10

15

20

25

30

35

40

Arrays of Variable Length
WG14/N519 (X3J11/95-120)

Tom MacDonald

Cray Research, Inc.
655F Lone Oak Drive
Eagan, MN 55121
tam @cray.com

21 December 1995

Introduction

The inability to declare arrays whose size is known only at execution time is often cited as a primary
deterrent to using C as a numerical computing language. Eventual adoption of some standard notion of
execution time arrays is considered crucial for C’s acceptance as a major player in the numerical comput-
ing world. This paper is based on an implementation of variable length arrays chosen by Cray Research for
its Standard C Compiler, but this specification contains several enhancements recommended by committee
reviews.

This document describes a proposal for Variable Length Array (VLA) types. The size of a VLA
cannot necessarily be determined at translation time. Rather, its size is usually determined at execution
time. Insertion of this new array type into the C Standard requires an examination of each section of the
Draft C Standard with necessary elaboration for those sections that are affected. Accordingly, the number-
ing, titles and general format of each of the following several paragraphs match those found in
WG14/N457 (a.k.a. X3J11/95-058) C9X Draft 4.

Paragraphs address definitive issues relating to VLAs. If new words are added to a paragraph
already in the Draft C Standard, a different font is used to highlight them. Overviews of the issues are
given after the sections, followed by a brief rationale that explains why certain decisions were reached.
Therefore, this proposal describes each feature as edits to C9X Draft 4 with rationale interspersed appropri-
ately.

Changes

The following changes appear in this version of the document:
e 6.4 includes a note that indicates footnote 58 must change.
e A comment was added to example in 6.5.2.
e An issue is raised in section 6.5.4.2 about zero sized arrays.

e The example in section 7.6.2.1 had errors.

Issues
The following two issues are not addressed in this document.

e No chan%e to 6.3. A request for adding a VLA declarator sequence point wasn’t done because
it’s already present in 6.6, and that seems to be a better place for this information.

e The Draft C Standard already allows an implementation to ‘‘accept other forms of constant
expressions.”” Therefore, an implementation already has permission to recognize extended con-
stant expressions as bounds of a fixed size array.

177

21 December 1995 Arrays of Variable Length WG14/N519 (X3J11/95-120)

6.1.2.4 Storage durations of objects

An object whose identifier is declared with no linkage and without the storage-class specifier
static has automatic storage duration. Storage is guaranteed to be reserved for a new instance of such
an object on each normal entry into the block with which it is associated. If the block with which the

5 object is associated is entered by a jump from outside the block to a labeled statement in the block or in
an enclosed block, then storage is guaranteed to be reserved provided the object does not have a variable
length array type. If the object is variably modified and the block is entered by a jump to a labeled state-
ment, then the behavior is undefined. If an initialization is specified for the value stored in the object, it is
performed on each normal entry, but not if the block is entered by a jump to a labeled statement. Storage

10 for the object is no longer guaranteed to be reserved, when execution of the block ends in any way. (Enter-
ing an enclosed block suspends but does not end execution of the enclosing block. Calling a function
suspends but does not end execution of the block containing the call.) The value of a pointer that referred
to an object with automatic storage duration that is no longer guaranteed to be reserved is indeterminate.

Forward references: variably modified (6.5), variable length array (6.5.4.2).

15 6.1.2.6 Compatible type and composite type

A composite type can be constructed from two types that are compatible; it is a type that is compati-
ble with both of the two types and satisfies the following conditions:

— If one type is a fixed length array, the composite type is that type; otherwise, if one type is a variable
length array the composite type is that type.

20 6.3 Expressions

6.3.3.4 The sizeof operator

Semantics

When applied to an operand that has array type, the result is the total number of bytes in the array.
For variable length array types the result is not a constant expression and is computed at program exe-
25 cution time.

Forward reference: variable length array (6.5.4.2).
Example 1

int i = 2, j = 3, k, koo;
int *p = &i;

30 int func(int n) {
char b(*p==n ? k = j++ : n+jl; /* sideeffects OK */
return sizeof(b); /* execution time expression */
}
main() {
35 koo = func(10); /* execution time sizeof; koo == 13 */
}

Wt r
Cunminiiid & Jgy) 28

21 December 1995 Arrays of Variable Length WG14/N519 (X3J11/95-120)

10

15

20

25

30

35

ISSUE

Overview:

The sizeof operator could previously be used in any constant expression (except those associated
with preprocessor directives such as #if). With this extension to the language, this is no longer the case
since execution time code must be generated to calculate the size of a variable length array type.

Rationale:

The notion of ‘‘size’’ is an important part of such operations as pointer increment, subscripting, and
pointer difference. Although the sizeof operator can now produce a value computed at execution time,
there still exists a consistency when applied to the previously mentioned operations. Furthermore, it can
still be used in an argument to the malloc function and to compute the number of elements in an array.

6.3.6 Additive operators

Rationale:
The description of pointer arithmetic does not require modification. Pointer arithmetic is still well
defined with pointers to variable length array types as shown by the following example.

Example 2

int n =4, m = 3;
int a[n] [m];

int (*p) [m] = a; /* p == &a[0] 7.
p +=1; /* p == &a[l] */
(*p) [2] = 99; /* all]l[2] == 99 */
n=p-aj; /* n == */

If array a in the above example is declared to be a fixed length array, and pointer p is declared to be a
pointer to a fixed length array that points to a, the computed results are still the same.

6.4 Constant expressions

Semantics

An integral constant expression shall have integral type and shall only have operands that are
integer constants, enumeration constants, character constants, sizeof expressions whose operand does
not have variable length array type or a parenthesized name of such a type, and floating constants that
are the immediate operands of casts. Cast operators in an integral constant expression shall only convert
arithmetic types to integral types, except as part of an operand to the sizeof operator.

An arithmetic constant expression shall have arithmetic type and shall only have operands that are
integer constants, floating constants, enumeration constants, character constants, and sizeof expressions
whose operand does not have variable length array type or a parenthesized name of such a type. Cast
operators in an arithmetic constant expression shall only convert arithmetic types to arithmetic types,
except as part of an operand to the sizeof operator.

Note: footnote 58 states that the size of an array must be a constant expression. |

21 December 1995 Arrays of Variable Length WG14/N519 (X3J11/95-120)

10

15

20

6.5 Declarations

Semantics

If the sequence of specifiers in a declarator contains a variable length array type, the type specified
by the declarator is said to be variably modified.

Forward reference: variable length array (6.5.4.2).

6.5.2 Type specifiers

Constraints

Only identifiers with block scope or function prototype scope can have a variably modified type.
Only ordinary identifiers (as defined in 6.1.2.3) without linkage may be declared with a variable length
array type. If an identifier is declared to be an object with static storage duration, it shall not have a vari-
able length array type.

Forward reference: variable length array (6.5.4.2).

ISSUES
Overview:

This section discusses three issues about declarations containing variable length array specifiers. It
is important to note that there is a distinction made between variable length array types and variably
modified types (e.g., a pointer to a variable length array). First, all declarations of variably modified types
must be declared at either block scope or function prototype scope. This means that file scope identifiers
cannot be declared with a variably modified type of any fashion. Second, array objects declared with
either the static or extern storage class specifiers cannot be declared with a variable length array
type. However, block scope pointers declared with the static storage class specifier can be declared as
pointers to variable length array types. Finally, if the identifier that is being declared has a variable length
array type (as opposed to a pointer to a variable length array), then it must be an ordinary identifier. This
eliminates structure and union members.

21 December 1995 Arrays of Variable Length WG14/N519 (X3J11/95-120)

10

15

20

25

30

35

Example 3

extern int n;

typedef int TI[nl]; /* Error - file scope identifier ¥/
struct t { int (*z)[nl; }; /* Error - file scope identifier */
int Alnl; /* Error - file scope identifier */
static int (*pl) [n]; /* Error - file scope identifier */
extern int (*p2)[n]; /* Error - file scope identifier ¥/
int B[100]; /* OK - file scope but not a VLA */

void func(int m, int C[m]l[m]) { /*OK - prototype VLA */
typedef int VLA[m] [m]; /* OK - block scope typedef VLA */
/* array size m evaluated now */ |
struct tag (

int (*y) [nl; /* OK - block scope member pointer to VLA */
int z[nl; /* Error - z is not an ordinary identifier */

}:

int D[m]; /* OK - auto VLA */

static int E[m]; /* Error - static block scope VLA */

extern int F[m]; /* Error - F has linkage and is a VLA ¥/

int (*s) [m]; /* OK - auto pointer to VLA */

extern int (*r) [m]; /* Error - © has linkage and is a pointer to VLA */

static int (*q) [m] = &B; /* OK - static block scope pointer to VLA ¥/

}
Rationale:

Restricting variable length array declarators to identifiers with automatic storage duration is natural
since ‘‘variableness’’ at file scope requires some notion of parameterized typing.

6.5.2.1 Structure and union specifiers

Constraints
A structure or union shall not contain a member with a variable length array type.

Forward reference: variable length array (6.5.4.2).

ISSUES
Overview:

This issue involves the declaration of members of structures or unions with variably modified types.
A structure member can be declared to be a pointer to a VLA, but not a VLA. Allowing structure members
to have a VLA type introduces a host of problems, such as the treatment when passing such objects (or
even pointers to such objects) as parameters. In addition, the semantics of the of £setof macro would
need to be extended for examples similar to the following.

21 December 1995 Arrays of Variable Length WG14/N519 (X3J11/95-120)

10

15

20

25

30

35

40

Example 4

int n = 8;
main() {
struct tag (
int mi;
int m2[n]; /* not allowed by this proposal */
int m3;

int i

i = offsetof(struct tag, ml); /* OK */

offsetof (struct tag, m2); /* OK */

i = offsetof(struct tag, m3); /* undefined behavior? */

H-
]

Because the expansion of of£setof is implementation specific, it seems impractical to guarantee
any behavior for members which follow a variable length array type member. Finally, any structure or
union containing a variable length array type must not be declared at file scope due to its variable nature.
This forces every user to re-specify the structure type inside each function, and raises type compatibility
questions. Allowing formal arguments to be structures with variable length array type members (as well
as pointers to same) is problematic and, since functions could not return them either, the utility of the
whole exercise centered around stack allocated structures with variable length members. Objects of this
sort are narrowly focused and thus the decision was made to disallow the variable length array type within
structures and unions.

If all ordinary identifiers found in the arbitrary size expressions of a given member were compelled
to resolve to other members of the same structure or union, then some utility could be found in allowing
structures and unions to have variably modified members. Such members would become self-contained
‘“fat pointers’’ of sorts. The following example demonstrates this concept:

Example 5
struct tag { /* not allowed by this proposal */
int n; /* initializedto 5 */
int m2[n]; /* uses member n to complete size */
}x= {5 1};

The possibility of resolving the size of variable length array members amongst other members could
be explored. There were two votes taken at NCEG meeting #5 in Norwood, MA, which asked the follow-
ing questions:

Q: Should there be some way to declare a VLA member
Yes: 11 No: 1 Undecided: 4

Q: In favor of type shown in Example 4? 3
Q: In favor of type shown in Example 5? 6
Q: Undecided? 7

There is considerable sentiment for adding VLA members but it appears the implications of each
approach needs to be explored before the committee can reach consensus. This proposal has elected to
pursue VLAs outside of structures and unions. A future proposal may attempt to resolve the VLA issue for
members.

21 December 1995 Arrays of Variable Length WG14/N519 (X3J11/95-120)

10

15

20

25

30

35

6.5.4 Declarators

Semantics

Each declarator declares one identifier, and asserts that when an operand of the same form as the
declarator appears in an expression, it designates a function or object with the scope, storage duration, and

type indicated by the declaration specifiers.

In the following subsections, consider a declaration

T D1

where T contains the declaration specifiers that specify a type T (such as int) and D1 is a declarator that
contains an identifier ident. The type specified for the identifier ident in the various forms of declarator is

described inductively using this notation.
If, in the declaration ‘‘“T D1,”” D1 has the form

identifier

then the type specified for ident is T.
If, in the declaration ‘‘T D1.”” D1 has the form

(D)

then ident has the type specified by the declaration ‘“T D.”” Thus, a declarator in parentheses is identical
to the unparenthesized declarator, but the binding of complex declarators may be altered by parentheses.

6.5.4.2 Array declarators
Issue: Should the last sentence of the Constraints section be moved to semantics to allow for zero sized|
arrays?

Constraints

The [and 1 may delimit an expression or *. If [and 1 delimit an expression (which specifies the
size of an array), it shall have an integral type. If the expression is a constant expression then it shall
have a value greater than zero.

Semantics
If, in the declaration ‘T D1,”’ D1 has the form

D [assignment-expressionop t]

or
D[*]

and the type specified for ident in the declaration ‘“T D’’ is ‘‘derived-declarator-type-list T,”’ then the
type specified for ident is ‘‘derived-declarator-type-list array of T.”’ If the size expression is not present
the array type is an incomplete type. If * is used instead of a size expression, the array type is a variable
length array type of unspecified size, which can only be used in declarations with function prototype
scope. If the size expression is an integer constant expression and the element type has a fixed size, the
array type is a fixed length array type. Otherwise, the array type is a variable length array type. If the
size expression is not a constant expression, it is evaluated at program execution time, it may contain
side effects, and shall evaluate to a value greater than zero. The size of a variable length array type does
not change until the execution of the block containing the declaration has ended.

21 December 1995 Arrays of Variable Length WG14/N519 (X3J11/95-120)

10

15

20

25

30

35

40

For two array types to be compatible, both shall have compatible element types, and if both size
specifiers are present and integer constant expressions, then both size specifiers shall have the same con-
stant value. If either size specifier is variable, the two sizes must evaluate, at program execution time, to
equal values. If the two array types are used in a context which requires them to be compatible, it is
undefined behavior if the two size specifiers evaluate to unequal values at execution time.

Example 6

extern int n;
extern int m;

func() {
int a[n][6][m];
int (*p) [4]1[n+1];
int c[n]l[n][6][m];
int (*r)[n][n][n+1];

P = a; /* Error - not compatible because 4 = 6 */
r = .¢; /* compatible, but undefined behavior unless n == 6 and m == n+l */
}
Example 7

int dimd = 4;
int dimé = 6;

void main() {
int (*q) [dimd] [8] [dim6];
int (*r)[dim6][8][1];
r=9q; /* compatible, but undefined behavior at execution time */

}

ISSUES
Overview:

An issue raised by this section concerns type compatibility and the fact that variably modified types
are not fully specified until execution time. Is that when compatibility checks should occur? Should the
checks be mandatory? This kind of execution time checking is considered to be a quality of implementa-
tion issue. Finally, the presence of possible side effects in type declarations is new. Since side effects may
include accessing volatile objects there seems to be no compelling reason to forbid side effects in variable
length array size specifiers.

Rationale:

The language chosen by this proposal reflects a ‘‘path of least resistance’’ approach. The
“‘undefined behavior’’ paradigm is invoked if things do not match up at execution time as they normally
would for fixed length arrays. Prototype side-effects are handled with a syntactic option (see use of [*] in
section 6.5.4.3 below) and by inhibiting expression evaluation until function definition time.

6.5.4.3 Function declarators (including prototypes)

Semantics

A parameter type list specifies the types of, and may declare identifiers for, the parameters of the
function. A declared parameter that is a member of the parameter type list that is not part of a function
definition, may use the [*] notation in its sequence of declarator specifiers to specify a variable length
array type.

21 December 1995 Arrays of Variable Length WG14/N519 (X3J11/95-120)

Example 8
/* The following prototype has a variably modified parameter */
void addscalar(int n, int m, double a[n] [n*m+300], double x);
double A[4]1[308];
5 main() {

addscalar(4, 2, A, 3.14);
}

void addscalar(int n, int m, double a[n] [n*m+300], double x) {

int i, j, k=n*m+300;

10 for (i = 0; 1 < n; i++)
for (3 = 0; j < k; j++)
afil[j] += =% /* a isapointertoa VLA of size: n*m+300 */
}

The following are all compatible function prototype declarators.
15 Example 9
void matrix_mult(int n, int m, double a[n][m], double b[m] [n], double c[n][n]);
void matrix _mult(int n, int m, double a[*][*], double b[*][*], double c[*][*]);
void matrix mult(int n, int m, double a[][*], double b[][*], double c[1[*]);

void matrix _mult(int n, int m, double a[][m], double b[][n], double c[]1[n]):;

20 The size expression can involve identifiers declared at file scope. The following example shows how
this can be done.

Example 10
extern int n;
void f(double al[l[n], int n) { ... } /* filescope n used */
25 extern int m;

void g(double b[][n*m]) { ... }

The following example is also acceptable. The parameter n is used to complete the VLA size
expression.

21 December 1995 Arrays of Variable Length WG14/N519 (X3J11/95-120)

10

15

20

25

30

35

Example 11

extern int n;
void g(int n, int a[llnl) { /* OK */

}

ISSUES

Overview:

Currently, programmers do not need to concern themselves with the order in which formal parame-
ters are specified, and one common programming style is to declare the most important parameters first.
Consider the following prototype declaration and function definition:

Example 12
/* prototype declaration for old-style definition */
void f£(double a[*][*], int n);

void £(a, n)

int n;

double a[n] [n]:;
{

}

The order in which the names are specified in the parameter list does not depend on the order of the param-
eter declarations themselves. However, because of the lexical ordering rules in Standard C, the accom-
panying prototype declaration is not allowed. All identifiers used in VLA size expressions must be
declared prior to use (as is the case with the usage of all identifiers).

Example 13

void f(double aln][n], int n) { /* Error- n declared after use */
}

With Standard C’s lexical ordering rules the declaration of a would force n to be undefined or cap-
tured by an outside declaration. The possibility of allowing the scope of parameter n to extend to the
beginning of the parameter-type-list was explored (relaxed lexical ordering). This allows the size of
parameter a to be defined in terms of parameter n. However, such a change to the lexical ordering rules is
not considered to be in the ‘‘Spirit of C.”” This is an unforeseen side-effect of Standard C prototype syn-
tax.

The following example shows how to declare parameters in any order and avoid lexical ordering
issues.

+ I

21 December 1995 Arrays of Variable Length WG14/N519 (X3J11/95-120)

10

15

20

25

30

Example 14

void g(void *ap, int n) {
double (*a)([n] = ap;

. afllfa] ...
}

In this case, the parameter ap is assigned to a local pointer that is declared to be a pointer to a VLA.

Another issue concerns function prototype declarators whose parameters have variable length array
types. Since the rules for parameters inside function prototype declarators with variable length array types
that do not use the [*] syntax are the same whether or not the function declarator is part of a definition,
any identifier used to specify the size of these variable length array types needs to be visible.

/* prototype declarator with an incorrect parameter type */
/* Error-xandy are never declared */

void f1l(double al[x][y]):
This is the primary reason behind providing the [*] syntax.
void fl(double a[*]1[*]); /* OK */

Rationale:

This issue concerns prototype declarators that contain parameters with variable length array types
that are never completed. A previous version of this document allowed this behavior. The motivation was
to not force a diagnostic because the actual array sizes were never needed. A vote that was taken at NCEG
meeting #5 in Norwood, MA, asked the following question:

Q: Which notation is preferred to denote a VLA parameter (in a prototype)?
Arbitrary [x] (where x can include undeclared names) : 0
[*]:11
Undecided : 3
Since the [*] syntax seems to be the most widely accepted this proposal has been changed to reflect this

sentiment. Also, the presence of these diagnostics will help uncover more programmer errors.

6.5.6 Type definitions

Constraints

Typedef declarations which specify a variably modified type shall have block scope. The array size
specified by the variable length array type shall be evaluated at the time the type definition is declared and
not at the time it is used as a type specifier in an actual declarator.

= 1 e

21 December 1995 Arrays of Variable Length WG14/N519 (X3J11/95-120)

10

15

20

25

30

35

Example 15

main() {
extern void func();
func (20) ;

}

void func(int n) {
typedef int A[n]; /* OK - because declared in block scope */

A a;
A *p;
P = &a;

Example 16

int n;

typedef int A([n]; /* Error - because declared at file scope */
Example 17

void func(int n) {
typedef int A[nl; /* A is n intswith n evaluated now */

n += 1;

{
A a; /* a is n ints- n without += 1 */
int b[n]; /* a and b are different sizes */

for (i = 1; i < n; i++)
a[i-1] = b[i];

}

ISSUE
Overview:

The question arises whether the non-constant expression which determines the size of the variable
length array type should be evaluated at the time the type definition itself was declared or each time the
type definition is invoked for some object declaration.

Rationale:

If the evaluation were to take place each time the typedef name is used, then a single type definition
could yield variable length array types involving many different dimension sizes. This possibility seemed
to violate the spirit of type definitions and a decision was made to force evaluation of the expression at the
time the type definition itself is declared.

6.5.7 Initialization

Constraints

The type of the entity to be initialized shall be an object type or an array of unknown size, but not a
variable length array type.

-12-

21 December 1995 Arrays of Variable Length WG14/N519 (X3J11/95-120)

10

15

20

25

30

35

Example 18

extern int n;
main() {
int a[n] = {1, 2}; /* Error */
int (*p) [n] = &a; /* OK - pointer is scalar of fixed size */

6.6 Statements

Semantics

A full expression is an expression that is not part of another expression. Each of the following is a
full expression: a variably modified declarator; an initializer; the expression in an expression statement;
the controlling expression of a selection statement (i £ or switch); the controlling expression of a while
or do statement; each of the three (optional) expressions of a £or statement; the (optional) expression in a
return statement. The end of a full expression is a sequence point.

6.6.2 Compound statement, or block

Semantics

A compound statement (also called a block) allows a set of statements to be grouped into one syn-
tactic unit, which may have its own set of declarations and initializations (as discussed in 6.1.2.4). The ini-
tializers of objects that have automatic storage duration, and declarators that have variably modified type
are evaluated and the values are stored in the objects in the order their declarators appear in the translation
unit.

Example 19

{
int n =3, m = 4;
int a[n++] [n++]; /* order of evaluation is undefined */
int blm++], cIm++]; /* order of evaluation is defined */

Rationale:

Since sequence points cause the side effects of previous evaluations to be complete, it seems reason-
able to add a sequence point after every variably modified declarator. This specifies the behavior of
declarations such as:

int x[n++];
int y[n++];

in that the side effects must be evaluated at the end of the declarator. However, the behavior of a declara-
tion such as:

int z[n++] [n++];

is not specified because there is no guaranteed order of evaluation until the declarator is complete. This
seems consistent with an expression such as:

- 13 .-

21 December 1995 Arrays of Variable Length WG14/N519 (X3J11/95-120)

z[n++] [n++]

in which there is no guaranteed order of evaluation either.

6.6.4.2 The switch statement

Constraints

5 The controlling expression shall not cause a block to be entered by a jump from outside the block to
a statement that follows a case or default label in the block (or an enclosed block) if that block con-
tains the declaration of a variably modified object or variably modified typedef name.

Example 20

int i = 0;
10 main() {
int n = 10;
switch (n) { /* Error - bypasses declaration of a[n] */
int a[n];
case 10:
15 a[0] = 1;
break;
case 20:
a[0] = 2;
break;
20 1}
switch (i) { /* OK - declaration of b[n] is not bypassed */
case O:
{
int b[n];
25 b[2] = 4;
}
break;
case 1:
break;
30 }
}

ISSUE
Overview:

The concern here is that a switch will bypass evaluation of the arbitrary integer expressions associ-
35 ated with a variably modified type. In the case of a simple pointer that is variably modified this could
cause incorrect pointer arithmetic. In the case of a variable length array type this is even more serious in

that the variably modified object itself is not even allocated.

Rationale:

Disallowing a jump passed the declaration of a variably modified identifier in this fashion seems rea-
40 sonable and a compile time diagnostic is required.

-14-

21 December 1995 Arrays of Variable Length WG14/N519 (X3J11/95-120)

6.6.6.1 The goto statement

Constraints
A goto statement shall not cause a block to be entered by a jump from outside the block to a labeled
statement in the block (or an enclosed block) if that block contains the declaration of a variably modified
5 object or variably modified typedef name.

Example 21

void func(int n) (
int j = 4;
goto lab3; /* Error - going INTO scope of variable length array */
10 {
double a[n];
al[j] = 4.4;

lab3:
a[jl = 3.3;
15 goto lab4; /* OK - going WITHIN scope of variable length array */
a[j]l = 5.5;
lab4:
al[jl = 6.6;
}
20 goto lab4; /* Error - going INTO scope of variable length array */
return;
}
ISSUE
Overview:
25 The concern here is that a goto will bypass the evaluation of the arbitrary integer expressions asso-

ciated with a variably modified type. In the case of a simple pointer that is variably modified this causes
incorrect pointer arithmetic. In the case of a variable length array object, the object itself would not even
be allocated.

Rationale:

30 Disallowing a jump passed the declaration of a variably modified identifier in this fashion seems rea-
sonable and a compile time diagnostic is required.

6.7.1 Function definitions

On entry to the function all size expressions of variably modified parameters are evaluated, the
value of each argument expression shall be converted to the type of its corresponding parameter, as if by
35 assignment to the parameter.

-15-

21 December 1995 Arrays of Variable Length WG14/N519 (X3J11/95-120)

7.6.2.1 The long3jmp function

ISSUE
Overview:

The longjmp function that returns control back to the point of the set jmp invocation might cause
5 memory associated with a variable length array object to be squandered. Consider the following example:

Example 22

#include <setjmp.h>
jmp_buf buf;
void g(int n);
10 void h(int n);
int n = 6;

void £() {
int-xlnl: /* OK- £ isnotterminated */
setjmp (buf);
15 g(n);
}

void g(int n) {
int a[n]; /* a may remain allocated */
h(n);
20 }

void h(int n) {
int b[n]; /* b may remain allocated */ |
longjmp(buf,2); /* might cause some memory to be lost */ |

25 In this example the function h might cause storage to be lost for the variable length array object a,
declared in function g (whose existence is unknown to h). Additional storage could be lost for variable
length array object b declared in function h. In this case an implementation knows that a Longjmp is
being performed in the presence of a variable length array object whose storage needs to be managed
accordingly. However, since longjmp is a function, it can be invoked through a ‘‘pointer to function’’

30 and thus h would have no knowledge of the longjmp invocation occurring.

Rationale:

Essentially this behavior is allowed in a program (just like a longjmp invocation that bypasses a
call to the £free routine). These semantics do not prevent storage from being lost by the execution
environment in a conforming program.

16

21 December 1995 Arrays of Variable Length

10

A Language Syntax Summary

A.1.2.2 Declarations

(6.5.4) direct-declarator:

identifier

(declarator)

direct-declarator [assignment-expressionopt]
direct-declarator [*opt]

direct-declarator (parameter-type-list)

)

direct-declarator (identiﬁer-listom

(6.5.5) direct-abstract-declarator:
(abstract-declarator)

direct-abstract-declarator [assignment-expressionopl]
direct-abstract-declarator [*opt]

direct-abstract-declarator (parameter-type-listapt)

«17 -

WG14/N519 (X3J11/95-120)

