Document Number: WG14 N#78/X3J11 45-677

C9X Revision Proposal

Title: New Machine Characteristics macros
Author: David R. Tribble
Author Affiliation: Self
Postal Address: 6004 Cave River Dr.
Plano, TX 75093-6951
Usa
E-mail Address: drt@wcwcen.wf.com
Telephone Number: +1 214 964 1720 CST
Fax Number: :
Sponsor:
Date: 1995-05-08
Proposal Category:
___ Editorial change/non-normative contribution
___ Correction
X New feature
Addition to obsolescent feature list
Addition to Future Directions
___ Other (please specify)
Area of Standard Affected:
___ Environment
Language
Preprocessor
___ Library
X_ Macro/typedef/tag name
| "Punction
X _Header
__ Other (please specify)
Prior Art: None.
Target Audience: Programmers and configuration managers who
port C programs to several platforms.
Related Documents (if any):
Proposal Attached: X Yes __ No, but what’s your interest?
Abstract: The task of writing portable code for several
platforms is easier in a language like C. Information
is available (from header files like <limits.h>) that
allow programs to be written for different CPUs.
However, more information would be useful. Such info
would specify machine (CPU) characteristics, operating
system info, and compiler info.

=== ================= Cover Sheet ends here === ========

PROPOSAL

New constants (preprocessor macros) will be added to the standard
header files which specify characteristics of the implementation,
including the compiler, the operating system, and the underlying CPU
hardware.

RATIONALE

Q provides a good fra@ework for writing very portable code (despite
1ts reputation for being a ‘'‘low-level’’ language). Information

b

contained in the "<limits.hs>" and "<float.h>" headers allows programs
to be written with conditionally compiled code to address platform
differences, and thus be very portable.

However, each implementation of C and each CPU architecture has
characteristics that make it sufficiently different from other
implementations, making things difficult for programmers to produce
truly portable code. Some specification information just isn’t
available to programs; this information typically must be supplied at
compile time, either through command line options to the compiler or
by editing certain #include files. It would be nice if information
about these characteristics was available in a standard way, so that
code could be aware of and make allowances for the differences.

The classic example of an implementation-specific characteristic is
byte ordering within words (i.e., big-endian versus little-endian) .
This information is deducible programmatically, but it would be far
more useful to have this available to the program in the form of a

constant or data structure in a standard header file.

IMPLEMENTATION

The addition of new constants (macros) in the standard header files
which specify the implementation-specific characteristics of the
compiler, operating system, and CPU architecture, would give the
programmer’s code enough knowledge so that it could make whatever
allowances are necessary to make it port and run correctly on a wide
variety of machines. This would also allow code generating programs
that produce C code to tailor the generation to the target machine.

The constants would be #defined macro names, and would begin with an
underscore prefix (' ') (since names with leading underscores are
reserved for each implementation [7.1.3]). A required set of names
would be delineated for each header file, while allowing implementors
to add extra constants to the headers.

A program can then #include the appropriate header(s), and use the
constants. The program can also test for certain features values
using ‘#if’ directives. A program can test for the presence of a
feature in addition to using the specific feature’s actual value.

Unknown or inapplicable characteristics would be coded as zero (0) or
empty string ("") values, or not be #defined at all.

NEW CONSTANTS
The header files affected are:

<float.h>
<limits.h>

Additions to each header are described below.
[If adding the new constants to existing standard header files is
considered ill-advised, the alternative is to define new header files

which contain the new functions, such as ‘<cpu.h>’, ‘<os.h>’, and
‘<compiler.h>'.]

CPU-SPECIFIC CONSTANTS

The <limits.h> header would contain constants describing
characteristics of the target CPU, such as word sizes, byte order,

data type alignment restrictions, etc.
constants defining the name (type) of the CPU and the name of the CPU

manufacturer

The new constants

/* CPU type */

#define _CPU_NAME
#define _CPU FAMILY
_CPU_MOD
_CPU_VERS
_CPU_VENDOR

#define
#define
#define

(vendor) .

/* Bit/byte/word order */

##tdefine
#define

#define
#define
#define

_ORD_BIG
“ORD_LITTLE

_ORD_BITF HL
_ORD_BYTE HL
_“ORD_WORD_HL

/* Data type bit sizes */

#define _BITS_BITF MIN
#idefine _BITS BITF MAX
#define _BITS CHAR
#define _BITS SHRT
#define BITS INT
#define BITS LONG
#define BITS FLT
#define BITS DBL
#define BITS LDBL
#define BITS PTR
#define _BITS ADDR

/* Data type alignments

#define
#define

#define
#define

/* Data

#define
#define

Optional constants would be added b
peculiar to the hardware.

_ALIGN_CHAR
_ALIGN_SHRT
#define _ALIGN INT
#define _ALIGN LONG
#define _ALIGN FLT
#define _ALIGN DBL
_ALIGN_LDBL
_ALIGN_PTR

type signed-ness */

_UBITF
“UCHAR

"iAPX/386"
" iAPX]

n DX2 n
"1.0.00"
"Intel"

0 /*
1 /*
0 /*
0 /*
0 /*
8 /*
32 /*
8 /*
16 /*
16 /*
32 /*
32 /*
64 /*
80 /*
16 /*
16 /*
*/

1 /*
2 /*
2 /*
4 /*
4 /*
8 /*
4 /*
2 /*
0 /*
0 /*

It would also contain

(with example values) are:

/* Name/type
/* Family

/* Modification

/* Version

/* Vendor name

Big-endian
Little-endian

Bitfield £fill order
Byte order within shorts

Word order within longs

Min bits in bitfield */
Max bits in bitfield */

Char
Short
Int
Long

Float
Double

L4
oF 4
o
*/

*/
*

Long double */

Pointer

*f

Address range*/

Char
Short
Int
Long
Float
Double

Long double */

Pointer

Plain bitfield is unsigned
Plain char is unsigned

*/
£/

Y implementors for characteristics

£

For example, MS-DOS programs running on 16-bit Intel 8086 CPUs, with
its segmented addressing, might include constants such as:

#define BITS_NPTR 16 /* Near pointer */
#define _BITS_FPTR 32 /* Far pointer */
#define _BITS_NADDR 16 /* Near address range */
#define BITS_FADDR 16 /* Far address range */
#define ALIGN_NPTR 2 /* Near pointer */
#define _ALIGN_FPTR 2 /* Far pointer */

As another example, compilers that supported a 64-bit ‘long long int’
data type would add:

#define ORD_LONG_HL 0 /* Word order within long long */
#define BITS_LLONG 64 /* Long long */
#define _ALIGN_LLONG 4 /* Long long */

Another example: operating systems with character sets other than
7-bit ASCII, such as 8-bit EBCDIC:

#define UCHAR 1 /* Plain char is unsigned */

FLOATING-POINT CONSTANTS

Additions to the existing header file <float.h> [5.2.4.2.2] include
constants specifying floating-point representations for infinity,
denormalized values, IEEE compliance, etc.

These constants would be defined as true (1) or false (0).

The new constants (with example values) are:

/* IEEE-compliant floating-point formats */

#define FLT_ IEEE 1 /* Is IEEE compliant */

#define DBL_IEEE 1
#define LDBL_IEEE 1

/* Floating-point infinity values */

#define
#define
#define

#define
#define
#define

FLT INF
DBL_INF
LDBL_INF

FLT NINF
DBL_NINF

LDBL_NINF

ks
1
1

1
1
1

/* Has infinity */

/* Has negative infinity */

/* Floating-point not-a-number values */

#define

FLT NAN

#define DBL_NAN
#define LDBL_NAN

1
I
34

/* Has NaN */

/* Floating-point denormals */

#define FLT DENORM 1 /* Has denormals */

#define DBL_DENORM 1
#define LDBL_DENORM 1
OPERATING SYSTEM-SPECIFIC CONSTANTS

The <limits.h> header contains constants that specify characteristics
about the target operating system, including the name, vendor, date
and time it was built/released, etc.

The new constants (with example values) are:

/* Operating system info */

#define _OS_NAME "Unix" /* Name */
#define OS_VERS "5.4.01" /* Version */
#define OS_REL 5 /* Release */
#fdefine _OS_LEV 4 /* Level */
#tdefine OS UPD 1 /* Update */
##define OS DATE "DD Mon YYYY" /* Release date */
#define OS TIME "HH:MM:SS" /* Release time */
#define OS VENDOR "Company" /* Vendor name */
#define OS_ASCII 1 /* Uses ASCII */
Other character set constants might include:
#define _OS_EBCDIC ! /* EBCDIC * /
#define LO8 IS0646 1 /* ISO 646 * /
#define OS IS010646 3l /* ISO 10646 */
#define OS “JIS 1 /* JIS ASCII */
#define OS EUC 1 /* EUC ASCII */
#define OS UNICODE 1 /* Unicode */

[This is tricky.

How does an operating

system indicate which

character set it uses with a simple constant?]

COMPILER-SPECIFIC CONSTANTS

The <limits.h> header contains constants that specify information
about the compiler, including the version number, vendor, date and

time it was built/released,

compiler limitations,

etc.

Typical contents are:

/* Compiler info */

#define
#define
#tdefine
#define
#define
#define
#define
#define
#define
#define
#define

_COMPILER_NAME
COMPILER ~ VERS
COMPILER REL
COMPILER _LEV
COMPILER ~UPD
COMPILER _DATE
COMPILER TIME
COMPILER ~ VENDOR
COMPILER LANG
COMPILER _HOSTED
COMPILER CROSS

"GNU cC"
"1.2.03"

1
2
3

etc.

"DD Mon CCYY"

"HH:MM:SS"
"Company"
198910L

1
0

/* Name

/* Version

/* Release

/* Level

/* Update

/* Build date
/* Build time
/* Vendor name
/* C std vers,

It also contains preprocessor and
such as the maximum levels of nested #includes,

A
o
d
¥
*/

/* Is hosted environment*/

/* Is cross-compiler

*y

6y

/* Preprocessor and source code limits

[5.2.4.1] */

#define SOURCE_IFS 8 /* Max nested #ifs */
#define SOURCE_MPARMS 31 /* Max func macro parms * /
#define SOURCE_WIDTH 509 /* Max chars per line */
#define SOURCE_STRING 509 /* Max chars per string const */
#define ~SOURCE_INCLUDES 8 /* Max nested #includes */
#define ~SOURCE_STMT it /* Max stmt nesting levels */
#tdefine SOURCE " TYPES 12 /* Max declarators per type */
#define SOURCE " DECLS 31 /* Max nested declarators

#define SOURCE__ " EXPR 32 /* Max nested expr /
#define SOURCE IDENT 31 /* Max significant chars in name*/
#define SOURCE “EXTERNID 6 /* Max signif chars in extern * /
#define ~SOURCE_EXTERNS 511 /* Max extern names per file */
#define ~SOURCE_BLOCKID 13 /* Max names in a block */
#define SOURCE MACROS 1024 /* Max macros per file */
#define ~SOURCE_FPARMS 31 /* Max func parms */
#define SOURCE_ “DATA 32767 /* Max bytes in an object */
#define ~SOURCE_CASES 257 /* Max case labels * /
#define SOURCE " MEMBS 127 /* Max struct members */
#define SOURCE T ENUMS 127 /* Max enum constants per tag */
#tdefine SOURCE STRUCTS 15 /* Max nested structs */

/*

The ' COMPILER_LANG’ value specifies the C language standard
supported by the compiler. It is encoded as ‘'YYYYMM’ for year and
month numbers, and is a long int value.

Implementations that have no practical upper limit on a given value
would #define the corresponding macro to be zero.

CONSTRAINTS

While it is possible to #define these constants to something other
than a simple numeric or string literal, such as a library function
call, it is preferable to constrain the definitions to simple
constants.

One reason for this is so that programs can use the constants for

conditionally compiled code (as operands of #if expressions), which
require values to be resolvable during the preprocessing phase.

For example:

Integer type with at least 16 bits */

#if BITS_SHRT >= 16
typedef signed short intle;

typedef unsigned short uintlé;
#else

typedef signed int intl6;

typedef unsigned int uintile;
#endif

/* Integer type with at

least 32 bits */

bl

#$if BITS_INT >= 32

typedef signed int
typedef unsigned int

#felse

typedef signed long

typedef unsigned long

#endif

Another example:
/* hton() -- Convert
extern int hton(int
#if _ORD_BYTE_HL
#define hton(i) (i)
#endif
/* lton() -- Convert
extern int lton(int
#if ORD WORD HL
#define lton (i) (i)
#endif

Another reason for constraining the macros to simple constants is to
allow for the declaration of variables that are defined in terms of,
, one or more of the constants

or initialized to
the macros are fu

For example:

static const char
static const char
static const char
static const char

And yet another reason for constraining the macros is for efficiency
(i.e., don’t incur the overhead of a function call if it’s not

absolutely necess

Note that the macros could be #defined to built-in reserved words or

int32;
uint32;

int32;
uint32;

16-bit short into network-order short */

i);

32-bit int into network-order int */

i);

nction calls).

target cputype (]
target cpuvers (]
target opsysl([] =
source_compile[]

ary) .

"CPU: "
"Vs B n
n OS . n
n Cc : n

_CPU_NAME;
_CPU_VERS;
—0S_NAME;
_COMPILER NAME;

identifiers that are specially known to the compiler.

Some plausible ex

#define COMPILER_LANG

#define ORD_BYTE_HL
#define _ORD_WORD_HL

amples might be:
___VERSION _

__BIG ENDIAN
—_BIG_ENDIAN

(which won’t work if

67

