the "SMALL" attribute
* has no effect on the choice of types.
i1y 4

#define precof(P) ((sizeof(P))*CHAR_BIT)
#define INT_FAST C 0x1000

#define INT_SMALL_C 0x2000
#define INT_PREC OxFFF

/*

* On this machine, any ‘'‘fast’’ type uses

* the type "intfast_t". All other types map
* to appropriate "<inttypes.h>" types.

i

#define precis(P) \
#if ( P & INT_FAST C ) /* choose fast type */

intfast_t
#elif ( P & INT_SMALL_C ) /* choose small type */
#if ( ((P) & INT_PREC) > 32 )
int_least64_t
#elif ( ((P) & INT_PREC) > 16 )
int_leastl32_t
#elif ( ((P) & INT_PREC) > 8 )
int_leastl6_t
#else
int_least8_t
#endif
#else /* choose unoptimized type */
#if ( ((P) & INT_PREC) > 32 )
int64_t
#elif ( ((P) & INT_PREC) > 16 )
int32_¢t
#elif ( ((P) & INT_PREC) > 8 )
intlé_t
#else
int8_t
#endif
#endif
1995-12-22 Revision 1 Farance & Rugolsky REVIEW COPY Page 6

64



Extensions to <inttypes.h> — WG14/N526 X3J11/95-127

2.4 precof() macro

The precof () operator extracts precision information. necessary for printf or
scanft.

typedef precis(32|INT_FAST_C) fast32;

func ()
{

fast32 X;

printf ("X has value: %?d\n",precof (X),X);
}

On many systems, precof can be implemented as:
#define precof (X) ((sizeof X)*CHAR_BIT)

2.5 Integer Constants

The programmer can use constants with programmer-specified precision. The notation
is similar to the exponent notation for floating constants: the Inn suffix specifies an
integer constant of nn bits. For example, 123TI16 specifies a signed, 16-bit constant;
456132U specifies an unsigned, 32-bit constant. Some C compilers already provide
constants like these.

2.6 long long type

The long long and unsigned long long types are added to provide a
minimum of 64 bits of precision.

2.7 Preprocessor Constants

The preprocessor must support integral constants up to a minimum of the precision of
long long and unsigned long long. This means that the preprocessor must
support at least 64-bit arithmetic.

2.8 printf and scanf support

This proposal adds to the existing printf and scanf format specification syntax
an optional ? character specifying that a following d, i, o, u, x, X, or u conver-
sion specifier applies to an integer whose type is specified by precof () argument
immediately preceding the integral value in the argument list.

Additionally, the L qualifier is used to support long Zong. For example:

1995-12-22 Revision 1 Farance & Rugolsky REVIEW COPY Page 7

S

QJ



Extensions to <inttypes.h> — WG14/N526 X3J11/95-127

/*
* tContehtsyofl "sstdint h3d: ifoxr
* a machine uses "<inttypes.h>". In this

* implementation, the "SMALL" attribute
* has no effect on the choice of types.
i1y 4

#define precof(P) ((sizeof(P))*CHAR_BIT)
#define INT_FAST C 0x1000

#define INT_SMALL_C 0x2000
#define INT_PREC OxFFF

/*

* On this machine, any ‘'‘fast’’ type uses

* the type "intfast_t". All other types map
* to appropriate "<inttypes.h>" types.

i

#define precis(P) \
#if ( P & INT_FAST C ) /* choose fast type */

intfast_t
#elif ( P & INT_SMALL_C ) /* choose small type */
#if ( ((P) & INT_PREC) > 32 )
int_least64_t
#elif ( ((P) & INT_PREC) > 16 )
int_leastl32_t
#elif ( ((P) & INT_PREC) > 8 )
int_leastl6_t
#else
int_least8_t
#endif
#else /* choose unoptimized type */
#if ( ((P) & INT_PREC) > 32 )
int64_t
#elif ( ((P) & INT_PREC) > 16 )
int32_¢t
#elif ( ((P) & INT_PREC) > 8 )
intlé_t
#else
int8_t
#endif
#endif
1995-12-22 Revision 1 Farance & Rugolsky REVIEW COPY Page 6

64



Extensions to <inttypes.h> — WG14/N526 X3J11/95-127

« Provide a sample implementation of the preprocessor extension on the WG14 FTP
site.

1995-12-22 Revision 1 Farance & Rugolsky REVIEW COPY Page 9



