C9X Floating-Point Proposal—Overview
WG14/N510 X3J11/95-111 (Draft 12/21/95)

Jim Thomas
Taligent, Inc.
10201 N. DeAnza Blvd.

Cupertino, CA 95014-2233
jim_thomas@taligent.com

The four papers

Floating-Point Arithmetic—C9X Edits (N511)
Mathematics (Enhanced) <math.h> (N512)

Floating-Point Environment <fenv.h> (N513)

Annex X: IEEE Standard Floating-Point Arithmetic (N514)

collectively constitute a detailed proposal to integrate the “Floating-Point C Extensions”
chapter of X3J11’s Numerical C Technical Report (X3/TR-17:199x) into C9X, with
modifications according to directions approved by SC22/WG14.

Purpose

The proposal addresses two long-standing needs of programmers: (1) more
predictable floating-point arithmetic for all implementations, and (2) a standard language
binding for features of IEEE arithmetic.

Vagaries of floating-point arithmetic have plagued programmers and users since its
inception. And they still do, even though hardware floating-point is now largely
standardized. When IEEE binary floating-point standard 754 became an official standard
in July 1985, 26 months before the radix-independent standard 854, several IEEE
implementations were already shipping. Now virtually all new floating-point
implementations conform to the IEEE standards—at least in format, if not to the last
detail. Although these standards have been enormously successful in influencing
hardware implementation, many of their features, including predictability, remain
impractical or unavailable for use by programmers. The IEEE standards do not include
language bindings—a cost of delivering the basic standard in a timely fashion. The ANSI
C committee attempted to remove conflicts with IEEE arithmetic, but did not specify
IEEE support. Expediencies of programming language implementation and optimization
can deny the features offered by modern hardware. In the meantime, particular
companies have defined their own IEEE language extensions and libraries; not
surprisingly, lack of portability has impeded programming for these interfaces.

History

The Numerical C Extensions Group, NCEG, at its initial meeting in May 1989,
identified support for IEEE floating-point arithmetic as one of its focus areas and
organized a subgroup to produce a technical report. The ensuing effort benefited from
the considerable C language and IEEE floating-point expertise associated with NCEG
and X3J11. It included individuals with substantial experience with language extensions
(albeit proprietary) for IEEE floating-point. And, following after the standardization of

1

WG14/N510 X3J11/95-111 12/21/95

C, it had a stable, well defined base for its extensions. Thus there has been a unique
opportunity to solve this problem.

NCEG/X3J11.1 and X3J11 mailings have included thirteen drafts of FPCE and two
drafts of the four papers constituting the specific C9X proposal. NCEG’s FP/IEEE
subgroup, NCEG, X3J11, and numerous other interested parties have reviewed the drafts
to varying degrees. Proprietary extensions for IEEE support have provided prior art for
many features. Both developmental and commercial compilers and libraries have
implemented the specification.

Major milestones include
Date Milestone

May 92 FPCE draft distributed for preliminary review to various professional
organizations, including X3J11, WG14, X3J16/WG21, X3T2, and
X/Open

Jan 93 FPCE draft distributed for public comment

Jun 93 FPCE draft forwarded by NCEG/X3J11.1 to X3J11 as its FP/IEEE
technical report

Jun 94 FPCE draft accepted by X3J11 as part of its technical report on
numerical extensions

Mar95 Final version of FPCE, for X3J11 technical report
Aug 95 FPCE recast for C9X integration (four papers)

Substantive changes from FPCE

Widest-need is no longer one of the defined options for expression evaluation.
Rationale: Lack of prior art.

In <float.h>, the PLT_EVAL_METHOD macro now replaces FPCE’s
_MIN EVAL_FORMAT and _WIDEST NEED_EVAL macros. Rationale: Two macros are no
longer needed, since widest-need was removed.

The implementation can now set FLT_EVAL_METHOD to indicate that its method of
expression evaluation is defined by the implementation or indeterminate, rather than one
of the standard defined methods. Rationale: Eases acceptance while still promoting
standard-defined methods. :

Macros replace pragmas as the means for uttering translation directives. Rationale:
Macros are preferred because of general limitations of pragmas and the desire not to
require standard pragmas.

Translation directives can now be applied to a compound statement, as well as to the

subsequent part of a translation unit. Rationale: Avoids unnecessary restrictions on
optimization and supports locality in source code.

2 C9X Floating-Point Proposal—Overview

7

Draft 12/21/95 WG14/N510 X3J11/95-111

FPCE’s directives for allowing wide representation for function parameters, function
returns, and local variables have been dropped. Rationale: This FPCE specification is
awkward and use of the directives is highly system dependent; the need seems
insufficient, given availability of the float_t and double_t types.

Wide character functions are now covered. Rationale: Brings the proposal up-to-date
with the current C standard.

The predefined constant __IEEE_FP__ replaces ___FPCE_IEEE, and __FPCE__ has
been dropped. Rationale: Because the proposal is for changes to the standard and not for
extensions, the FPCE name is not appropriate, and __FPCE__ is not needed.

Matching of translation-time and execution-time conversion of decimal numbers is
now recommended instead of required. Rationale: This requirement would be too great
a burden for some implementations.

Overloading macros replace FPCE’s overloading functions. Using #undef to remove
a macro definition reveals a double version of the function, a la C90 <math.h>.
Otherwise this change is cosmetic. Rationale: Macros allow a more natural specification
and continue to support C90’s unmasking scheme.

The names fegetexceptflag and fesetexceptflag replace FPCE’s fegetexcept
and fesetexcept. Rationale: This distinguishes these functions—which deal with the
entire content of the flags, take an fexcept_t* argument, and are used as a pair—from
the other exception functions.

Recommendations about type widths for non-IEEE implementations, and the
recommendation for a warning when the recommendations for the widths are not met,
have been dropped. Rationale: The needed doesn’t seem sufficient, now that the
diversity of implementations has loosened such expectations about types.

The requirement for a “warning” when a hexadecimal constant cannot be represented
exactly has been been downgraded to a recommendation (for a non-fatal diagnostic).
Rationale: The need does not seem sufficient to introduce warning requirements into the
C standard, just for this purpose.

Certain recommendations for operator and function documentation have been
dropped. Rationale: This will be left to LIA.

Certain specification related to the floating-point environment now covers just IEEE
implementations. (This change does not affect the header <fenv.h>.) Rationale: This
allows localizing most of the material about the floating-point environment in <fenv.h>
and the IEEE annex, which is appropriate since the specification in question is essentially
for IEEE implementations anyway.

Acknowledgments

People who have made especially substantial contributions to this proposal include, in
alphabetical order: Jerome Coonen, Bill Gibbons, David Hough, Rex Jaeschke,
W. Kahan, Clayton Lewis, Stuart McDonald, Colin McMaster, Rick Meyers, David
Prosser, and Fred Tydeman.

C9X Floating-Point Proposal—Overview 3

WG14/N510 X3J11/95-111 12/21/95

Others who have provided invaluable contributions, reviews, or administrative help
include, in alphabetical order: Joel Boney, Norris Boyd, Larry Breed, Walter Bright,
W. J. Cody, Elizabeth Crockett, Karen Deach, James Demmel, Fred Dunlap, Clive
Feather, Yinsun Feng, Samuel Figueroa, Paul Finlayson, James Frankel, Scott Fraser,
David Gay, Eric Grosse, Ron Guilmette, Doug Gwyn, Bill Homer, Kenton Hanson, Paul
Hilfinger, Martha Jaffe, Bob Jervis, Ed Johnston, David Keaton, Earl Killian, David
Knaak, John Kwan, Roger Lawrence, Tom MacDonald, Michael Meissner, Randy Meyer,
Randy Meyers, Antonine Mione, Stephen Moshier, Adolfo Nemirovsky, Jon Okada,
Conor O'Neill, Tom Pennello, Tim Peters, P.J. Plauger, Thomas Plum, Sanjay Poonen,
Pat Ricci, Ali Sazegari, Roger Schlafly, Steve Sommars, Richard Stallman, Linda
Stanberry, Gordon Sterling, Bill Torkelson, Douglas Walls, and Terrence Yee.

The author benefited from experience with numerics and languages groups at Apple

Computer, Inc., developing the Standard Apple Numerics Environment (SANE) and its
various language bindings, and at Taligent, Inc., implementing this specification.

4 C9X Floating-Point Proposal—Overview

