Complex Arithmetic for IEEE Implementations

An extension to Annex X: IEEE standard floating-point arithmetic
WG14/N518 X3J11/95-119 (Draft 12/21/95)

Jim Thomas
Taligent, Inc.
10201 N. DeAnza Blvd.
Cupertino, CA 95014-2233

jim thomas@taligent.com

This is a proposal to extend the annex proposed as part of the integration of FPCE into
C9X in order to specify complex arithmetic for IEEE implementations.

X.11 Complex arithmetic

X.11.1 Binary operators

For most operand types, the result of a binary operator with an imaginary or complex
operand is completely determined, with reference to real arithmetic, by the usual
mathematical formula. For some operand types, the usual mathematical formula is
problematic because of its treatment of infinities and because of undue overflow or
underflow; in these cases the results are required to satisfy certain properties, but are not
completely determined.

[Calculated with the usual mathematical formula for multiplication, the result of raising any

infinity to the fourth power has NaNs in both parts. The sum-of-squares denominator in the
usual mathematical formula for division is particularly prone to overflow and underflow.]

X.11.1.1 Multiplication operators

Semantics

If the operands are not both complex, then the result of the * operator is defined by
the usual mathematical formula:

w real x imagin *J complex x + y*[

real u x*u (y*u)*I (x*u) + (y*u)*I

taginry. vii. - § () | Yy (y*v) + (x*)*]
complex u + v*/ " (x*u) + (x*v)*I (-y*v) + (y*u)*I

If the second operand is not complex, then the result of the / operator is defined by
the usual mathematical formula:

~O

WG14/N518 X3J11/95-119 Draft 12/21/95

u xX/u (y/u)*I (x/u) + (y/u)*I
V¥ (-x/v)*I Vv (V) + (-x/v)*I

A complex or imaginary value with at least one infinite part is regarded as an infinity
(even if its other part is a NaN). A complex or imaginary value is a finite number if each
of its parts is a finite number (neither infinite nor NaN). A complex or imaginary value is
a zero if each of its parts is a zero. The * and / operators satisfy the following infinity
properties for all real, imaginary, and complex operands!:

» If one operand is an infinity and the other operand is a nonzero finite number, then the
result of the * operator is an infinity.

» If the first operand is an infinity and the second operand is a finite number, then the
result of the / operator is an infinity.

» If the first operand is a finite number and the second operand is an infinity, then the
result of the / operator is a zero.

e If the first operand is a nonzero number (and not a NaN) and the second operand is a
zero, then the result of the / operator is an infinity.

[These properties, together with the proj function in <complex.h> and the user paradigm of
ignoring differences in infinities, largely supports the 1-infinity, Riemann sphere model for
complex numbers.]

1 These properties are already implied for those cases covered in the tables, but are required for all cases.

2 Complex Arithmetic for IEEE Implementations
/76

Draft 12/21/95

Examples

WG14/N518 X3J11/95-119

1. Multiplication of double complex operands could be implemented with

#include <math.h>
#include <complex.h>
#define isinf(x) (fabs(x)==INFINITY)

// To “box" infinities ...
static double complex box(double complex z)

{

return copysign(isinf(real(z)) ? 1.0 : 0.0, real(z)) +

I * copysign(isinf(imag(z)) ? 1.0 : 0.0,

}

// Multiply z * w ...

imag(z));

double complex _Cmultd(double complex z, double complex W)

{
double a, b, ¢, 4, x, y:

a = real(z); b = imag(z); ¢ = real(w); 4 = imag(w);

x =a *c¢c-Db* d4;
y=a*d+Db * c;
if (isnan(x) && isnan(y))

{
int recalc = 0;

if (isinf(a) || isinf(b)) // if z is infinite

{
double complex zz;
zZzz = box(z);
a = real(zz);
b = imag(zz);
recalc = 1;

if (isinf(c) || isinf(d)) // if w is infinite

double complex ww;
ww = box(w);

c = real(ww);

d = imag(ww):;
recalc = 1;

if (recalc)

x = INFINITY * (a * c - Db * 4);
y = INFINITY * (a *d + b * ¢);

}
return x + I * y;

}

In ordinary (finite) cases, the cost to satisfy the infinity property for the * operator is only
one isnan test. This implementation opts for performance over guarding against undue

overflow and underflow.

Complex Arithmetic for IEEE Implementations

12/

WG14/N518 X3J11/95-119 Draft 12/21/95

For multiplication, whose speed is critical for certain important, large
matrix problems, which are know not to encounter infinities, even the
one isnan test is expected to be too costly. This problem could be solved
by a compiler switch, say cx_infinities, roughly in the style of
fp_contract, whose off state would allow unspecified treatment of
infinities.

[Undue overflow for multiplication is less a problem than for division, because it occurs in
more limited cases. Generally, undue underflow from complex multiplication is not a serious
problem. Ideally, all multiplications and divisions would be correctly rounded, as are the
operations specified in the tables; however, the costs would be substantial, in the absence of
special hardware support.]

2. Division of two double complex operands could be implemented with

#include <math.h>
#include <complex.h>
// box and isinf are as in example 1 above

// Divide z / w ...
double complex _Cdivd(double complex z, double complex w)
{
double a, b, ¢, 4, logbw, denom, X, ¥y:
long llogbw = 0;
a = real(z); b = imag(z); ¢ = real(w); 4 = imag(w);
logbw = logb(fmax(fabs(c), fabs(d)));
if (isfinite(logbw))
{
llogbw = (long)logbw;
¢ = scalb(c, -llogbw);
d = scalb(d, -llogbw);
}
denom = ¢ * ¢ +4d * 4;
x = scalb((a * ¢ + b * 4d) / denom, -llogbw);
y = scalb((b * ¢ - a * d) / denom, -llogbw);
if (isnan(x) && isnan(y))
{
double fact = 1;
int recalc = 0;
if (isinf(a) || isinf(b)) // if z is infinite
{
double complex zz;
zZzzZ = box(z);
fact = INFINITY;
a = real(zz);
b = imag(zz);
recalc = 1;

4 Complex Arithmetic for IEEE Implementations

1 7%

Draft 12/21/95 WG14/N518 X3J11/95-119

if (logbw == INFINITY) // if w is infinite

{
double complex ww;

ww = box(w);

fact /= INFINITY;

c = real(ww):;

d = imag(ww);

denom = ¢ *¢c + 4 * 4;
recalc = 1;

}
if (recalc)

{
x = fact * scalb((a * ¢ + b * d) / denom, -llogbw);

y = fact * scalb((b * ¢ - a * d) / denom, -llogbw);

}
}

return x + I * y;

}

Scaling the denominator alleviates the main overflow and underflow problem, which is
more serious than for multiplication. In the spirit of the multiplication example above,
this code does not defend against overflow and underflow in the calculation of the
numerator. Scaling with the scalb function, instead of with division, provides better

roundoff characteristics.

[Because of the roundoff characteristics preserved by the use of scalb, division of Gaussian
integers is exact when it should be.]

X.11.1.2 Additive operators

Semantics

In all cases the result of a + or - operator is defined by the usual mathematical
formula:

PRS- “ ik ¥ Y £ 5l |
u “ xtu Fu + y* (xtu) + y*I
V¥ l[x . V¥ (yv)*I X + (yiv)*
u + v¥l (xtu) = vl tu + (yrv)*I (xtu) + (yv)*I

[The usual mathematical formulas for the + and - operators are inconsistent with the 1-
infinity, Riemann sphere interpretation for complex numbers in that the sum of infinities can
be an infinity, whereas a value with two NaN parts would be better. This is thought to be a
relatively minor problem, because programs that add the results of two calculations that
overflow generally have more serious problems.]

X.11.2 <complex.h>

This subclause contains specification for the <complex.h> functions and overloading
macros that is particularly suited to IEEE implementations.

Complex Arithmetic for IEEE Implementations 5

WG14/N518 X3J11/95-119 Draft 12/21/95

The functions (including those invoked by overloading macros) are continuous onto
both sides of their branch cuts, taking into account the sign of zero. For example,
sqrt (-2 + 0*I) == taqrt(2)*I.

Since complex and imaginary values are composed of real values, each function may
be regarded as computing real values from real values. The functions treat real infinities,
NaNs, signed zeros, and subnormals in a manner consistent with the specification for real
functions in X.9.

If each part of the argument for a one-parameter function is a NaN the function
returns its argument.

The functions conj, imag, proj, and real are fully specified for all implementations,
including IEEE ones, in 7.x.3.4. These functions raise no exceptions.

For other functions, the following subclauses specify behavior for special cases,
including treatment of the invalid and divide-by-zero exceptions.2

Subclauses are required for acos, asin, atan, cos, sin, tan, acosh, asinh,
atanh, cosh, sinh, tanh, exp, log, sqrt, pow, fabs arg, exp, log, sqrt, pow,
fabs, arg. Samples for asin and cosh follow.

X.11.2.? The asin macro

* asin is symmetric about the real and imaginary axes.

* asin(+oo+iNaN) returns NaNtiw (where the sign of the imaginary part is
unspecified) and optionally raises the invalid exception.

* asin(+0+iNaN) returns +0+iNaN.

* asin(x+iNaN) returns NaN+iNaN, and optionally raises the invalid exception, for
nonzero finite x.

* asin(NaN+ice) returns NaN+ieo,

* asin(+)+ice) returns +H)+ico,

* asin(xX+ico) returns NaN+iee and raises the invalid exception, for nonzero, finite or
infinite x.

* asin(NaN+iy) returns NaN+iNaN and optionally raises the invalid exception, for
finite y.

* asin(eo+i0) returns m/2+ico.

* asin(co+y) returns NaN+ice and raises the invalid exception, for nonzero finite y.

X.11.2.? The cosh macro

The following defines a portable implementation of a double complex function that
could be invoked by the cosh overloading macro.

2 Sample implementations implicitly specify behavior for special cases.

6 Complex Arithmetic for IEEE Implementations

Draft 12/21/95

double complex _Ccoshd(double complex z)
{

double x, y;

x = real(z);

Yy = imag(z);

return cosh(x) * cos(y) + I * sinh(x)

Complex Arithmetic for IEEE Implementations

WG14/N518 X3J11/95-119

* sin(y):

} 73

