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RATIONALE

1. SCOPE

This Rationale summarizes the deliberations of X3J11, the Technical Committee charged by
ANSI with devising a standard for the C programming language. It has been published along
with the draft Standard to assist the process of formal public review.

The X3J11 Committee represents a cross-section of the C community: it consists of about fifty
active members representing hardware manufacturers, vendors of compilers and other software
development tools, software designers, consultants, academics, authors, applications programmers,
and others. In the course of its deliberations, it has reviewed related American and international
standards both published and in progress. It has attempted to be responsive to the concerns of
the broader community: as of September 1988, it had received and reviewed almost 200 letters,
including dozens of formal comments from the first public review, suggesting modifications and
additions to the various preliminary drafts of the Standard.

Upon publication of the Standard, the primary role of the Committee will be to offer
interpretations of the Standard. It will consider and respond to all correspondence received.

The Committee's overall goal was to develop a clear, consistent, and unambiguous Standard for
the C programming language which codifies the common, existing definition of C and which
promotes the portability of user programs across C language environments.

The X3J11 charter clearly mandates the Committee to codify common existing practice. The
Committee has held fast to precedent wherever this was clear and unambiguous. The vast
majority of the language defined by the Standard is precisely the same as is defined in Appendix
A of The C Programming Language by Brian Kernighan and Dennis Ritchie, and as is
implemented in almost all C translators. (This document is hereinafter referred to as K&R.)

K&R is not the only source of "existing practice." Much work has been done over the years to
improve the C language by addressing its weaknesses. The Committee has formalized
enhancements of proven value which have become part of the various dialects of C.

Existing practice, however, has not always been consistent. Various dialects of C have
approached problems in different and sometimes diametrically opposed ways. This divergence
has happened for several reasons. First, K&R, which has served as the language specification
for almost all C translators, is imprecise in some areas (thereby allowing divergent
interpretations), and it does not address some issues (such as a complete specification of a library)
important for code portability. Second, as the language has matured over the years, various
extensions have been added in different dialects to address limitations and weaknesses of the
language; these extensions have not been ccnsistent across dialects.

One of the Committee's goals was to consider such areas of divergence and to establish a set of
clear, unambiguous rules consistent with the rest of the language. This effort included the
consideration of extensions made in various C dialects, the specification of a complete set of
required library functions, and the development of a complete, correct syntax for C.
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The work of the Committee was in large part a balancing act. The Committee has tried to
improve portability while retaining the definition of certain features of C as machine-dependent.
It attempted to incorporate valuable new ideas without disrupting the basic structure and fabric
of the language. It tried to develop a clear and consistent language without invalidating existing
programs. All of the goals were important and each decision was weighed in the light of
sometimes contradictory requirements in an attempt to reach a workable compromise.

In specifying a standard language, the Committee used several guiding principles, the most
important of which are:

Existing code is important, existing implementations are not. A large body of C code exists of
considerable commercial value. Every attempt has been made to ensure that the bulk of this code
will be acceptable to any implementation conforming to the Standard. The Committee did not
want to force most programmers to modify their C programs just to have them accepted by
conforming translator.

On the other hand, no one implementation was held up as the exemplar by which to define C it
is assumed that all existing implementations must change somewhat to conform to the Standard.

C code can be portable. Although the C language was originally born with the UNIX operating
system on the DEC PDP-11, it has since been implemented on a wide variety of computers and
operating systems. It has also seen considerable use in cross-compilation of code for embedded
Systems to be executed in a free-standing environment. The Committee has attempted to specify
the language and the library to be as widely implementable as possible, while recognizing that
a system must meet certain minimum criteria to be considered a viable host or target for the
language.

C code can be non-portable. Although it strove to give programmers the opportunity to write
truly portable programs, the Committee did not want to force programmers into writing portably,
to preclude the use of C as a "high-level assembler": the ability to write machine-specific code
is one of the strengths of C. It is this principle which largely motivates drawing the distinction
between strictly conforming program and conforming program (§4).

Avoid "quiet changes." Any change to widespread practice altering the meaning of existing code
causes problems.- Chan: -5 that cause code te be so ill-formed as to require diagnostic messages
are at least easy to detect. As much as seemed possible consistent with its other goals, the
Committee has avoided changes that quietly alter one valid program to another with different
semantics, that cause a working program to work differently without notice. In important places
where this principle is violated, the Rationale points out a QUIET CHANGE.

A standard is a treaty between implementor and programmer. Some numerical limits have been
added to the Standard to give both implementors and programmers a better understanding of what
must be provided by an implementation, of what can be expected and depended upon to exist.
These limits are presented as minimum maxima (i.., lower limits placed on the values of upper
limits specified by an implementation) with the understanding that any implementor is at liberty
to provide higher limits than the Standard mandates. Any program that takes advantage of these
more tolg:rant limits is not strictly conforming, however, since other implementations are at liberty
to enforce the mandated limits.

2
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Keep the spirit of C. The Committee kept as a major goal to preserve the traditional spirit of
C. There are many facets of the spirit of C, but the essence is a community sentiment of the
underlying principles upon which the C language is based. Some of the facets of the spirit of
C can be summarized in phrases like ‘

. Trust the programmer.

. Don't prevent the programmer from doing what needs to be done.
. Keep the language small and simple.

. Provide only one way to do an operation.

. Make it fast, even if it is not guaranteed to be portable.

The last proverb needs a little explanation. The potential for efficient code generation is one of
the most important strengths of C. To help ensure that no code explosion occurs for what
appears to be a very simple operation, many operations are defined to be how the target
machine's hardware does it rather than by a general abstract rule. An example of this
willingness to live with what the machine does can be seen in the rules that govern the widening
of char objects for use in expressions: whether the values of char objects widen to signed or
unsigned quantities typically depends on which byte operation is more efficient on the target
machine.

One of the goals of the Committee was to avoid interfering with the ability of translators to
generate compact, efficient code. In several cases the Committee has introduced features to
improve the possible efficiency of the generated code; for instance, floating point operations may
be performed in single-precision if both operands are float rather than double.

This Rationale focuses primarily on additions, clarifications, and changes made to the C language.
It is not a rationale for the C language as a whole: the Committee was charged with coditying
an existing language, not designing a new one. No attempt is made in this Rationale to defend
the pre-existing syntax of the language, such as the syntax of declarations or the binding of
operators. The Standard is contrived as carefully as possible to permit a broad range of
implementations, from direct interpreters to highly optimizing compilers with separate linkers,
from ROM-based embedded microcomputers to multi-user multi-processing host systems. A
certain amount of specialized terminology has therefore been chosen to minimize the bias toward
compiler implementations shown in the Base Documents.

The Rationale discusses some language or library features which were not adopted into the
Standard. These are usually features which are popular in some C implementations, so that a
user of those implementations might question why they do not appear in the Standard.
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BOX 1
ISSUE: Deleted text, no appropreate location for text.

1.4 Organization of the document

This Rationale is organized to parallel the Standard as closely as possible, to facilitate
finding relevant discussions. Some subsections of the Rationale comprise just the
subsection title from the Standard: this indicates that the Committee thought no special
comment was necessary. Where a given discussion touches on several areas, attempts
have been made to include cross-references within the text. Such references, unless they
specify the Standard or the Rationale, are deliberately ambiguous. As for the organization
of the Standard itself, Base Documents existed only for Sections 3 (Language) and 4
(Library) of the Standard. Section I (Introduction) was modeled after the introductory
matter in several other standards for procedural languages. Section 2 (Environment) was
added to fill a need, identified from the start, to place a C program in context and describe
the way it interacts with its surroundings. The Appendices were added as a repository for
related material not included in the Standard itself, or to bring together in a single place
information about a topic which was scattered throughout the Standard.

Just as the Standard proper excludes all examples, footnotes, references, and appendices,
this rationale is not part of the Standard. The C language is defined by the Standard alone.
If any part of this Rationale is not in accord with that definition, the Committee would
very much like to be so informed.

1.5 Base document

The Base Document for Section 3 (Language) was "The C Reference Manual" by Dennis
M. Ritchie, which was used for several years within AT&T Bell Laboratories and reflects
enhancements to C within the UNIX environment. A version of this manual was
published as Appendix A of The C Programming Language by Kernighan and Ritchie
(K&R). Several deviations in the Base Document from K&R were challenged during
Committee deliberations, but most changes from K&R ultimately included in the Standard
were readily_endorsed by the Committee since they were widely known and accepted
outside the UNIX user community. The Base Document for Section 4 (Library) was the
1984 /usr/group Standard. (/usr/group is a UNIX system users group.) In defining what a
UNIX-like environment looks like to an applications programmer writing in C, /usr/group
was obliged to describe library functions usable in any C environment. The Committee
found /usr/group's work to be an excellent codification of existing practice in defining C
libraries, once the UNIX-specific functions had been removed.

The work begun by /usr/group is being continued by the IEEE Committee 1003 to define
a portable operating system interface ("POSIX") based on the UNIX environment. The
X3J11 Committee has been working with IEEE 1003 to resolve potential areas of overlap
or conflict between the two Committees. The result of this coordination has been to
divide responsibility for standardizing library functions into two areas. Those functions
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2. NORMATIVE REFERENCES
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3. DEFINITIONS and CONVENTIONS

The definitions of object, bit, byte, and alignment retlect a strong consensus, reached after
considerable discussion, about the fundamental nature of the memory organization of a C
environment:

. All objects in C must be representable as a contiguous sequence of bytes, each of
which is at least 8 bits wide.

. A char (or signed char or unsigned char) occupies exactly one byte.

(Thus, for instance, on a machine with 36-bit words, a byte can be defined to consist of 9, 12,
18, or 36 bits, these numbers being all the exact divisors of 36 which are not less than 8.) These
strictures codify the widespread presumption that any object can be treated as an array of
characters, the size of which is given by the sizeof operator with that object's type as its operand.

These definitions do not preclude "holes" in struct objects. Such holes are in fact often
mandated by alignment and packing requirements. The holes simply do not participate in
representing the (composite) value of an object.

The detinition of object does not employ the notion of type. Thus an object has no type in and
of itself. However, since an object may only be designated by an [value (see §6.2.2.1), the
phrase "the type of an object” is taken to mean, here and in the Standard, "the type of the lvalue
designating this object," and "the value of an object" means "the contents of the object interpreted
as a value of the type of the lvalue designating the object."

The concept of multi-byte character has been added to C to support very large character sets.
See §5.2.1.2.

The terms unspecified behavior, undefined behavior, and implementation-defined behavior are
used to categorize the result of writing programs whose properties the Standard does not, or
cannot, completely describe. The goal of adopting this categorization is to allow a certain variety
among implementations which permits quality of implementation to be an active force in the
marketplace as well as to allow certain popular extensions, without removing the cachet of
conformance to the Standard. Appendix F to the Standard catalogs those behaviors which fall
into one of these three categories.

Unspecified behavior gives the implementor some latitude in translating programs. This latitude
does not extend as far as failing to translate the program.

Undefined behavior gives the implementor license not to catch certain program errors that are
difficult to diagnose. It also identifies areas of possible conforming language extension: the
implementor may augment the language by providing a definition of the officially undefined
behavior.

Implementation-defined behavior gives an implementor the freedom to choose the appropriate
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approach, but requires that this choice be explained to the user. Behaviors designated as
‘implementation-defined are generally those in which a user could mak. ueaningful coding
decisions based on the implementation definition. Implementors should bear in mind this
criterion when deciding how extensive an implementation definition ought to be. As with
unspecified behavior, simply failing to translate the source containing the implementation-defined
behavior is not an adequate response.
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4. COMPLIANCE

The three-fold definition of compliance is used to broaden the population of conforming programs
and distinguish between conforming programs using a single implementation and portable
conforming programs.

A strictly conforming program is another term for a maximally portable program. The goal is
to give the programmer a fighting chance to make powerful C programs that are also highly
portable, without demeaning perfectly useful C programs that happen not to be portable. Thus
the adverb strictly.

By defining conforming implementations in terms of the programs they accept, the Standard
leaves open the door for a broad class of extensions as part of a conforming implementation. By
defining both conforming hosted and conforming freestanding implementations, the Standard
recognizes the use of C to write such programs as operating systems and ROM-based
applications, as well as more conventional hosted applications. Beyond this two-level scheme,
no additional subsetting is defined for C, since the Committee felt strongly that too many levels
dilutes the effectiveness of a standard.

Conforming program is thus the most tolerant of all categories, since only one conforming
implementation need accept a program to rule it conforming. The primary limitation on this
license is §5.1.1.3.

Diverse sections of the Standard comprise the "treaty” between programmers and implementors
regarding various name spaces - if the programmer follows the rules of the Standard the
implementation will not impose any further restrictions or surprises:

. A strictly conforming program can use only a restricted subset of the identifiers
that begin with underscore (§7.1.2). Identifiers and keywords are distinct
(86.1.1). Otherwise, programmers can use whatever internal names they wish; a
conforming implementation is guaranteed not to use conflicting names of the form
reserved to the programmer. (Note, however, the class of identifiers which are
identified in §7.13 as possible future library names.)

. The external functions defined in, or called within, a portable program can be
named whatever the programmer wishes, as long as these names are distinct from
the external names defined by the Standard library (§7). External names in a
maximally portable program must be distinct within the first 6 characters mapped
into one case (§6.1.2).

. A mziximally portable program cannot, of course, assume any language keywords
other than those defined in the Standard.

. Each function called within a maximally portable program must either be defined
within some source file of the program or else be a function in the Standard
library.
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One proposal long entertained by the Committee was to mandate that each implementation have
a translate-time switch for turning off extensions and making a pure Standard-conforming
implementation. It was pointed out, however, that virtually every translate-time switch setting
effectively creates a different "implementation,” however close may be the effect of translating
with two different switch settings. Whether an implementor chooses to offer a family of
conforming implementations, or to offer an assortment of non-conforming implementations along
with one that conforms, was not the business of the Committee to mandate. The Standard
therefore confines itself to describing conformance, and merely suggests areas where extensions
will not compromise conformance.

Other proposals rejected more quickly were to provide a validation suite, and to provide the
source code for an acceptable library. Both were recognized to be major undertakings, and both
were seen to compromise the integrity of the Standard by giving concrete examples that might
bear more weight than the Standard itself. The potential legal implications were also a concern.

Standardization of such tools as program consistency checkers and symbolic debuggers lies

outside the mandate of the Committee. However, the Committee has taken pains to allow such
programs to work with conforming programs and implementations.

10
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5. ENVIRONMENT

Because C has seen widespread use as a cross-compiled cross-compilation language, a clear
distinction must be made between translation and execution environments. The preprocessor,
preprocessing for instance, is permitted to evaluate the expression in a #1f statement using the
long integer arithmetic native to the translation environment: these integers must comprise at least
32 bits, but need not match the number of bits in the execution environment. Other translate-time
arithmetic, however, such as type casting and floating arithmetic, must more closely model the
execution environment regardless of translation environment.

5.1 Conceptual models

The as if principle is invoked repeatedly in this Rationale. The Committee has found that
describing various aspects of the C language, library, and environment in terms of concrete
models best serves discussion and presentation. Every attempt has been made to craft the models
so that implementors are constrained only insofar as they must bring about the same result. as
if they had implemented the presentation model; often enough the clearest model would make
for the worst implementation.

S.1.1 Translation environment
5.1.1.1  Program structure

The terms source file, external linkage, linked, libraries, and executable program all imply a
conventional compiler-linker combination. All of these concepts have shaped the semantics of
C, however, and are inescapable even in an interpreted environment. Thus, while
implementations are not required to support separate compilation and linking with libraries, in
some ways they must behave as if they do.

5.1.1.2  Translation phases

Perhaps the greatest undesirable diversity among existing C implementations can be found in
preprocessing.  Admittedly a distinct and primitive language superimposed upon C, the
preprocessing commands accreted over time, with little central direction, and with even less
precision in their documentation. This evolution has resulted in a variety of local features, each
with its ardent adherents: the Base Document offers little clear basis for choosing one over the
other.

The consensus of the Committee is that preprocessing should be simple and overt, that it should
sacrifice power for clarity. For instance, the macro invocation f (a, b) should assuredly have
two actual arguments, even if b expands to ¢, d; and the formal definition of £ must call for
exactly two arguments. Above all, the preprocessing sub-language should be specified precisely
enough to minimize or eliminate dialect formation. To clarify the nature of preprocessing, the
translation from source text to tokens is spelled out as a number of separate phases. The separate
phases need not actually be present in the translator, but the net effect must be as if they were.
The phases need not be performed in a separate preprocessor, although the definition certainly

11
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permits this common proctice. Since the preprocessor need not know anything about the specific
properties of the targ: . machine-independent implementation is permissible.

The Committee deemed that it was outside the scope of its mandate to require the output of the
preprocessing phases be available as a separate translator output file.

The phases of translation are spelled out to resolve the numerous questions raised about the
precedence of different parses. Can a #define begin a comment? (No.) Is backslash/new-line
permitted within a trigraph? (No.) Must a comment be contained within one #include file?
(Yes.) And so on. The Rationale section on preprocessing (§6.8) discusses the reasons for many
of the articular decisions which shaped the specification of the phases of translation.

A backslash immediately before a new-line has long been used to continue string literals, as well
as preprocessing command lines. In the interest of easing machine generation of C, and of
transporting code to machines with restrictive physical line lengths, the Committee generalized
this mechanism to permit any token to be continued by interposing a backslash\slash new-line
sequence.

5.1.1.3  Diagnostics

By mandating some form of diagnostic message for any program containing a syntax error or
constraint violation, the Standard performs two important services. First, it gives teeth to the
concept of erroneous program, since a conforming implementation must distinguish such a
program from a valid one. Second, it severely constrains the nature of extensions permissible
to a conforming implementation.

The Standard says nothing about the nature of the diagnostic message, which could simply be
"syntax error", with no hint of where the error occurs. (An implementation must, of course,
describe what translator output constitutes a diagnostic message, so that the user can recognize
it as such.) The Committee ultimately decided that any diagnostic activity beyond this level is
an issue of quality of implementation, and that market forces would encourage more useful
diagnostics. Nevertheless, the Committee felt that at least some significant class of errors must
be diagnosed, and the class specified should be recognizable by all translators.

The_Standard.does .not forbid extensions, but such extensions must not invalidate strictly
conforming programs. The translator must diagnose the use of such extensions, or allow them
to be disabled as discussed in (Rationale) §1.7. Otherwise, extensions to a conforming C
implementation lie in such realms as defining semantics for syntax to which no semantics is
ascribed by the Standard, or giving meaning to undefined behavior.

5.1.2 Execution environments

The definition of program startup in the Standard is designed to permit initialization of static
storage by executable code, as well as by data translated into the program image.

5.1.2.1  Freestanding environment

As little as possible is said about freestanding environments, since little is served by constraining

12
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them.
5.1.2.2 Hosted environment

The properties required of a hosted environment are spelled out in a fair amount of detail in order
to give programmers a reasonable chance of writing programs which are portable among such
environments.

The behavior of the arguments to main, and of the interaction of exit, main and atexit (see
§7.10.4.2) has been codified to curb some unwanted variety in the representation of argv strings,
and in the meaning of values returned by main.

The specification of argc and argv as arguments to main recognizes extensive prior practice.
argv[argc] is required to be a null pointer to provide a redundant check for the end of the
list, also on the basis of common practice.

main is the only function that may portably be declared either with zero or two arguments. (The
number of arguments must ordinarily match exactly between invocation and definition.) This
special case simply recognizes the widespread practice of leaving off the arguments to main
when the program does not access the program argument strings. While many implementations
support more than two arguments to main, such practice is neither blessed nor forbidden by the
Standard; a program that defines main with three arguments is not strictly conforming. (See
Standard Annex G.5.1.)

Command line I/O redirection is not mandated by the Standard; this was deemed to be a feature
of the underlying operating system rather than the C language.

5.1.2.3  Program execution

Because C expressions can contain side effects, issues of sequencing are important in expression
evaluation. (See §6.3.) Most operators impose no sequencing requirements, but a few operators
impose sequence points upon the evaluation: comma, logical-AND, logical-OR, and conditional.
For example, in the expression (i = 1, a[i] = 0) the side effect (alteration to storage)
specified by 1 = 1 must be completed before the expression a[i] = O is evaluated.

Other sequence points are imposed by statement execution and completion of evaluation of a full
expression. (See §6.6). Thus in £n (++a), the incrementation of a must be completed before f£n
iscalled. Ini = 1; a[i] = 0; the side-effect of 1 = 1 must be complete before a[1i]
= 0 is evaluated.

The notion of agreement has to do with the relationship between the abstract machine defining
the semantics and an actual implementation. An agreement point for some object or class of
objects is a sequence point at which the value of the object(s) in the real implementation must
agree with the value prescribed by the abstract semantics.

For example, compilers that hold variables in registers can sometimes drastically reduce execution
times. In a loop like

13
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both sum and 1 might be profitably kept in registers during the execution of the loop. Thus, the
actual memory objects designated by sum and i would not change state during the loop.

Such behavior is, of course, too loose for hardware-oriented applications such as device drivers
and memory-mapped I/O. The following loop looks almost identical to the previous example,
but the specification of volatile ensures that each assignment to *ttyport takes place in
the same sequence, and with the same values, as the (hypothetical) abstract machine would have
done.

volatile short *ttyport;

FoB s aiats sl vl

for (1 = 0; 1 < N; ++1)
*ttyport = al[il;

Another common optimization is to pre-compute common subexpressions. In this loop:

volatile short *ttyport;
short maskl, mask2;
7 e T/
for (i = 0; 1 < N; ++1i)
*ttyport = al[i] & maskl & mask2;

evaluation of the subexpression maskl & mask2 could be performed prior to the loop in the
real implementation, assuming that neither maskl nor mask2 appear as an operand of the
address-of (&) operator anywhere in the function. In the abstract machine, of course, this
subexpression is re-evaluated at each loop iteration, but the real implementation is not required
to mimic this repetitiveness, because the variables maskl and mask2 are not volatile and
the same results are obtained either way.

The previous example shows that a subexpression can be pre-computed in the real
implementation. A question sometimes asked regarding optimization is, "Is the rearrangement
still conforming if the pre-computed expression might raise a signal (such as division by zero)?"
Fortunately. for . optimizers, the. answer .is "Yes," because any evaluation that raises a
computational signal has fallen into an undefined behavior (§6.3), for which any action is
allowable.

Behavior is described in terms of an abstract machine to underscore, once again, that the Standard
mandates results as if certain mechanisms are used, without requiring those actual mechanisms
in the implementation. The Standard specifies agreement points at which the value of an object
or class of objects in an implementation must agree with the value ascribed by the abstract
semantics.

Appendix B to the Standard lists the sequence points specified in the body of the Standard.

The class of interactive devices is intended to include at least asynchronous terminals, or paired

14
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display screens and keyboards. An implementation may extend the definition to include other
input and output devices, or even network inter-program connections, provided they obey the
Standard's characterization of interactivity.

S:2 Environmental considerations

5.2.1 Character sets

The Committee ultimately came to remarkable unanimity on the subject of character set
requirements. There was strong sentiment that C should not be tied to ASCII, despite its heritage
and despite the precedent of Ada being defined in terms of ASCII. Rather, an implementation is
required to provide a unique character code for each of the printable graphics used by C, and for
each of the control codes representable by an escape sequence. (No particular graphic
representation for any character is prescribed - thus the common Japanese practice of using the
glyph ¥ or the C character '\' is perfectly legitimate.) Translation and execution environments
may have different character sets, but each must meet this requirement in its own way. The goal
is to ensure that a conforming implementation can translate a C translator written in C.

For this reason, and economy of description, source code is described as if it undergoes the same
translation as text that is input by the standard library I/O routines: each line is terminated by
some new-line character, regardless of its external representation.

5.2.1.1  Trigraph sequences

Trigraph sequences have been introduced as alternate spellings of some characters to allow the
implementation of C in character sets which do not provide a sufficient number of non-alphabetic
graphics.

Implementations are required to support these alternate spellings, even if the character set in use
is ASCIL, in order to allow transportation of code from systems which must use the trigraphs.

The Committee faced a serious problem in trying to define a character set for C. Not all of the
character sets in general use have the right number of characters, nor do they support the
graphical symbols that C users expect to see. For instance, many character sets for languages
other than English resemble ASCII except that codes used for graphic characters in ASCII are
instead used for extra alphabetic characters or diacritical marks. C relies upon a richer set of
graphic characters than most other programming languages, so the representation of programs
in character sets other than ASCII is a greater problem than for most other programming
languages.

The International Standards Organization (ISO ) uses three technical terms to describe character
sets: repertoire , collating sequence , and codeset. The repertoire is the set of distinct printable
characters. ~ The term abstracts the notion of printable character from any particular
representation; the glyphs R, 2, R , R, R, R, and R all represent the same element of the
repertoire, upper-case-R, which is distinct from lower-case-r. Having decided on the repertoire
to be used (C needs a repertoire of 96 characters), one can then pick a collating sequence which
corresponds to the internal representation in a computer. The repertoire and collating sequence
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together form the codeset.

What is needed for C is to determine the necessary repertoire, ignore the collating sequence
altogether (it is of no importance to the language), and then find ways of expressing the repertoire
in a way that should give no problems with currently popular codesets.

C derived its repertoire from the ASCII codeset. Unfortunately the ASCII repertoire is not a
subset of all other commonly used character sets, and widespread practice in Europe is not to
implemeht all of ASCII either, but use some parts of its collating sequence for special national
characters.

The solution is an internationally agreed-upon repertoire, in terms of which an international
representation of C can be defined. The ISO has detined such a standard: ISO 646 describes an
invariant subset of ASCII.

The characters in the ASCII repertoire used by C and absent from the ISO 646 repertoire are:

#L1{YyN ]~

Given this repertoire, the Committee faced the problem of defining representations for the absent
characters. The obvious idea of defining two-character escape sequences fails because C uses
all the characters which are in the ISO 646 repertoire: no single escape character is available.
The best that can be done is to use a trigraph - an escape digraph followed by a distinguishing
character.

?? was selected as the escape digraph because it is not used anywhere else in C (except as noted
below); it suggests that something unusual is going on. The third character was chosen with an
eye to graphical similarity to the character being represented.

The sequence ?7? cannot currently occur anywhere in a legal C program except in strings,
character constants, comments, or header names. The character escape sequence '\ ?' (see
§6.1.3.4) was introduced to allow two adjacent question-marks in such contexts to be represented
as ?\?, a form distinct from the escape digraph.

The Committee makes no claims that a program written using trigraphs looks attractive. As a
matter of style, it may be wise to surround trigraphs with white space, so that they stand out
better in program text. Some users may wish to define preprocessing macros for some or all of
the trigraph sequences.

QUIET CHANGE

Programs with character sequences such as ??! in string constants, character
constants, or header names will now produce different results.

5.2.1.2 Multibyte characters

The "byte = character" orientation of C works well for text in Western alphabets, where the size
of the character set is under 256. The fit is rather uncomfortable for languages such as Japanese

16



RATIONALE

and Chinese, where the repertoire of ideograms numbers in the thousands or tens of thousands.

Internally, such character sets can be represented as numeric codes, and it is merely necessary
to choose the appropriate integral type to hold any such character.

Externally, whether in the files manipulated by a program, or in the text of the source files
themselves, a conversion between these large codes and the various byte media is necessary.

The support in C of large character sets is based on these principles:

. Multibyte encodings of large character sets are necessary in I/O operations, in
source text comments, and in source text string and character literals.

. No existing multibyte encoding is mandated in preference to any other; no
widespread existing encoding should be precluded.

. The null character ('\0") may not be used as part of a multibyte encoding, except
for the one-byte null character itself. This allows existing functions which
manipulate strings transparently to work with multibyte sequences.

. Shift encodings (which interpret byte sequences in part on the basis of some state
information) must start out in a known (default) shift state under certain
circumstances, such as the start of string literals.

. The minimum number of absolutely necessary library functions is introduced.
(See §7.10.7)

§.2.2 Character display semantics

The Standard defines a number of internal character codes for specifying "format effecting actions
on display devices," and provides printable escape sequences for each of them. These character
codes are clearly modelled after ASCII control codes, and the mnemonic letters used to specify
their escape sequences reflect this heritage. Nevertheless, they are internal codes for specifying
the format of a display in an environment-independent manner; they must be written to a rex: file
to effect formatting on a display device. The Standard states quite clearly that the external
representation of a text file (or data stream) may well differ from the internal form, both in
character codes and number of characters needed to represent a single internal code.

The distinction between internal and external codes most needs emphasis with respect to
new-line. ANSI X3L2 (Codes and Character Sets) uses the term to refer to an external code used
for information interchange whose display semantics specify a move to the next line. Both ANSI
X3L2 and ISO 646 deprecate the combination of the motion to the next line with a motion to the
initial position on the line. The C Standard, on the other hand, uses new-line to designate the
end-of-line internal code represented by the escape sequence '\n'. While this ambiguity is perhaps
unfortunate, use of the term in the latter sense is nearly universal within the C community. But
the knowledge that this internal code has numerous external representations, depending upon
operating system and medium, is equally widespread.
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The alert sequence ('\a') has been added by popular demand, to replace, for instance, the ASCII
BEL code explicitly coded as ‘\007".

Proposals to add '\ e' for ASCII ESC ('\033") were not adopted because other popular character
sets such as EBCDIC have no obvious equivalent. (See §6.1.3.4.)

The vertical tab sequence ('\v') was added since many existing implementations support it, and
since it is convenient to have a designation within the language for all the defined white space
characters.

The semantics of the motion control escape sequences carefully avoid the Western language
assumptions that printing advances left-to-right and top-to-bottom.

To avoid the issue of whether an implementation conforms if it cannot properly effect vertical
tabs (for instance), the Standard emphasizes that the semantics merely describe intent.

5.2.3 Signals and interrupts

Signals are difficult to specify in a system-independent way. The Committee concluded that
about the only thing a strictly conforming program can do in a signal handler is to assign a value
to a volatile static variable which can be written uninterruptedly and promptly return.
(The header <signal.h> specifies a type sig_atomic_t which can be so written.) It is
further guaranteed that a signal handler will not corrupt the automatic storage of an instantiation
of any executing function, even if that function is called within the signal handler. No such
guarantees can be extended to library functions, with the explicit exceptions of longjmp
(§7.6.2.1)and signal (§7.7.1.1), since the library functions may be arbitrarily interrelated and
since some of them have profound effect on the environment.

Calls to longjmp. are problematic, despite the assurances of §7.6.2.1. The signal could have
occurred during the execution of some library function which was in the process of updating
external state and/or static variables.

A second signal for the same handler could occur before the first is processed, and the Standard
makes no guarantees as to what happens to the second signal.

5.2.4 Environmental limits

The Committee agreed that the Standard must say something about certain capacities and
limitations, but just how to enforce these treaty points was the topic of considerable debate.

5.24.1 Translation limits

The Standard requires that an implementation be able to translate and compile some program that
meets each of the stated limits. This criterion was felt to give a useful latitude to the
implementor in meeting these limits. While a deficient implementation could probably contrive
a program that meets this requirement, yet still succeed in being useless, the Committee felt that
such ingenuity would probably require more work than making something useful. The sense of
the Committee is that implementors should not construe the translation limits as the values of
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hard-wired parameters, but rather as a set of criteria by which an implementation will be judged.

Some of the limits chosen represent interesting compromises. The goal was to allow reasonably
large portable programs to be written, without placing excessive burdens on reasonably small
implementations.

The minimum maximum limit of 257 cases in a switch statement allows coding of lexical
routines which can branch on any character (one of at least 256 values) or on the value EOF.

5.24.2 Numerical limits
In addition to the discussion below, see §7.1 4.
52421 Sizes of integral types <limits.h>

Such a large body of C code has been developed for 8-bit byte machines that the integer sizes
in such environments must be considered normative. The prescribed limits are minima: an
implementation on a machine with 9-bit bytes can be conforming, as can an implementation that
defines int to be the same width as long. The negative limits have been chosen to
accommodate ones-complement or sign-magnitude implementations, as well as the more usual
twos-complement. The limits for the maxima and minima of unsigned types are specified as
unsigned constants (e.g., 65535u) to avoid surprising widenings of expressions involving these
extrema.

The macro CHAR_BIT makes available the number of bits in a char object. The Committee
saw little utility in adding such macros for other data types.

The names associated with the short int types (SHRT_MIN, etc., rather than SHORT_MIN,
etc.) reflect prior art rather than obsessive abbreviation on the Committee's part.

52422  Characteristics of floating types <float .h>

The characterization of floating point follows, with minor changes, that of the FORTRAN
standardization committee (X3J3"). The Committee chose to follow the FORTRAN model in
some part out of a concern tor FORTRAN-to-C translation, and in large part out of deference to
the FORTRAN committee's greater experience with fine points of floating point usage. Note that
the floating point model adopted permits all common representations, including sign-magnitude
and twos-complement, but precludes a logarithmic implementation.

Single precision (32-bit) floating point is considered adequate to support a conforming C
implementation. Thus the minimum maxima constraining floating types are extremely
permissive.

The Committee has also endeavored to accommodate the IEEE 754 floating point standard by
not adopting any constraints on floating point which are contrary to this standard.

1See X3J3 working document S8-112.
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The term FLT_MANT_DIG stands for "float mantissa digits."

precise term significand rather than mantissa.
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6. LANGUAGE

While more formal methods of language definition were explored, the Committee decided early
on to employ the style of the Base Document: Backus-Naur Form for the syntax and prose for
the constraints and semantics. Anything more ambitious was considered to be likely to delay the
Standard, and to make it less accessible to its audience.

6.1 Lexical Elements

The Standard endeavors to bring preprocessing more closely into line with the token orientation
of the language proper. To do so requires that at least some information about white space be
retained through the early phases of translation (see §5.1.1.2). It also requires that an inverse
mapping be defined from tokens back to source characters (see §6.8.3).

6.1.1 Keywords
Several keywords have been added: const, enum, signed, void, and volatile.

As much as possible, however, new features have been added by overloading existing keywords,
as, for example, long double instead of extended. It is recognized that each added
keyword will require some existing code that used it as an identifier to be rewritten. No
meaningful programs are known to be quietly changed by adding the new keywords.

The keywords entry, fortran, and asm have not been included since they were either never
used, or are not portable. Uses of fortran and asm as keywords are noted as common
extensions. '

6.1.2 Identifiers

While an implementation is not obliged to remember more than the first 31 characters of an
identifier for the purpose of name matching, the programmer is effectively prohibited from
intentionally creating two different identifiers that are the same in the first 31 characters.
Implementations may therefore store the full identifier: they are not obliged to truncate to 31.

The decision to extend significance to 31 characters for internal names was made with little
opposition, but the decision to retain the old six-character case-insensitive restriction on
significance of external names was most painful. While strong sentiment was expressed for
making C "right" by requiring longer names everywhere, the Committee recognized that the
language must, for years to come, coexist with other languages and with older assemblers and
linkers. Rather than undermine support for the Standard, the severe restrictions have been
retained.

The Committee has decided to label as obsolescent the practice of providing different identifier
significance for internal and external identifers, thereby signalling its intent that some future
version of the C Standard require 31-character case-sensitive external name significance, and
thereby encouraging new implementations to support such significance.
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Three solutions to the external identifier length/case problem were explored, each with its own
set of problems:

1. . Label any C implementation without at least 31-character, case-sensitive
significance in external identifiers as non-standard. This is unacceptable since the
whole reason for a standard is portability, and many systems today simply do not
provide such a name space.

2. Require a C implementation which cannot provide 31-character, case-sensitive
significance to map long identifiers into the identifier name space that it can
provide. This option quickly becomes very complex for large, multi-source
programs, since a program-wide database has to be maintained for all modules to
avoid giving two different identifiers the same actual external name. It also
reduces the usefulness of source code debuggers and cross reference programs,
which generally work with the short mapped names, since the source-code name
used by the programmer would likely bear little resemblance to the name actually
generated.

3 Require a C implementation which cannot provide 31-character, case-sensitive
significance to rewrite the linker, assembler, debugger, any other language
translators which use the linker, etc. This is not always practical,since the C
implementor might not be providing the linker, etc. Indeed, on some systems only
the manufacturer's linker can be used, either because the format of the resulting
program file is not documented, or because the ability to create program files is
restricted to secure programs.

Because of the decision to restrict significance of external identifiers to six case-insensitive
characters, C programmers are faced with these choices when writing portable programs:

L Make sure that external identifiers are unique within the first six characters, and use only
one case within the name. A unique six-character prefix could be used, followed by an
underscore, followed by a longer, more descriptive name:

“extern int a_xvz_real_long_name;
extern int a_rwt_real_long_name2;

2. Use the prefix method described above, and then use #define statements to provide a
longer, more descriptive name for the unique name, such as:

#define real_long _name a_xvz_real_long_name
#define real_long_name2 a_rwt_real_long_name2

Note that overuse of this technique might result in exceeding the limit on the number of allowed
#define macros, or some other implementation limit.

3. Use longer and/or multi-case external names, and limit the portability of the programs to
systems that support the longer names.
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4. Declare all exported items (or pointers thereto) in a single data structure and export that
structure. The technique can reduce the number of external identifiers to one per
translation unit; member names within the structure are internal identifiers, hence can have
full significance. The principal drawback of this technique is that functions can only be
exported by reference, not by name; on many systems this entails a run-time overhead on
each function call.

QUIET CHANGE

A program that depends upon internal identifiers matching only in the first (say)
eight characters may change to one with distinct objects for each variant spelling
of the identifier.

6.1.2.1  Scopes of identifiers

The Standard has separated from the overloaded keywords for storage classes the various
concepts of scope, linkage, name space, and storage duration. (See §6.1.2.2, §6.12.3, §6.1.2.4))
This has traditionally been a major area of confusion.

One source of dispute was whether identifiers with external linkage should have file scope even
when introduced within a block. The Base Document is vague on this point, and has been
interpreted differently by different implementations. For example, the following fragment would
be valid in the file scope scheme, while invalid in the block scope scheme:

typedef struct data d_struct ;

firat{){
extern d_struct func();
SRk

}

second () {

d_struct n = func();

}

While it was generally agreed that it is poor practice to take advantage of an external declaration
once it had gone out of scope, some argued that a translator had to remember the declaration for
checking anyway, so why not acknowledge this? The compromise adopted was to decree
essentially that block scope rules apply, but that a conforming implementation need not diagnose
a failure to redeclare an external identifier that had gone out of scope (undefined behavior).

QUIET CHANGE
A program relying on file scope rules may be valid under block scope rules but
behave differently - for instance, if d_struct were defined as type £loat

rather than struct data in the example above.

Although the scope of an identifier in a function prototype begins at its declaration and ends at
the end of that function's declarator, this scope is of course ignored by the preprocessor. Thus
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an identifier in a prototype having the same name as that of an existing macro is treated as an
invocation of that macro. For example:

#define status 23
void exit(int status);

generates an error, since the prototype after preprocessing becomes
void exit(int 23);
Perhaps more surprising is what happens if status is defined
#define status []
Then the resulting prototype is
void exit(int []);
which is syntactically correct but semantically quite different from the intent.

To protect an implementation's header prototypes from such misinterpretation, the implementor
must write them to avoid these surprises. Possible solutions include not using identifiers in
prototypes, or using names (such as __status or _Status) in the reserved name space.

6.1.2.2 Linkages of identifiers

The Standard requires that the first declaration, implicit or explicit, of an identifier specify (by
the presence or absence of the keyword static) whether the identifier has internal or external
linkage. This requirement allows for one-pass compilation in an implementation which must treat
internal linkage items differently than external linkage items. An example of such an
implementation is one which produces intermediate assembler code, and which therefore must
construct names for internal linkage items to circumvent identifier length and/or case restrictions
in the target assembler.

Existing practice in this area is inconsistent. Some implementations have avoided the renaming
problem simply by restricting internal linkage names by the same rules as for external linkage.
Others have disallowed a static declaration followed later by a defining instance, even though
such constructs are necessary to declare mutually recursive static functions. The requirements
adopted in the Standard may call for changes in some existing programs, but allow for maximum
flexibility.

The definition model to be used for objects with external linkage was a major standardization
issue. The basic problem was to decide which declarations of an object define storage for the
object, and which merely reference an existing object. A related problem was whether multiple
definitions of storage are allowed, or only one is acceptable. Existing implementations of C
exhibit at least four different models, listed here in order of increasing restrictiveness:

Common Every object declaration with external linkage (whether or not the keyword extern
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appears in the declaration) creates a definition of storage. When all of the modules are
combined together, each definition with the same name is located at the same address in
memory. (The name is derived from common storage in FORTRAN.) This model was
the intent of the original designer of C, Dennis Ritchie.

Relaxed Ref/Def The appearance of the keyword extern (whether it is used outside of the
scope of a function or not) in a declaration indicates a pure reference (ref), which does
not define storage. Somewhere in all of the translation units, at least one definition (det)
of the object must exist. An external definition is indicated by an object declaration in
file scope containing no storage class indication. A reference without a corresponding
definition is an error. Some implementations also will not generate a reference for items
which are declared with the extern keyword, but are never used within the code. The
UNIX operating system C compiler and linker implement this model, which is recognized
as a common extension to the C language (G.5.11). UNIX C programs which take
advantage of this model are standard conforming in their environment, but are not
maximally portable.

Strict Ref/Def This is the same as the relaxed ret/def model, save that only one definition is
allowed. Again, some implementations may decide not to put out references to items that
are not used. This is the model specified in K&R and in the Base Document.

Initialization This model requires an explicit initialization to define storage. All other
declarations are references.

Figure 3.1 demonstrates the differences between the models.

The model adopted in the Standard is a combination of features of the strict ref/def model and
the initialization model. As in the strict ref/def model, only a single translation unit contains the
definition of a given object - many environments cannot effectively or efficiently support the
"distributed definition" inherent in the common or relaxed ref/def approaches. However, either
an initialization, or an appropriate declaration without storage class specifier (see §6.7), serves
as the external definition. This composite approach was chosen to accommodate as wide a range
of environments and existing implementations as possible.

6.1.2.3 Name spaces of identifiers
Implementations have varied considerably in the number of separate name spaces maintained.
The position adopted in the Standard is to permit as many separate name spaces as can be

distinguished by context, except that all tags (struct, union, and enum) comprise a single
name space.
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Figure 3.1: Comparison of identifier linkage models

RATIONALE

Model File 1 File 2
common T
: extern int i extern int i,
main( ) { second( ) {
P=nly third( 1 );
second( ); }
} ;
Relaxed Ref/Def
int 1; int i;
main( ) { second( ) {
i=1; third( 1 );
second( ); }
}
Strict Ref/Def
int i; extern int i;
main( ) { second( ) {
i=1; third( 1 );
second( ); }
}
Initializer
inti=0; int i;
main( ) { second( ) {
L= 1y third( 1 );
second( ); }
}

6.1.24  Storage durations of objects

It was necessary to clarify the effect on automatic storage of jumping into a block that declares

local storage. (See §6.6.2.)

While many implementations allocate the maximum depth of

automatic storage upon entry to a function, some explicitly allocate and deallocate on block entry
and exit. The latter are required to assure that local storage is allocated regardless of the path
into the block (although initializers in automatic declarations are not executed unless the block

is entered from the top).

To effect true reentrancy for functions in the presence of signals raised asynchronously (see
§5.2.3), an implementation must assure that the storage for function return values has automatic
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duration. This means that the caller must allocate automatic storage for the return value and
communicate its location to the called function. (The typical case of return registers for small
types conforms to this requirement: the calling convention of the implementation implicitly
communicates the return location to the called function.)

6.1.2.5 Types
Several new types have been added:

void

vaidi*

signed char
unsigned char
unsigned short
unsigned long
long double

New designations for existing types have been added:

signed short for short
signed int for int
signed long for long

void is used primarily as the typemark for a function which returns no result. It may also be
used, in any context where the value of an expression is to be discarded, to indicate explicitly
that a value is ignored by writing the cast (void). Finally, a function prototype list that has
no arguments is written as £ (void), because £ () retains its old meaning that nothing is said
about the arguments.

A "pointer to void," void *, is a generic pointer, capable of pointing to any (data) object
without truncation. A pointer to void must have the same representation and alignment as a
pointer to character; the intent of this rule is to allow existing programs which call library
functions (such as memcpy and free) to continue to work. A pointer to void may not be
dereferenced, although such a pointer may be converted to a normal pointer type which may be
dereferenced. Pointers to other types coerce silently to and from void * in assignments,
function prototypes, comparisons, and conditional expressions, whereas other pointer type clashes
are invalid. It is undefined what will happen if a pointer of some type is converted to void *,
and then the void * pointer is converted to a type with a stricter alignment requirement. Three
types of char are specified: signed, plain, and unsigned. A plain char may be represented
as either signed or unsigned, depending upon the implementation, as in prior practice. The type
signed char was introduced to make available a one-byte signed integer type on those
systems which implement plain char as unsigned. For reasons of symmetry, the keyword
signed is allowed as part of the type name of other integral types. Two varieties of the integral
types are specified: signed and unsigned. If neither specifier is used, signed is assumed.
In the Base Document the only unsigned type is unsigned int.

The keyword unsigned is something of a misnomer, suggesting as it does arithmetic that is
non-negative but capable of overflow. The semantics of the C type unsigned is that of
modulus, or wrap-around, arithmetic, for which overflow has no meaning. The result of an
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unsigned arithmetic operation is thus always defined, whereas the result of a signed operation
may (in principle) be undefined. In practice, on twos-complement machines, both types often
give the same result for all operators except division, modulus, right shift, and comparisons.
Hence there has been a lack of sensitivity in the C community to the differences between signed
and unsigned arithmetic (see §6.2.1.1). '

The Committee has explicitly restricted the C language to binary architectures, on the grounds
that this stricture was implicit in any case:

. Bit-fields are specified by a number of bits, with no mention of "invalid integer"
representation. The only reasonable encoding for such bit-fields is binary.

. The integer formats for printf suggest no provision for "illegal integer" values,
implying that any result of bitwise manipulation produces an integer result which
can be printed by printf.

. All methods of specifying integer constants - decimal, hex, and octal - specify an
integer value. No method independent of integers is defined for specifying
"bit-string constants." Only a binary encoding provides a complete one-to-one
mapping between bit strings and integer values.

The restriction to "binary numeration systems" rules out such curiosities as Gray code, and makes
possible arithmetic definitions of the bitwise operators on unsigned types (see §6.3.3.3, §6.3.7,
§6.3.10, §6.3.11, §6.3.12).

A new floating type long double has been added to C. The long double type must offer
at least as much precision as the type double. Several architectures support more than two
floating types and thus can map a distinct machine type onto this additional C type. Several
architectures which only support two floating point types can also take advantage of the three C
types by mapping the less precise type onto f£loat and double, and designating the more
precise type long double. Architectures in which this mapping might be desirable include
those in which single-precision floats offer at least as much precision as most other machines's
double-precision, or those on which single-precision is considerably more efficient than
double-precision. “Thus the common C floating types would map onto an efficient implementation
type, but the more precise type would still be available to those programmers who require its use.

To avoid confusion, long float as a synonym for double has been retired.

Enumerations permit the declaration of named constants in a more convenient and structured
fashion than #define's. Both enumeration constants and variables behave like integer types
for the sake of type checking, however.

The Committee considered several alternatives for enumeration types in C:

1. leave them out;

2. include them as definitions of integer constants;
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s include them in the weakly typed form of the UNIX C compiler;
4. include them with strong typing, as, for example, in Pascal.

The Committee adopted the second alternative on the grounds that this approach most clearly
reflects common practice. Doing away with enumerations altogether would invalidate a fair
amount of existing code; stronger typing than integer creates problems, for instance, with arrays
indexed by enumerations.

6.1.2.6  Compatible type and composite type

The notions of compatible types and composite type have been introduced to discuss those
situations in which type declarations need not be identical. These terms are especially useful in
explaining the relationship between an incomplete type and a complete type.

Structure, union, or enumeration type declarations in two different translation units do not
formally declare the same type, even if the text of these declarations come from the same include
file, since the translation units are themselves disjoint. The Standard thus specifies additional
compatibility rules for such types, so that if two such declarations are sutficiently similar they

are compatible.
6.1.3 Constants

In folding and converting constants, an implementation must use at least as much precision as
is provided by the target environment. However, it is not required to use exactly the same
precision as the target, since this would require a cross compiler to simulate target arithmetic at
translation time.

The Committee considered the introduction of structure constants. Although it agreed that
structure literals would occasionally be useful, its policy has been not to invent new features
unless a strong need exists. Since the language -already allows for initialized const structure
objects, the need for inline anonymous structured constants seems less than pressing.

Several implementation difficulties beset structure constants. All other forms of constants are
"self typing" - the type of the constant is evident from its lexical structure. Structure constants
would require either an explicit type mark, or typing by context; either approach is considered
to require increased complexity in the design of the translator, and either approach would also
require as much, if not more, care on the part of the programmer as using an initialized structure
object.

6.1.3.1 Floating constants

Consistent with existing practice, a floating point constant has been defined to have type
double. Since the Standard now allows expressions that contain only £1loat operands to be
performed in float arithmetic (see §6.2.1.5) rather than double, a method of expressing
explicit £1oat constants is desirable. The new long double type raises similar issues.

Thus the F and L suffixes have been added to convey type information with floating constants,
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much like the L suffix for long integers. The default type of floating constants remains double,
for compatibility with prior practice. Lower case £ and 1 are also allowed as suffixes.

Note that the run-time selection of the decimal point character by setlocale (§7.4.1) has no
effect on the syntax of C source text: the decimal point character is always period.

6.1.3.2 Integer constants

The rule that the default type of a decimal integer constant is either int, long, or unsigned
long, depending on which type is large enough to hold the value without overflow, simplifies
the use of constants.

The suffixes U and u have been added to specify unsigned numbers.

Unlike decimal constants, octal and hexadecimal constants too large to be ints are typed as
unsigned int (if within range of that type), since it is more likely that they represent bit

patterns or masks, which are generally best treated as unsigned, rather than "real" numbers.

Little support was expressed for the old practice of permitting the digits 8 and 9 in an octal
constant, so it has been dropped.

A proposal to add binary constants was rejected due to lack of precedent and insufficient utility.
Despite a concern that a lower-case L could be taken for the numeral one at the end of an
integral (or floating) literal, the Committee rejected proposals to remove this usage, primarily

on the grounds of sanctioning existing practice.

The rules given for typing integer constants were carefully worked out in accordance with the
Committee's deliberations on integral promotion rules (see §6.2.1.1).

QUIET CHANGE

Unsuffixed integer constants may have different types. In K&R, unsuffixed
~—--- decimal constants-greater than INT. MAX, and unsuffixed octal or hexadecimal

constants greater than UINT MAX are of type long.
6.1.3.3 Enumeration constants
Whereas an enumeration variable may have any integer type that correctly represents all its
values when widened to int, an enumeration constant is only usable as the value of an
expression. Hence its type is simply int. (See §6.1.2.5.)

6.1.3.4 Character constants

The'digits 8 and 9 are no longer permitted in octal escape sequences. (Cf. octal constants,
§6.13.2)) '

The alert escape sequence has been added (scc §5.2.2).
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Hexadecimal escape sequences, beginning with \x, have been adopted, with precedent in several
existing implementations. (Little sentiment was garnered for providing \X as well.) The escape
sequence extends to the first non-hex-digit character, thus providing the capability of expressing
any character constant no matter how large the type char is. String concatenation can be used
to specify a hex-digit character following a hexadecimal escape sequence:

II\XffII llfll ;
Gl ¢ RPEE LT TIAN I &

char al]
char b[]

These two initializations give a and b the same string value.

The Committee has chosen to reserve all lower case letters not currently used for future escape
sequences (undefined behavior). All other characters with no current meaning are left to the
implementor for extensions (implementation-defined behavior). No portable meaning is assigned
to multi-character constants or ones containing other than the mandated source character set.
(implementation-defined behavior).

The Committee considered proposals to add the character constant '\e' to represent the ASCII
ESC ('\033") character. This proposal was based upon the use of ESC as the initial character
of most control sequences in common terminal driving disciplines, such as ANSI X3.64.
However, this usage has no obvious counterpart in other popular character codes, such as
EBCDIC. A programmer merely wishing to avoid having to type \033 to represent the ESC
character in an ASCII/X3.64 environment, may, instead of writing

printf ("\033[10;10h%d\n", somevalue);

write:
#define ESC "\033"

printf( ESC "[10;10h%d\n", somevalue);

Notwithstanding the general rule that literal constants are non-negative 2, a character constant
containing one character is effectively preceded with a (char) cast and hence may yield a
negative value if plain char is represented the same as signed char. This simply reflects
widespread past practice and was deemed too dangerous to change.

QUIET CHANGE
A constant of the form '\078' is valid, but now has different meaning. It now

denotes a character constant whose value is the (implementation-defined)
combination of the values of the two characters \07 and '8'. In some

implementations the old meaning is the character whose code is 078 = 0100 = 64.
QUIET CHANGE

A constant of the form '\a' or '\x' now may have different meaning. The old

2is an expression: unary minus with operand 3.
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meaning, if any, was implementation dependent.
An L prefix distinguishes wide character constants. (See §5.2.1.2))

6.1.4 String literals

String literals are specified to be unmodifiable. This specification allows implementations to
share copies of strings with identical text, to place string literals in read-only memory, and
perform certain optimizations. However, string literals do not have the type array of const char,
in order to avoid the problems of pointer type checking, particularly with library functions, since
assigning a pointer to const char to a plain pointer to char is not valid. Those members of the
Committee who insisted that string literals should be modifiable were content to have this
practice designated a common extension (see G.S5.5).

Existing code which modifies string literals can be made strictly conforming by replacing the
string literal with an initialized static character array. For instance,

char *p, *make_temp(char *str);
TR
p = make_temp ("tempXXX") ;
/* make_temp overwrites the literal */
/* with a unigque name */

can be changed to:

char *p, *make_temp(char *str);

T i T

{ .
static char template[ ] = "tempXXX";
p = make_temp( template };

}

A long string can be continued across multiple lines by using the backslash-newline line
continuation, but this practice requires that the continuation of the string start in the first position
of theé next liie. To permit more flexible layout, and to solve some preprocessing problems (see
§6.8.3), the Committee introduced string literal concatenation. Two string literals in a row are
pasted together (with no null character in the middle) to make one combined string literal. This
addition to the C language allows a programmer to extend a string literal beyond the end of a
physical line without having to use the backslash-newline mechanism and thereby destroying the
indentation scheme of the program. An explicit concatenation operator was not introduced
because the concatenation is a lexical construct rather than a run-time operation.

without concatenation:

/* say the column is this wide */
alpha = "abcdefghijklm\
nopgrstuvwxyz" ;

with concatenation:
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/* say the column is this wide */
alpha = "abcdefghijklm"
"nopgrstuvwxyz";

QUIET CHANGE

A string of the form "078" is valid, but now has different meaning. (See §6.1.3.)
QUIET CHANGE

A string of the form "\a" or "\x" now has different meaning. (See §6.1.3.)
QUIET CHANGE

It is neither required nor forbidden that identical string literals be represented by
a single copy of the string in memory; a program depending upon either scheme
may behave differently.

An L prefix distinguishes wide string literals. A prefix (as opposed to suffix) notation was
adopted so that a translator can know at the start of the processing of a long string literal whether
it is dealing with ordinary or wide characters. (See §5.2.1.2.)

6.1.5 Operators

Assignment operators of the form =+, described as old fashioned even in K&R, have been
dropped.

The form += is now defined to be a single token, not two, so no white space is permitted within
it; no compelling case could be made for permitting such white space.

QUIET CHANGE

Expressions of the form x=-3 change meaning with the loss of the old-style
assignment operators.

The operator # has been added in preprocessing statements: within a #define it causes the
macro argument following to be converted to a string literal.

The operator ## has also been added in preprocessing statements: within a #define it causes
the tokens on either side to be pasted to make a single new token. See §6.8.3 for further
discussion of these preprocessing operators.

6.1.6 Punctuators

The punctuator . . . (ellipsis) has been added to denote a variable number of trailing arguments
in a function prototype. (See §6.5.4.3.)

The constraint that certain punctuators must occur in pairs (and the similar constraint on certain
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operators in §6.1.5) only applies after preprocessing. Syntactic constraints are checked during
syntactic analysis, and this follows preprocessing.

6.1.7 Header names

Header names in #include directives obey distinct tokenization rules; hence they are identified
as distinct tokens. Attempting to treat quote-enclosed header names as string literals creates a
contorted description of preprocessing, and the problems of treating angle-bracket-enclosed header
names as a sequence of C tokens is even more severe.

6.1.8 Preprocessing numbers

The notion of preprocessing numbers has been introduced to simplify the description of
preprocessing. It provides a means of talking about the tokenization of strings that look like
numbers, or initial substrings of numbers, prior to their semantic interpretation. In the interests
of keeping the description simple, occasional spurious forms are scanned as preprocessing
numbers - 0x123E+1 is a single token under the rules. The Committee felt that it was better
to tolerate such anomalies than burden the preprocessor with a more exact, and exacting, lexical
specification. It felt that this anomaly was no worse than the principle under which the
characters a+++++b are tokenized as a ++ ++ + b (an invalid expression), even though the
tokenization a ++ + ++ b would yield a syntactically correct expression. In both cases,
exercise of reasonable precaution in coding style avoids surprises.

6.1.9 Comments

The Committee considered proposals to allow comments to nest. The main argument for nesting
comments is that it would allow programmers to "comment out" code. The Committee rejected
this proposal on the grounds that comments should be used for adding documentation to a
program, and that preferable mechanisms already exist for source code exclusion. For example,

#1if O
/* this code is bracketed out because ... */
code_to_be_excluded() ;

ip i g ,#e_ndif, - . E s s = e

Preprocessing directives such as this prevent the enclosed code from being scanned by later
translation phases. Bracketed material can include comments and other, nested, regions of
bracketed code.

Another way of accomplishing these goals is with an if statement:
LE-A0) {
/* this code is bracketed out because ... */

code_to_be_excluded() ;

}

Many modern compilers will generate no code for this if statement.

6.2 Conversions
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6.2.1 Arithmetic operands
6.2.1.1  Characters and integers

Since the publication of K&R, a serious divergence has occurred among implementations of C
in the evolution of integral promotion rules. Implementations fall into two major camps, which
may be characterized as unsigned preserving and value preserving. The difference between these
approaches centers on the treatment of unsigned char and unsigned short, when
widened by the integral promotions, but the decision has an impact on the typing of constants
as well (see §6.1.3.2).

The unsigned preserving approach calls for promoting the two smaller unsigned types to
unsigned int. This is a simple rule, and yields a type which is independent of execution

environment.

The value preserving approach calls for promoting those types to signed int, if that type can
properly represent all the values of the original type, and otherwise for promoting those types to
unsigned int. Thus, if the execution environment represents short as something smaller
than int, unsigned short becomes int; otherwise it becomes unsigned int.

Both schemes give the same answer in the vast majority of cases, and both give the same
effective result in even more cases in implementations with twos-complement arithmetic and quiet
wraparound on signed overflow - that is, in most current implementations. In such
implementations, differences between the two only appear when these two conditions are both
true:

1. An expression involving an unsigned char or unsigned short produces
an int-wide result in which the sign bit is set: i.e., either a unary operation on
such a type, or a binary operation in which the other operand is an int or
"narrower” type.

p8 The result of the preceding expression is used in a context in which its signedness
is significant:

. sizeof (int) < sizeof(long) and it is in a context where it must
be widened to a long type, or

. it is the left operand of the right-shift operator (in an implementation
where this shift is defined as arithmetic), or

. it is either operand of /, %, <, <=, >, or >=,

In such circumstances a genuine ambiguity of interpretation arises. The result must be dubbed
questionably signed, since a case can be made for either the signed or unsigned interpretation.
Exactly the same ambiguity arises whenever an unsigned int confronts a signed int
across an operator, and the signed int has a negative value. (Neither scheme does any better,
or any worse, in resolving the ambiguity of this confrontation.) Suddenly, the negative signed
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int becomes a very large unsigned int, which may be surprising - or it may be exactly
what is desired by a knowledgeable programmer. Of course, all of these ambiguities can be
avoided by a judicious use of casts.

One of the important outcomes of exploring this problem is the understanding that high-quality
compilers might do well to look for such questionable code and offer (optional) diagnostics, and
that conscientious instructors might do well to warn programmers of the problems of implicit type
conversions.

The unsigned preserving rules greatly increase the number of situations where unsigned int
confronts signed int to yield a questionably signed result, whereas the value preserving rules
minimize such confrontations. Thus, the value preserving rules were considered to be safer for
the novice, or unwary, programmer. After much discussion, the Committee decided in favor of
value preserving rules, despite the fact that the UNIX C compilers had evolved in the direction
of unsigned preserving.

QUIET CHANGE

A program that depends upon unsigned preserving arithmetic conversions will
behave differently, probably without complaint. This is considered the most
serious semantic change made by the Committee to a widespread current practice.

The Standard clarifies that the integral promotion rules also apply to bit-fields.
6.2.1.2 Signed and unsigned integers

Precise rules are now provided for converting to and from unsigned integers. On a
twos-complement machine, the operation is still virtual (no change of representation is required),
but the rules are now stated independent of representation.

6.2.1.3 Floating and integral

~“There was strong -agreement that floating values should truncate toward zero when converted to
an integral type, the specification adopted in the Standard. Although the Base Document
permitted negative floating values to truncate away from zero, no Committee member knew of
current hardware that functions in such a manner.’

6.2.14 Floating types

The Standard, unlike the Base Document, does not require rounding in the double to float
conversion. Some widely used IEEE floating point processor chips control floating to integral
conversion with the same mode bits as for double-precision to single-precision conversion; since
truncation-toward-zero is the appropriate setting for C in the former case, it would be expensive
to require such implementations to round to f£loat.

3 o 2 .
We have since been informed of one such implementation.
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6.2.1.5 Usual arithmetic conversions

The rules in the Standard for these conversions are slight modifications of those in the Base
Document: the modifications accommodate the added types and the value preserving rules (see
§6.2.1.1). Explicit license has been added to perform calculations in a "wider" type than
absolutely necessary, since this can sometimes produce smaller and faster code (not to mention
the correct answer more often). Calculations can also be pertormed in a "narrower" type, by the
as if rule, so long as the same end result is obtained. Explicit casting can always be used to
obtain exactly the intermediate types required.

The Committee relaxed the requirement that £loat operands be converted to double. An
implementation may still choose to convert.

QUIET CHANGE

Expressions with £loat operands may now be computed at lower precision. The
Base Document specified that all floating point operations be done in double.

6.2.2  Other operands
6.2.2.1  Lvalues and function designators

A difference of opinion within the C community has centered around the meaning of [value, one
group considering an Ivalue to be any kind of object locator, another group holding that an lvalue
is meaningful on the left side of an assigning operator. The Committee has adopted the
definition of Ivalue as an object locator. The term modifiable Ivalue is used for the second of
the above concepts.

The role of array objects has been a classic source of confusion in C, in large part because of the
numerous contexts in which an array reference is converted to a pointer to its first element.
While this conversion neatly handles the semantics of subscripting, the fact that a[1] is itself
a modifiable lvalue while a is not has puzzled many students of the language. A more precise
description has therefore been incorporated in the Standard, in the hopes of combatting this
confusion.

6222 wvoid

The description of operators and expressions is simplified by saying that void yields a value,
with the understanding that the value has no representation, hence requires no storage.

6.2.2.3 Pointers

C has now been implemented on a wide range of architectures. While some of these
architectures feature uniform pointers which are the size of some integer type, maximally portable
code may not assume any necessary correspondence between different pointer types and the
integral types.

The use of void * ("pointer to void") as a generic object pointer type is an invention of the
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Committee. Adoption of this type was stimulated by the desire to specify function prototype
arguments that either quietly convert arbitrary pointers (as in fread) or complain if the
argument type does not exactly match (as in strcmp). Nothing is said about pointers to
functions, which may be incommensurate with object pointers and/or integers.

Since pointers and integers are now considered incommensurate, the only integer that can be
safely converted to a pointer is the constant 0. The result of converting any other integer to a
pointer is machine dependent.

Consequences of the treatment of pointer types in the Standard include.

. A pointer to void may be converted to a pointer to an object of any type.
. A pointer to any object of any type may be converted to a pointer to void.
. If a pointer to an object is converted to a pointer to void and back again to the

original pointer type, the result compares equal to original pointer.

. It is invalid to convert a pointer to an object of any type to a pointer to an object
of a different type without an explicit cast.

. Even with an explicit cast, it is invalid to convert a function pointer to an object
pointer or a pointer to void, or vice-versa.

. It is invalid to convert a pointer to a function of one type to a pointer to a
function of a different type without a cast.

. Pointers to functions that have different parameter-type information (including the
"old-style" absence of parameter-type information) are different types.

Implicit in the Standard is the notion of invalid pointers. In discussing pointers, the Standard
typically refers to "a pointer to an object" or "a pointer to a function" or "a null pointer." A
special case in address arithmetic allows for a. pointer to just past the end of an array. Any other
pointer is invalid. -

An invalid pointer might be created in several ways. An arbitrary value can be assigned (via a
cast) to a pointer variable. (This could even create a valid pointer, depending on the value.) A
pointer to an object becomes invalid if the memory containing the object is deallocated. Pointer
arithmetic can produce pointers outside the range of an array.

Regardless how an invalid pointer is created, any use of it yields undefined behavior. Even
assignment, comparison with a null pointer constant, or comparison with itself, might on some
Systems result in an exception.

Consider a hypothetical segmented architecture, on which pointers comprise a segment descriptor
and an offset. Suppose that segments are relatively small, so that large arrays are allocated in
multiple segments. While the segments are valid (allocated, mapped to real memory), the
hardware, operating system, or C implementation can make these multiple segments behave like
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a single object: pointer arithmetic and relational operators use the defined mapping to impose
the proper order on the elements of the array. Once the memory is deallocated, the mapping is
no longer guaranteed to exist; use of the segment descriptor might now cause an exception, or
the hardware addressing logic might return meaningless data.

6.3 Expressions

Several closely-related topics are involved in the precise specification of expression evaluation:
precedence, associativity, grouping, sequence points, agreement points, order of evaluation, and
interleaving. The latter three terms are discussed in §5.1.2.3.

The rules of precedence are encoded into the syntactic rules for each operator. For example, the
syntax for additive-expression includes the rule

additive-expression + multiplicative-expression

which implies that a+b*c parses as a+ (b*c). The rules of associativity are similarly encoded
into the syntactic rules. For example, the syntax for assignment-expression includes the rule

unary-expression assignment-operator assignm ent-expression
which implies that a=b=c parses as a= (b=c).

With rules of precedence and associativity thus embodied in the syntax rules, the Standard
specifies, in general, the grouping (association of operands with operators) in an expression.

The Base Document describes C as a language in which the operands of successive identical
commutative associative operators can be regrouped. The Committee has decided to remove this
license from the Standard, thus bringing C into accord with most other major high-level
languages.

This change was motivated primarily by the desire to make C more suitable for floating point
programming. Floating point arithmetic does not obey many of the mathematical rules that real
arithmetic does. For instance, the two expressions (a+b)+c and a+ (b+c) may well yield
different results: suppose that b is greater than 0, a equals -b, and c is positive but substantially
smaller than b. (That is, suppose ¢ /b is less than DBL_EPSILON.) Then (a+b)+c is 0+c,
or ¢, while a+(b+c) equals a+b, or 0. That is to say, floating point addition (and
multiplication) is not associative.

The Base Document's rule imposes a high cost on translation of numerical code to C. Much
numerical code is written in FORTRAN, which does provide a no-regrouping guarantee; indeed,
this is the normal semantic interpretation in most high-level languages other than C. The Base
Document's advice, "rewrite using explicit temporaries," is burdensome to those with tens or
hundreds of thousands of lines of code to convert, a conversion which in most other respects
could be done automatically.

Elimination of the regrouping rule does not in fact prohibit much regrouping of integer
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expressions. The bitwise logical operators can be arbitrarily regrouped, since any regrouping
gives the same result as if the expression had not been regrouped. This is also true of integer
addition and multiplication in implementations with twos-complement arithmetic and silent
wraparound on overflow. Indeed, in any implementation, regroupings which do not introduce
overflows behave as if no regrouping had occurred. (Results may also differ in such an
implementation if the expression as written results in overtlows: in such a case the behavior is
undefined, so any regrouping couldn't be any worse.)

The types of lvalues that may be used to access an object have been restricted so that an
optimizer is not required to make worst-case aliasing assumptions.

In practice, aliasing arises with the use of pointers. A contrived example to illustrate the issues
is

int a;

void f(int * D)

20
It is tempting to generate the call to g as if the source expression were g (1), but b might point
to a, so this optimization is not safe. On the other hand, consider

int a;
void f£( double * b )

{
=1

bas é.O;
(a);

Q *p

)

Again the optimization is incorrect only if b points to a. However, this would only have come
about if the'address of a were somewhere cast to (double*). The Committee has decided that
such dubious possibilities need not be allowed for.

In principle, then, aliasing only need be allowed for when the lvalues all have the same type.
In practice, the Committee has recognized certain prevalent exceptions:

. The lvalue types may differ in signedness. Inthe common range, a signed integral
type and its unsigned variant have the same representation; it was felt that an
appreciable body of existing code is not "strictly typed" in this area.

. Character pointer types are often used in the bytewise manipulation of objects;
a byte stored through such a character pointer may well end up in an object of any
type.

. A qualified version of the object's type, though formally a different type, provides
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the same interpretation of the value of the object.
Structure and union types also have problematic aliasing properties:

gtruect £1{ float 5 int 4;};:

void f( struct f£i * fip, int * ip )

{
static struct fi a = (2.0, 1};
*ip = 2;
*fip = a;
g(*ip);
*Fip = a;
*ip =2y
g(fip->i) ;
}

It is not safe to optimize the first call to g as g (2), or the second as g(1l), since the call to £
could quite legitimately have been

struct fi x;
£( &x, &x.1 );

These observations explain the other exception to the same-type principle.

6.3.1 Primary expressions

A primary expression may be void (parenthesized call to a function returning void), a function
designator (identifier or parenthesized function designator), an lvalue (identifier or parenthesized
lvalue), or simply a value expression. Constraints ensure that a void primary expression is no
part of a further expression, except that a void expression may be cast to void, may be the second
or third operand of a conditional operator, or may be an operand of a comma operator.

6.3.2 Postfix operators
6.3.2.1  Array subscripting

The Committee found no reason to disallow the symmetry that permits a[i] to be written as
ifa].

The syntax and semantics of multidimensional arrays follow logically from the definition of
arrays and the subscripting operation. The material in the Standard on multidimensional arrays
introduces no new language features, but clarifies the C treatment of this important abstract data

type.
6.3.2.2 Function calls

Pointers to functions may be used either as (*pf) () or as pf(). The latter construct, not
sanctioned in the Base Document, appears in some present versions of C, is unambiguous,
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invalidates no old code, and can be an important shorthand. The shorthand is uscful for packages
that present only one external name, which designates a structure full of pointers to objects and
functions: member functions can be called as graphics.open(file) instead of

(*graphics.open) (file).

The treatment of function designators can lead to some curious, but valid, sy ntactic forms. Given
the declarations:

o 5 6 EPRRE o o D LB B

then all of the following expressions are valid function calls:

(&E) () £0Q); )i
pf(); A*pE) L) i (**pE
The first expression on each line was discussed in the previous paragraph. The second is
conventional usage. All subsequent expressions take advantage of the implicit conversion of a
function designator to a pointer value, in nearly all expression contexts. The Committee saw no
real harm in allowing these forms; outlawing forms like (*£) (), while still permitting *a (for
int all), simply seemed more trouble than it was worth.

The rule for implicit declaration of functions has been rétained, but various past ambiguities have
been resolved by describing this usage in terms of a corresponding explicit declaration.

For compatibility with past practice, all argument promotions occur as described in the Base
Document in the absence of a prototype declaration, including the (not always desirable)
promotion of £loat to double. A prototype gives the implementor explicit license to pass a
float as a float rather than a double, or a char as a char rather than an int, or an
argument in a special register, etc. If the definition of a function in the presence of a prototype
would cause the function to expect other than the default promotion types, then clearly the calls
to this function must be made in the presence of a compatible prototype.

To. clarify. this and- other relationships between function calls and function definitions, the
Standard describes an equivalence between a function call or definition which does occur in the
presence of a prototype and one that does not.

Thus a prototyped function with no "narrow" types and no variable argument list must be callable
in the absence of a prototype, since the types actually passed in a call are equivalent to the
explicit function definition prototype. This constraint is necessary to retain compatibility with
past usage of library functions. (See §7.1.3.)

This provision constrains the latitude of an implementor because the parameter passing
conventions of prototype and non-prototype function calls must be the same for functions
accepting a fixed number of arguments. Implementations in environments where efficient
function calling mechanisms are available must, in effect, use the efficient calling sequence either
in all "fixed argument list" calls or in none. Since efficient calling sequences often do not allow
for variable argument functions, the fixed part of a variable argument list may be passed in a
completely different fashion than in a fixed argument list with the same number and type of
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arguments.

The existing practice of omitting trailing parameters in a call if it is known that the parameters
will not be used has consistently been discouraged. Since omission of such parameters creates
an inequivalence between the call and the declaration, the behavior in such cases is undefined.
and a maximally portable program will avoid this usage. Hence an implementation is free to
implement a function calling mechanism for fixed argument lists which would (perhaps fatally)
fail if the wrong number or type of arguments were to be provided.

Strictly speaking then, calls to printf are obliged to be in the scope of a prototype (as by
#include <stdio.h>), but implementations are not obliged to fail on such a lapse. (The
behavior is undefined).

6.3.2.3  Structure and union members
Since the language now permits structure parameters, structure assignment and functions returning
structures, the concept of a structure expression is now part of the C language. A structure value

can be produced by an assignment, by a function call, by a comma operator expression or by a
conditional operator expression:

%sl:sZ

In these cases, the result is not an lvalue; hence it cannot be assigned to nor can its address be
taken.

Similarly, x .y is an lvalue only if x is an Ivalue. Thus none of the following valid expressions
are lvalues:
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Even when x.y is an lvalue, it may not be modifiable:

consti'struct 'S w17
g1 fa =3k /* invalid */

The Standard requires that an implementation diagnose a constraint error in the case that the
member of a structure or union designated by the identifier following a member selection
operator (. or ->) does not appear in the type of the structure or union designated by the first
operand. The Base Document is unclear on this point.

6.32.4 Postfix increment and decrement operators

The Committee has not endorsed the practice in some implementations of considering
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post-increment and post-decrement operator expressions to be lvalues.
6.3.3 Unary operators

6.3.3.1 Prefix increment and decrement operators See §6.3.2.4.
6.3.3.2 = Address and indirection operators

Some implementations have not allowed the & operator to be applied to an array or a function.
(The construct was permitted in early versions of C, then later made optional.) The Committee
has endorsed the construct since it is unambiguous, and since data abstraction is enhanced by
allowing the important & operator to apply uniformly to any addressable entity.

6.3.3.3  Unary arithmetic operators

Unary plus was adopted by the Committee trom several implementations, for symmetry with
unary minus.

The bitwise complement operator ~, and the other bitwise operators, have now been defined
arithmetically for unsigned operands. Such operations are well-defined because of the restriction
of integral representations to "binary numeration systems." (See §6.1.2.5.)

6334 The sizeof operator

It is fundamental to the correct usage of functions such as malloc and fread that sizeof
(char) be exactly one. In practice, this means that a byte in C terms is the smallest unit of
storage, even if this unit is 36 bits wide; and all objects are comprised of an integral number of
these smallest units. (See §1.6.)

The Standard, like the Base Document, defines the result of the sizeof operator to be a
constant of an unsigned integral type. Common implementations, and common usage, have often
presumed that the resulting type is int. Old code that depends on this behavior has never been
portable to implementations that define the result to be a type other than int. The Committee
did not feel it was proper to change the language to protect incorrect code.

The type of sizeof, whatever it is, is published (in the library header <stddef.h>) as
size_t, since it is useful for the programmer to be able to refer to this type. This requirement
implicitly restricts size_t to be a synonym for an existing unsigned integer type, thus quashing
any notion that the largest declarable object might be too big to span even with an unsigned
long. This also restricts the maximum number of elements that may be declared in an array,
since for any array a of N elements,

N == sizeof(a)/sizeof(a[0])

Thus size_t is also a convenient type for array sizes, and is so used in several library
functions. (See §7.9.8.1, §7.9.8.2, §7.10.3.1, etc.)

The Standard specifies that the argument to sizeof can be any value except a bit ficld, a void
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expression, or a function designator. This generality allows for interesting environmental
enquiries; given the declarations

int *p, *q;
these expressions determine the size of the type used for ...

sizeof (F(x)) /* ... F's return value */
sizeof (p-q) /* ... pointer difference */

(The last type is of course available as ptrdiff_t in <stddef.h>))
6.3.4  Cast operators
A (void) cast is explicitly permitted, more for documentation than for utility.

Nothing portable can be said about casting integers to pointers,or vice versa, since the two are
now incommensurate.

The definition of these conversions adopted in the Standard resembles that in the Base Document,
but with several significant differences. The Base Document required that a pointer successfully
converted to an integer must be guaranteed to be convertible back to the same pointer. This
integer-to-pointer conversion is now specified as implementation-defined. While a high-quality
implementation would preserve the same address value whenever possible, it was considered
impractical to require that the identical representation be preserved. The Committee noted that,
on some current machine implementations, identical representations are required for efficient code
generation for pointer comparisons and arithmetic operations.

The conversion of the integer constant 0 to a pointer is defined similarly to the Base Document.
The resulting pointer must not address any object, must appear to be equal to an integer value
of 0, and may be assigned to or compared for equality with any other pointer. This definition
does not necessarily imply a representation by a bit pattern of all zeros: an implementation could,
for instance, use some address which causes a hardware trap when dereferenced.

The type char must have the least strict alignment of any type, so char * has often been used
as a portable type for representing arbitrary object pointers. This usage creates an unfortunate
confusion between the ideas of arbitrary pointer and character or string pointer. The new type
void *, which has the same representation as char *, is therefore preferable for arbitrary
pointers.

It is possible to cast a pointer of some qualified type (§6.5.3) to an unqualified version of that
type. Since the qualifier defines some special access or aliasing property, however, any

dereference of the cast pointer results in undefined behavior.

The Standard (§6.2.1.4) requires that a cast of one floating point type to another (e.g., double
to float) results in an actual conversion. .

6.3.5 Multiplicative operators
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There was considerable sentiment for giving more portable semantics to division (and hence
remainder) by specifying some way of giving less machine dependent results for negative
operands. Few Committee members wanted to require this by default, lest existing fast code be
gravely slowed. One suggestion was to make signed int a type distinct from plain int, and
require better-defined semantics for signed int division and remainder. This suggestion was
opposed on the grounds that effectively adding several types would have consequences out of
proportion to the benefit to be obtained; the Committee twice rejected this approach. Instead the
Committee has adopted new library functions div and 1div which produce integral quotient
and remainder with well-defined sign semantics. (See §7.10.6.2, §7.10.6.3.)

The Committee rejected extending the % operator to work on floating types; such usage would
duplicate the facility provided by fmod. (See §7.5.6.5.)

6.3.6 Additive operators

As with the sizeof operator, implementations have taken different approaches in defining a
type for the difference between two pointers (see §6.3.3.4). It is important that this type be
signed, in order to obtain proper algebraic ordering when dealing with pointers within the same
array. However, the magnitude of a pointer difference can be as large as the size of the largest
object that can be declared. (And since that is an unsigned type, the difference between two
pointers may cause an overflow.)

The type of pointer minus pointer is defined to be int in K&R. The Standard defines the result
of this operation to be a signed integer, the size of which is implementation-defined. The type
is published as ptrdiff_t, in the standard header <stddef.h>. Old code recompiled by a
conforming compiler may no longer work if the implementation defines the result of such an
operation to be a type other than int and if the program depended on the result to be of type
int. This behavior was considered by the Committee to be correctable. Overflow was
considered not to break old code since it was undefined by K&R. Mismatch of types between
actual and formal argument declarations is correctable by including a properly defined function
prototype in the scope of the function invocation.

An important endorsement of widespread practice is the requirement that a pointer can always
be incremented to just past the end of an array, with no fear of overflow or wraparound:

SOMETYPE array[SPAN];
o By itk
for (p = &array[0]; p < &array[SPAN]; p++)

This stipulation merely requires that every object be followed by one byte whose address is
representable. That byte can be the first byte of the next object declared for all but the last
object located in a contiguous segment of memory. (In the example, the address &array [ SPAN]
must address a byte following the highest element of array.) Since the pointer expression p+1
need not (and should not) be dereferenced, it is unnecessary to leave room for a complete object
of size sizeof(*p).

In the case of p-1, on the other hand, an entire object would have to be allocated prior to the
array of objects that p traverses, so decrement loops that run off the bottom of an array may fail.
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This restriction allows segmented architectures, for instance, to place objects at the start of a
range of addressable memory.

6.3.7 Bitwise shift operators
See §6.3.3.3 for a discussion of the arithmetic definition of these operators.

The description of shift operators in K&R suggests that shifting by a 1ong count should force
the left operand to be widened to 1ong before being shifted. A more intuitive practice, endorsed
by the Committee, is that the type of the shift count has no bearing on the type of the result.

QUIET CHANGE
Shifting by a long count no longer coerces the shifted operand to long.

The Committee has affirmed the freedom in implementation granted by the Base Document in
not requiring the signed right shift operation to sign extend, since such a requirement might slow
down fast code and since the usefulness of sign extended shifts is marginal. (Shifting a negative
twos-complement integer arithmetically right one place is not the same as dividing by two!)

6.3.8 Relational operators

For an explanation of why the pointer comparison of the object pointer P with the pointer
expression P+1 is always safe, see Rationale §6.3.6.

6.3.9 Equality operators

The Committee considered, on more than one occasion, permitting comparison of structures for
equality. Such proposals foundered on the problem of holes in structures. A byte-wise
comparison of two structures would require that the holes assuredly be set to zero so that all
holes would compare equal, a difficult task for automatic or dynamically allocated variables.
(The possibility of union-type elements in a structure raises insuperable problems with this
approach.) Otherwise the implementation would have to be prepared to break a structure
comparison into an arbitrary number of member comparisons; a seemingly simple expression
could thus expand into a substantial stretch of code, which is contrary to the spirit of C.

In pointer comparisons, one of the operands may be of type void *. In particular, this allows
NULL, which can be defined as (void *)O0, to be compared to any object pointer.

6.3.10 Bitwise AND operator
See §6.3.3.3 for a discussion of the arithmetic definition of the bitwise operators.

6.3.11 Bitwise exclusive OR operator

See §6.3.3.3.

6.3.12  Bitwise inclusive OR operator
See §6.3.3.3.
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6.3.13 Logical AND operator
6.3.14 Logical OR operator
6.3.15 Conditional operator

The syntactic restrictions on the middle operand of the conditional operator have been relaxed
to include more than just logical-OR-expression: several extant implementations have adopted this
practice.

The type of a conditional operator expression can be void, a structure, or a union; most other
operators do not deal with such types. The rules for balancing type between pointer and integer
have, however, been tightened, since now only the constant 0 can portably be coerced to pointer.

The Standard allows one of the second or third operands to be of type void *, if the other is
a pointer type. Since the result of such a conditional expression is void *, an appropriate cast
must be used.

6.3.16 Assignment operators

Certain syntactic forms of assignment operators have been discontinued, and others tightened up
(see §6.1.9).

The storage assignment need not take place until the next sequence point. (A restriction in earlier
drafts that the storage take place before the value of the expression is used has been removed.)
As a consequence, a straightforward syntactic test for ambiguous expressions can be stated.
Some definitions: A side effect is a storage to any data object, or a read of a volatile object.
An ambiguous expression is one whose value depends upon the order in which side effects are
evaluated. A pure function is one with no side effects; an impure function is any other. A
sequenced expression is one whose major operator defines a sequence point: comma, &&, | |, or
conditional operator; an unsequenced expression is any other. We can then say that an
unsequenced expression is ambiguous if more. than one operand invokes any impure function, or
if more than one operand contains an lvalue referencing the same object and one or more
operands specify a side-effect to that object. Further, any expression containing an ambiguous
expression is ambiguous.

The optimization rules for factoring out assignments can also be stated. Let X(i,S) be an
expression which contains no impure functions or sequenced operators, and suppose that X
contains a storage S(i) to i. The storage expressions, and related expressions, are

S(i): Sval (i) : Snew (1) :
++1 i+l i+1

i+ i i+l

--1i i-1 i-1

i-- i i-1
i=y Y y

i op= v iopy i1o0py

Then X(1,S) can be replaced by either
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(T*="1,""1 = Snew (i), 'X(T, 6 sval))
or

¢ Ktdigvaly Vi =2 'Snewi(i) - T)

provided that neither 1 nor y have side effects themselves.

6.3.16.1  Simple assignment

Structure assignment has been added: its use was foreshadowed even in K&R, and many existing
implementations already support it.

The rules for type compatibility in assignment also apply to argument compatibility between
actual argument expressions and their corresponding argument types in a function prototype.

An implementation need not correctly perform an assignment between overlapping operands.
Overlapping operands occur most naturally in a union, where assigning one field to another is
often desirable to effect a type conversion in place; the assignment may well work properly in
all simple cases, but it is not maximally portable. Maximally portable code should use a
temporary variable as an intermediate in such an assignment.

6.3.16.2 Compound assignment

The importance of requiring that the left operand 1value be evaluated only once is not a
question of efficiency, although that is one compelling reason for using the compound
assignment operators. Rather, it is to assure that any side effects of evaluating the left operand
are predictable.

6.3.17 Comma operator

The left operand of a comma operator may be void, since only the right-hand operator is
relevant to the type of the expression.

The example in the Standard clarifies that commas separating arguments "bind" tighter than the
comma operator in expressions.

6.4 Constant Expressions
To clarify existing practice, several varieties of constant expression have been identified:

The expression following #1if (§6.8.1) must expand to integer constants,character constants, the
special operator defined, and operators with no side effects. No environmental inquiries can
be made, since all arithmetic is done as translate-time (signed or unsigned) long integers, and
casts are disallowed. The restriction to translate-time arithmetic frees an implementation from
having to perform execution-environment arithmetic in the host environment. It does not preclude
an implementation from doing so - the implementation may simply define "translate-time
arithmetic" to be that of the target. Unsigned arithmetic is performed in these expressions
(according to the default widening rules) when unsigned operands are involved; this rule allows
for unsurprising arithmetic involving very large constants (i.e, those whose type is unsigned
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long) since they cannot be represented as long or constants explicitly marked as unsigned.

Character constants, when evaluated in #if expressions, may be interpreted in the source
character set, the execution character set, or some other implementation-defined character set.
This latitude reflects the diversity of existing practice, especially in cross-compilers.

An i’ntegral constant expression must involve only numbers knowable at translate time, and
operators with no side effects. Casts and the sizeof operator may be used to interrogate the
execution environment.

Static initializers include integral constant expressions, along with floating constants and simple
addressing expressions. An implementation must accept arbitrary expressions involving floating
and integral numbers and side-effect-free operators in arithmetic initializers, but it is at liberty
to turn such initializers into executable code which is invoked prior to program startup (see
§5.1.2.2); this scheme might impose some requirements on linkers or runtime library code in
some implementations.

The translation environment must not produce a less accurate value for a floating-point initializer
than the execution environment, but it is at liberty to do better. Thus a static initializer may well
be slightly different than the same expression computed at execution time. However, while
implementations are certainly permitted to produce exactly the same result in translation and
execution environments, requiring this was deemed to be an intolerable burden on many
cross-compilers.

QUIET CHANGE

A program that uses #1f expressions to determine properties of the execution
environment may now get different answers.

6.5 Declarations
The Committee decided that empty declarations are invalid (except for a special case with tags,
see §6.5.2.3, and the case of enumerations such as enum {zero, one};, see §6.5.2.2). While
many seemingly silly constructs are tolerated in other parts of the language in the interest of
facilitating the machine generation of C, empty declarations were considered sufficiently easy
to avoid.

The practice of placing the storage class specifier other than first in a declaration has been
branded as obsolescent (See §6.9.3.) The Committee feels it desirable to rule out such constructs
as
enum { aaa, aab,
/* etc */
zzy, zzz } typedef a2z;

in some future standard.
6.5.1 Storage-class specifiers
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Because the address of a register variable cannot be taken, objects of storage class
register effectively exist in a space distinct from other objects. (Functions occupy yet a
third address space). This makes them candidates for optimal placement, the usual reason for
declaring registers, but it also makes them candidates for more aggressive optimization.

The practice of representing register variables as wider types (as when register char is
quietly changed to register int) is no longer acceptable.

6.5.2 Type specifiers

Several new type specifiers have been added: signed, enum, and void. long float has
been retired and long double has been added, along with a plethora of integer types. The
Committee's reasons for each of these additions, and the one deletion, are given in section
§6.1.2.5 of this document.

6.5.2.1  Structure and union specifiers

Three types of bit fields are now defined: "plain" int calls for implementation-defined
signedness (as in the Base Document), signed int calls for assuredly signed fields, and
unsigned int calls for unsigned fields. The old constraints on bit fields crossing word
boundaries have been relaxed, since so many properties of bit tields are implementation
dependent anyway.

The layout of structures is determined only to a limited extent:

. no hole may occur at the beginning;
. members occupy increasing storage addresses; and
¢ if necessary, a hole is placed on the end to make the structure big enough to pack

tightly into arrays and maintain proper alignment.

Since some existing implementations, in the interest of enhanced access time, leave internal
holes larger than absolutely necessary, it is not clear that a portable deterministic method can
be given for traversing a structure field by field.

To clarify what is meant by the notion that "all the fields of union occupy the same storage,"
the Standard specifies that a pointer to a union, when suitably cast, points to each member (or,
in the case of a bit-field member, to the storage unit containing the bit field).

6.5.2.2  Enumeration specifiers

6.5.23 Tags

As with all block structured languages that also permit forward references, C has a problem with

structure and union tags. If one wants to declare, within a block, two mutually referencing
structures, one must write something like:
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struct xe{lostpuctay IFpis /Rdlorud/ TR
struct . ¥ struect ®dddsoA* s A o)

But if struct y is already defined in a containing block, the first field of struct x will
refer to the older declaration.

Thus special semantics has been given to the form:

struct vy;

It now hides the outer declaration of y, and "opens" a new instance in the current block.
QUIET CHANGE
The empty declaration struct x; is no longer innocuous.
6.5.3 Type qualifiers

The Committee has added to C two rype qualifiers: const and volatile. Individually and
in combination they specify the assumptions a compiler can and must make when accessing an
object through an lvalue.

The syntax and semantics of const were adapted from C++; the concept itself has appeared
in other languages. volatile is aninvention of the Committee; it follows the syntactic model
of const.

Type qualifiers were introduced in part to provide greater control over optimization. Several
important optimization techniques are based on the principle of "cacheing": under certain
circumstances the compiler can remember the last value accessed (read or written) from a
location, and use this retained value the next time that location is read. (The memory, or
“cache", is typically a hardware register.) If this memory is a machine register, for instance, the
code can be smaller and faster using the register rather than accessing external memory.

The basic qualifiers can be characterized by the restrictions they impose on access and cacheing:

const No writes through this Ivalue. In the absence of this qualifier, writes may occur
through this lvalue.

volatile No cacheing through this lvalue: each operation in the abstract semantics must be
performed. (That is, no cacheing assumptions may be made, since the location is not
guaranteed to contain any previous value.) In the absence of this qualifier, the contents
of the designated location may be assumed to be unchanged (except for possible
aliasing.)

A translator design with no cacheing optimizations can effectively ignore the type qualifiers,
except insofar as they affect assignment compatibility.

It would have been possible, of course, to specify a nonconst keyword instead of const, or
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nonvolatile instead of volatile. The senses of these concepts in the Standard were
chosen to assure that the default, unqualified, case was the most common, and that it
corresponded most clearly to traditional practice in the use of lvalue expressions.

Four combinations of the two qualifiers is possible; each defines a useful set of lvalue
properties. The next several paragraphs describe typical uses of these qualifiers.

The translator may assume, for an unqualified lvalue, that it may read or write the referenced
object, that the value of this object cannot be changed except by explicitly programmed actions
in the current thread of control, but that other lvalue expressions could reference the same
object.

const is specified in such a way that an implementation is at liberty to put const objects in
read-only storage, and is encouraged to diagnose obvious attempts to modify them, but is not
required to track down all the subtle ways that such checking can be subverted. If a function
parameter is declared const, then the referenced object is not changed (through that lvalue) in
the body of the function - the parameter is read-only.

A static volatile object is an appropriate model for a memory-mapped /O register.
Implementors of C translators should take into account relevant hardware details on the target
systems when implementing accesses to volatile objects. For instance, the hardware logic of a
system may require that a two-byte memory-mapped register not be accessed with byte
operations; a compiler for such a system would have to assure that no such instructions were
generated, even if the source code only accesses one byte of the register. Whether
read-modify-write instructions can be used on such device registers must also be considered.
Whatever decisions are adopted on such issues must be documented, as volatile access is
implementation-defined. A volatile object is an appropriate model for a variable shared
among multiple